Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.285
Filtrar
1.
Stem Cell Res Ther ; 15(1): 284, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243052

RESUMEN

BACKGROUND: Periodontal ligament stem cells (PDLSCs) are important seed cells in tissue engineering and clinical applications. They are the priority receptor cells for sensing various mechanical stresses. Yes-associated protein (YAP) is a recognized mechanically sensitive transcription factor. However, the role of YAP in regulating the fate of PDLSCs under tension stress (TS) and its underlying mechanism is still unclear. METHODS: The effects of TS on the morphology and fate of PDLSCs were investigated using fluorescence staining, transmission electron microscopy, flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). Then qRT-PCR, western blotting, immunofluorescence staining and gene knockdown experiments were performed to investigate the expression and distribution of YAP and its correlation with PDLSCs proliferation. The effects of cytoskeleton dynamics on YAP nuclear translocation were subsequently explored by adding cytoskeleton inhibitors. The effect of cytoskeleton dynamics on the expression of the LINC complex was proved through qRT-PCR and western blotting. After destroying the LINC complex by adenovirus, the effects of the LINC complex on YAP nuclear translocation and PDLSCs proliferation were investigated. Mitochondria-related detections were then performed to explore the role of mitochondria in YAP nuclear translocation. Finally, the in vitro results were verified by constructing orthodontic tooth movement models in Sprague-Dawley rats. RESULTS: TS enhanced the polymerization and stretching of F-actin, which upregulated the expression of the LINC complex. This further strengthened the pull on the nuclear envelope, enlarged the nuclear pore, and facilitated YAP's nuclear entry, thus enhancing the expression of proliferation-related genes. In this process, mitochondria were transported to the periphery of the nucleus along the reconstructed microtubules. They generated ATP to aid YAP's nuclear translocation and drove F-actin polymerization to a certain degree. When the LINC complex was destroyed, the nuclear translocation of YAP was inhibited, which limited PDLSCs proliferation, impeded periodontal tissue remodeling, and hindered tooth movement. CONCLUSIONS: Our study confirmed that appropriate TS could promote PDLSCs proliferation and periodontal tissue remodeling through the mechanically driven F-actin/LINC complex/YAP axis, which could provide theoretical guidance for seed cell expansion and for promoting healthy and effective tooth movement in clinical practice.


Asunto(s)
Citoesqueleto , Membrana Nuclear , Ligamento Periodontal , Células Madre , Animales , Humanos , Masculino , Ratas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proliferación Celular , Células Cultivadas , Citoesqueleto/metabolismo , Membrana Nuclear/metabolismo , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Células Madre/metabolismo , Células Madre/citología , Estrés Mecánico , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo
2.
Cell Commun Signal ; 22(1): 435, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252008

RESUMEN

The inducers of neutrophil extracellular trap (NET) formation are heterogeneous and consequently, there is no specific pathway or signature molecule indispensable for NET formation. But certain events such as histone modification, chromatin decondensation, nuclear envelope breakdown, and NET release are ubiquitous. During NET formation, neutrophils drastically rearrange their cytoplasmic, granular and nuclear content. Yet, the exact mechanism for decoding each step during NET formation still remains elusive. Here, we investigated the mechanism of nuclear envelope breakdown during NET formation. Immunofluorescence microscopic evaluation revealed a gradual disintegration of outer nuclear membrane protein nesprin-1 and alterations in nuclear morphology during NET formation. MALDI-TOF analysis of NETs that had been generated by various inducers detected the accumulation of nesprin-1 fragments. This suggests that nesprin-1 degradation occurs before NET release. In the presence of a calpain-1, inhibitor nesprin-1 degradation was decreased in calcium driven NET formation. Microscopic evaluation confirmed that the disintegration of the lamin B receptor (LBR) and the collapse of the actin cytoskeleton occurs in early and later phases of NET release, respectively. We conclude that the calpain-1 degrades nesprin-1, orchestrates the weakening of the nuclear membrane, contributes to LBR disintegration, and promoting DNA release and finally, NETs formation.


