Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.871
Filtrar
1.
Cell Biochem Funct ; 42(5): e4091, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973151

RESUMEN

The intron retention (IR) is a phenomenon utilized by cells to allow diverse fates at the same mRNA, leading to a different pattern of synthesis of the same protein. In this study, we analyzed the modulation of phosphoinositide-specific phospholipase C (PI-PLC) enzymes by Harpagophytum procumbens extract (HPE) in synoviocytes from joins of osteoarthritis (OA) patients. In some samples, the PI-PLC γ1 isoform mature mRNA showed the IR and, in these synoviocytes, the HPE treatment increased the phenomenon. Moreover, we highlighted that as a consequence of IR, a lower amount of PI-PLC γ1 was produced. The decrease of PI-PLC γ1 was associated with the decrease of metalloprotease-3 (MMP-3), and MMP-13, and ADAMTS-5 after HPE treatment. The altered expression of MMPs is a hallmark of the onset and progression of OA, thus substances able to decrease their expression are very desirable. The interesting outcomes of this study are that 35% of analyzed synovial tissues showed the IR phenomenon in the PI-PLC γ1 mRNA and that the HPE treatment increased this phenomenon. For the first time, we found that the decrease of PI-PLC γ1 protein in synoviocytes interferes with MMP production, thus affecting the pathways involved in the MMP expression. This finding was validated by the silencing of PI-PLC γ1 in synoviocytes where the IR phenomenon was not present. Our results shed new light on the biochemical mechanisms involved in the degrading enzyme production in the joint of OA patients, suggesting a new therapeutic target and highlighting the importance of personalized medicine.


Asunto(s)
Fibroblastos , Intrones , Fosfolipasa C gamma , ARN Mensajero , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fosfolipasa C gamma/metabolismo , Fosfolipasa C gamma/genética , Células Cultivadas , Osteoartritis/metabolismo , Osteoartritis/patología , Membrana Sinovial/metabolismo , Membrana Sinovial/citología , Membrana Sinovial/efectos de los fármacos , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Sinoviocitos/metabolismo , Sinoviocitos/efectos de los fármacos , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 13 de la Matriz/genética
2.
Life Sci ; 351: 122780, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38866217

RESUMEN

AIMS: This study aimed to identify hub ferroptosis-related genes (FRGs) and investigate potential therapy for RA based on FRGs. MAIN METHODS: The differentially expressed FRGs in synovial tissue of RA patients were obtained from the dataset GSE12021 (GPL96). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted to investigate the potential signaling pathways associated with FRGs. Hub genes were identified through topological analysis. The expression levels of these hub genes as well as their diagnostic accuracies were further evaluated. Connectivity Map (CMap) database was utilized to analyze the top 10 FRGs-guided potential drugs for RA. In vitro and in vivo experiments were carried out for further validation. KEY FINDINGS: 2 hub genes among 58 FRGs were identified (EGR1 and CDKN1A), and both were down regulated in RA synovial tissue. GPx4 expression was also decreased in the RA synovial tissue. The natural compound