Asunto(s)
Calpaína , Trampas Extracelulares , Receptor de Lamina B , Neutrófilos , Membrana Nuclear , Membrana Nuclear/metabolismo , Calpaína/metabolismo , Humanos , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Calcio/metabolismo , Proteínas del Citoesqueleto
3.
Nat Commun ; 15(1): 7984, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266569

RESUMEN

Alterations in nuclear structure and function are hallmarks of cancer cells. Little is known about these changes in Cancer-Associated Fibroblasts (CAFs), crucial components of the tumor microenvironment. Loss of the androgen receptor (AR) in human dermal fibroblasts (HDFs), which triggers early steps of CAF activation, leads to nuclear membrane changes and micronuclei formation, independent of cellular senescence. Similar changes occur in established CAFs and are reversed by restoring AR activity. AR associates with nuclear lamin A/C, and its loss causes lamin A/C nucleoplasmic redistribution. AR serves as a bridge between lamin A/C and the protein phosphatase PPP1. Loss of AR decreases lamin-PPP1 association and increases lamin A/C phosphorylation at Ser 301, a characteristic of CAFs. Phosphorylated lamin A/C at Ser 301 binds to the regulatory region of CAF effector genes of the myofibroblast subtype. Expression of a lamin A/C Ser301 phosphomimetic mutant alone can transform normal fibroblasts into tumor-promoting CAFs.


Asunto(s)
Fibroblastos Asociados al Cáncer , Núcleo Celular , Lamina Tipo A , Receptores Androgénicos , Humanos , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Fosforilación , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Núcleo Celular/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/genética , Fibroblastos/metabolismo , Membrana Nuclear/metabolismo , Masculino , Microambiente Tumoral
4.
J Cell Sci ; 137(16)2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39092499

RESUMEN

Lamins are intermediate filament proteins that contribute to numerous cellular functions, including nuclear morphology and mechanical stability. The N-terminal head domain of lamin is crucial for higher order filament assembly and function, yet the effects of commonly used N-terminal tags on lamin function remain largely unexplored. Here, we systematically studied the effect of two differently sized tags on lamin A (LaA) function in a mammalian cell model engineered to allow for precise control of expression of tagged lamin proteins. Untagged, FLAG-tagged and GFP-tagged LaA completely rescued nuclear shape defects when expressed at similar levels in lamin A/C-deficient (Lmna-/-) MEFs, and all LaA constructs prevented increased nuclear envelope ruptures in these cells. N-terminal tags, however, altered the nuclear localization of LaA and impaired the ability of LaA to restore nuclear deformability and to recruit emerin to the nuclear membrane in Lmna-/- MEFs. Our finding that tags impede some LaA functions but not others might explain the partial loss of function phenotypes when tagged lamins are expressed in model organisms and should caution researchers using tagged lamins to study the nucleus.


Asunto(s)
Núcleo Celular , Lamina Tipo A , Membrana Nuclear , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Animales , Ratones , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
5.
Life Sci Alliance ; 7(11)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39209536

RESUMEN

Cockayne syndrome (CS) is a premature ageing condition characterized by microcephaly, growth failure, and neurodegeneration. It is caused by mutations in ERCC6 or ERCC8 encoding for Cockayne syndrome B (CSB) and A (CSA) proteins, respectively. CSA and CSB have well-characterized roles in transcription-coupled nucleotide excision repair, responsible for removing bulky DNA lesions, including those caused by UV irradiation. Here, we report that CSA dysfunction causes defects in the nuclear envelope (NE) integrity. NE dysfunction is characteristic of progeroid disorders caused by a mutation in NE proteins, such as Hutchinson-Gilford progeria syndrome. However, it has never been reported in Cockayne syndrome. We observed CSA dysfunction affected LEMD2 incorporation at the NE and increased actin stress fibers that contributed to enhanced mechanical stress to the NE. Altogether, these led to NE abnormalities associated with the activation of the cGAS/STING pathway. Targeting the linker of the nucleoskeleton and cytoskeleton complex was sufficient to rescue these phenotypes. This work reveals NE dysfunction in a progeroid syndrome caused by mutations in a DNA damage repair protein, reinforcing the connection between NE deregulation and ageing.


Asunto(s)
Síndrome de Cockayne , Enzimas Reparadoras del ADN , Reparación del ADN , Membrana Nuclear , Proteínas de Unión a Poli-ADP-Ribosa , Membrana Nuclear/metabolismo , Humanos , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Daño del ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Mutación , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Progeria/genética , Progeria/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción
6.
Cell Signal ; 123: 111358, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39181220

RESUMEN

G protein-coupled receptors (GPCRs) have historically been associated with signalling events driven from the plasma membrane. More recently, signalling from endosomes has been recognized as a feature of internalizing receptors. However, there was little consideration given to the notion that GPCRs can be targeted to distinct subcellular locations that did not involve an initial trafficking to the cell surface. Here, we focus on the evidence for and the potential impact of GPCR signalling specifically initiated from the nuclear membrane. We also discuss the possibilities for selectively targeting this and other internal pools of receptors as novel venues for drug discovery.


Asunto(s)
Núcleo Celular , Receptores Acoplados a Proteínas G , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animales , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Endosomas/metabolismo , Transporte de Proteínas
7.
PLoS Biol ; 22(8): e3002780, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39186808

RESUMEN

In animals, mitosis involves the breakdown of the nuclear envelope and the sorting of individualized, condensed chromosomes. During mitotic exit, emerging nuclei reassemble a nuclear envelope around a single mass of interconnecting chromosomes. The molecular mechanisms of nuclear reassembly are incompletely understood. Moreover, the cellular and physiological consequences of defects in this process are largely unexplored. Here, we have characterized a mechanism essential for nuclear reassembly in Drosophila. We show that Ankle2 promotes the PP2A-dependent recruitment of BAF and Lamin at reassembling nuclei, and that failures in this mechanism result in severe nuclear defects after mitosis. We then took advantage of perturbations in this mechanism to investigate the physiological responses to nuclear reassembly defects during tissue development in vivo. Partial depletion of Ankle2, BAF, or Lamin in imaginal wing discs results in wing development defects accompanied by apoptosis. We found that blocking apoptosis strongly enhances developmental defects. Blocking p53 does not prevent apoptosis but enhances defects due to the loss of a cell cycle checkpoint. Our results suggest that apoptotic and p53-dependent responses play a crucial role in safeguarding tissue development in response to sporadic nuclear reassembly defects.


Asunto(s)
Apoptosis , Núcleo Celular , Proteínas de Drosophila , Drosophila melanogaster , Mitosis , Proteína p53 Supresora de Tumor , Alas de Animales , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Apoptosis/genética , Núcleo Celular/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Membrana Nuclear/metabolismo , Laminas/metabolismo , Laminas/genética , Proteínas Nucleares
8.
STAR Protoc ; 5(3): 103214, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39088324

RESUMEN

The nuclear envelope can form complex structures in physiological and pathological contexts. Current approaches to quantify nuclear envelope structures can be time-consuming or inaccurate. Here, we present a protocol to measure nuclear envelope tubules induced by DNA double-strand breaks using a mid-throughput approach. We describe steps for the induction of these nuclear envelope structures and 3D image analysis using machine-learning-based image segmentation. This protocol can be applied to analyze various nuclear envelope structures in contexts beyond DNA repair. For complete details on the use and execution of this protocol, please refer to Shokrollahi et al.1.


Asunto(s)
Imagenología Tridimensional , Aprendizaje Automático , Membrana Nuclear , Membrana Nuclear/metabolismo , Imagenología Tridimensional/métodos , Humanos , Roturas del ADN de Doble Cadena , Células Cultivadas , Procesamiento de Imagen Asistido por Computador/métodos
9.
J Cell Sci ; 137(16)2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39092789

RESUMEN

The structure of the sperm flagellar axoneme is highly conserved across species and serves the essential function of generating motility to facilitate the meeting of spermatozoa with the egg. During spermiogenesis, the axoneme elongates from the centrosome, and subsequently the centrosome docks onto the nuclear envelope to continue tail biogenesis. Mycbpap is expressed predominantly in mouse and human testes and conserved in Chlamydomonas as FAP147. A previous cryo-electron microscopy analysis has revealed the localization of FAP147 to the central apparatus of the axoneme. Here, we generated Mycbpap-knockout mice and demonstrated the essential role of Mycbpap in male fertility. Deletion of Mycbpap led to disrupted centrosome-nuclear envelope docking and abnormal flagellar biogenesis. Furthermore, we generated transgenic mice with tagged MYCBPAP, which restored the fertility of Mycbpap-knockout males. Interactome analyses of MYCBPAP using Mycbpap transgenic mice unveiled binding partners of MYCBPAP including central apparatus proteins, such as CFAP65 and CFAP70, which constitute the C2a projection, and centrosome-associated proteins, such as CCP110. These findings provide insights into a MYCBPAP-dependent regulation of the centrosome-nuclear envelope docking and sperm tail biogenesis.


Asunto(s)
Centrosoma , Ratones Noqueados , Membrana Nuclear , Cola del Espermatozoide , Animales , Masculino , Membrana Nuclear/metabolismo , Centrosoma/metabolismo , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/ultraestructura , Ratones , Espermatogénesis/genética , Ratones Transgénicos , Fertilidad , Axonema/metabolismo , Axonema/ultraestructura , Espermatozoides/metabolismo , Espermatozoides/ultraestructura
10.
Nat Commun ; 15(1): 7000, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143095

RESUMEN

Mutations in the nuclear envelope (NE) protein lamin A/C (encoded by LMNA), cause a severe form of dilated cardiomyopathy (DCM) with early-onset life-threatening arrhythmias. However, molecular mechanisms underlying increased arrhythmogenesis in LMNA-related DCM (LMNA-DCM) remain largely unknown. Here we show that a frameshift mutation in LMNA causes abnormal Ca2+ handling, arrhythmias and disformed NE in LMNA-DCM patient-specific iPSC-derived cardiomyocytes (iPSC-CMs). Mechanistically, lamin A interacts with sirtuin 1 (SIRT1) where mutant lamin A/C accelerates degradation of SIRT1, leading to mitochondrial dysfunction and oxidative stress. Elevated reactive oxygen species (ROS) then activates the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-ryanodine receptor 2 (RYR2) pathway and aggravates the accumulation of SUN1 in mutant iPSC-CMs, contributing to arrhythmias and NE deformation, respectively. Taken together, the lamin A/C deficiency-mediated ROS disorder is revealed as central to LMNA-DCM development. Manipulation of impaired SIRT1 activity and excessive oxidative stress is a potential future therapeutic strategy for LMNA-DCM.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Lamina Tipo A , Miocitos Cardíacos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Sirtuina 1 , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Células Madre Pluripotentes Inducidas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Sirtuina 1/metabolismo , Sirtuina 1/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fenotipo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Mutación del Sistema de Lectura , Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Membrana Nuclear/metabolismo , Mitocondrias/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
11.
Mol Biol Rep ; 51(1): 898, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115711

RESUMEN

BACKGROUND: The nuclear envelope (NE), which is composed of the outer and inner nuclear membranes, the nuclear pore complex and the nuclear lamina, regulates a plethora of cellular processes, including those that restrict cancer development (genomic stability, cell cycle regulation, and cell migration). Thus, impaired NE is functionally related to tumorigenesis, and monitoring of NE alterations is used to diagnose cancer. However, the chronology of NE changes occurring during cancer evolution and the connection between them remained to be precisely defined, due to the lack of appropriate cell models. METHODS: The expression and subcellular localization of NE proteins (lamins A/C and B1 and the inner nuclear membrane proteins emerin and ß-dystroglycan [ß-DG]) during prostate cancer progression were analyzed, using confocal microscopy and western blot assays, and a prostate cancer cell system comprising RWPE-1 epithelial prostate cells and several prostate cancer cell lines with different invasiveness. RESULTS: Deformed nuclei and the mislocalization and low expression of lamin A/C, lamin B1, and emerin became more prominent as the invasiveness of the prostate cancer lines increased. Suppression of lamin A/C expression was an early event during prostate cancer evolution, while a more extensive deregulation of NE proteins, including ß-DG, occurred in metastatic prostate cells. CONCLUSIONS: The RWPE-1 cell line-based system was found to be suitable for the correlation of NE impairment with prostate cancer invasiveness and determination of the chronology of NE alterations during prostate carcinogenesis. Further study of this cell system would help to identify biomarkers for prostate cancer prognosis and diagnosis.


Asunto(s)
Lamina Tipo A , Lamina Tipo B , Proteínas de la Membrana , Membrana Nuclear , Proteínas Nucleares , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Membrana Nuclear/metabolismo , Línea Celular Tumoral , Proteínas de la Membrana/metabolismo , Lamina Tipo B/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Distroglicanos/metabolismo , Regulación Neoplásica de la Expresión Génica , Núcleo Celular/metabolismo
12.
Cells ; 13(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39120335

RESUMEN

The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Humanos , Citocinesis , Animales , Membrana Nuclear/metabolismo , Inestabilidad Genómica
13.
Sci Rep ; 14(1): 19044, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152185

RESUMEN

The nuclear pore complexes on the nuclear membrane serve as the exclusive gateway for communication between the nucleus and the cytoplasm, regulating the transport of various molecules, including nucleic acids and proteins. The present work investigates the kinetics of the transport of negatively charged graphene quantum dots through nuclear membranes, focusing on quantifying their transport characteristics. Experiments are carried out in permeabilized HeLa cells using time-lapse confocal fluorescence microscopy. Our findings indicate that negatively charged graphene quantum dots exhibit rapid transport to the nuclei, involving two distinct transport pathways in the translocation process. Complementary experiments on the nuclear import and export of graphene quantum dots validate the bi-directionality of transport, as evidenced by comparable transport rates. The study also shows that the negatively charged graphene quantum dots possess favorable retention properties, underscoring their potential as drug carriers.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , Grafito , Puntos Cuánticos , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Humanos , Grafito/química , Células HeLa , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Microscopía Confocal
14.
Science ; 385(6712): eadj7446, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39208097

RESUMEN

Chromosomal instability (CIN) generates micronuclei-aberrant extranuclear structures that catalyze the acquisition of complex chromosomal rearrangements present in cancer. Micronuclei are characterized by persistent DNA damage and catastrophic nuclear envelope collapse, which exposes DNA to the cytoplasm. We found that the autophagic receptor p62/SQSTM1 modulates micronuclear stability, influencing chromosome fragmentation and rearrangements. Mechanistically, proximity of micronuclei to mitochondria led to oxidation-driven homo-oligomerization of p62, limiting endosomal sorting complex required for transport (ESCRT)-dependent micronuclear envelope repair by triggering autophagic degradation. We also found that p62 levels correlate with increased chromothripsis across human cancer cell lines and with increased CIN in colorectal tumors. Thus, p62 acts as a regulator of micronuclei and may serve as a prognostic marker for tumors with high CIN.


Asunto(s)
Autofagia , Inestabilidad Cromosómica , Cromotripsis , Neoplasias Colorrectales , Micronúcleos con Defecto Cromosómico , Proteína Sequestosoma-1 , Humanos , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Daño del ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Membrana Nuclear/metabolismo
15.
Science ; 385(6712): eadj8691, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39208110

RESUMEN

Chromosome-containing micronuclei are a hallmark of aggressive cancers. Micronuclei frequently undergo irreversible collapse, exposing their enclosed chromatin to the cytosol. Micronuclear rupture catalyzes chromosomal rearrangements, epigenetic abnormalities, and inflammation, yet mechanisms safeguarding micronuclear integrity are poorly understood. In this study, we found that mitochondria-derived reactive oxygen species (ROS) disrupt micronuclei by promoting a noncanonical function of charged multivesicular body protein 7 (CHMP7), a scaffolding protein for the membrane repair complex known as endosomal sorting complex required for transport III (ESCRT-III). ROS retained CHMP7 in micronuclei while disrupting its interaction with other ESCRT-III components. ROS-induced cysteine oxidation stimulated CHMP7 oligomerization and binding to the nuclear membrane protein LEMD2, disrupting micronuclear envelopes. Furthermore, this ROS-CHMP7 pathological axis engendered chromosome shattering known to result from micronuclear rupture. It also mediated micronuclear disintegrity under hypoxic conditions, linking tumor hypoxia with downstream processes driving cancer progression.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas de la Membrana , Micronúcleos con Defecto Cromosómico , Neoplasias , Proteínas Nucleares , Estrés Oxidativo , Humanos , Hipoxia de la Célula , Cromatina/metabolismo , Cisteína/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Células HeLa
16.
Science ; 385(6712): 930-931, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39208121

RESUMEN

Oxidative damage triggers micronuclear membrane rupture and defective repair.


Asunto(s)
Neoplasias , Estrés Oxidativo , Humanos , Neoplasias/genética , Reparación del ADN , Membrana Nuclear/metabolismo , Daño del ADN
17.
Curr Biol ; 34(15): R741-R744, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106834

RESUMEN

Mitosis exhibits astonishing evolutionary plasticity, with dividing eukaryotic cells differing in the organization of the mitotic spindle and the extent of nuclear envelope breakdown. A new study suggests that a multinucleated lifestyle may favor the evolution of closed nuclear division.


Asunto(s)
Evolución Biológica , Mitosis , Huso Acromático , Mitosis/fisiología , Huso Acromático/fisiología , Animales , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiología
18.
Methods Mol Biol ; 2845: 67-77, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115658

RESUMEN

The autophagy-lysosomal pathway enables the controlled degradation of cellular contents. Nucleophagy is the selective autophagic recycling of nuclear components upon delivery to the lysosome. Although methods to monitor and quantify autophagy as well as selective types of autophagy have been developed and implemented in cells and in vivo, methods monitoring nucleophagy remain scarce. Here, we describe a procedure to monitor the autophagic engagement of an endogenous nuclear envelope component, i.e., ANC-1, the nematode homologue of the mammalian Nesprins in vivo, utilizing super-resolution microscopy.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Autofagia/fisiología , Lisosomas/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Macroautofagia
19.
Development ; 151(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39087588

RESUMEN

The Spalt transcriptional regulators participate in a variety of cell fate specification processes during development, regulating transcription through interactions with DNA AT-rich regions. Spalt proteins also bind to heterochromatic regions, and some of their effects require interactions with the NuRD chromatin remodeling and deacetylase complex. Most of the biological roles of Spalt proteins have been characterized in diploid cells engaged in cell proliferation. Here, we address the function of Drosophila Spalt genes in the development of a larval tissue formed by polyploid cells, the prothoracic gland, the cells of which undergo several rounds of DNA replication without mitosis during larval development. We show that prothoracic glands depleted of Spalt expression display severe changes in the size of the nucleolus, the morphology of the nuclear envelope and the disposition of the chromatin within the nucleus, leading to a failure in the synthesis of ecdysone. We propose that loss of ecdysone production in the prothoracic gland of Spalt mutants is primarily caused by defects in nuclear pore complex function that occur as a consequence of faulty interactions between heterochromatic regions and the nuclear envelope.


Asunto(s)
Proteínas de Drosophila , Ecdisona , Factores de Transcripción , Animales , Nucléolo Celular/metabolismo , Cromatina/metabolismo , Drosophila/metabolismo , Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ecdisona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Mutación/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/genética , Poro Nuclear/metabolismo , Poro Nuclear/genética , Proteínas Represoras , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
20.
J Cell Biol ; 223(11)2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39150509

RESUMEN

Huntington's disease (HD) is caused by a polyglutamine expansion of the huntingtin protein, resulting in the formation of polyglutamine aggregates. The mechanisms of toxicity that result in the complex HD pathology remain only partially understood. Here, we show that nuclear polyglutamine aggregates induce nuclear envelope (NE) blebbing and ruptures that are often repaired incompletely. These ruptures coincide with disruptions of the nuclear lamina and lead to lamina scar formation. Expansion microscopy enabled resolving the ultrastructure of nuclear aggregates and revealed polyglutamine fibrils sticking into the cytosol at rupture sites, suggesting a mechanism for incomplete repair. Furthermore, we found that NE repair factors often accumulated near nuclear aggregates, consistent with stalled repair. These findings implicate nuclear polyQ aggregate-induced loss of NE integrity as a potential contributing factor to Huntington's disease and other polyglutamine diseases.


Asunto(s)
Enfermedad de Huntington , Membrana Nuclear , Péptidos , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Humanos , Péptidos/metabolismo , Péptidos/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/genética , Animales , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Agregado de Proteínas , Lámina Nuclear/metabolismo , Lámina Nuclear/ultraestructura , Núcleo Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA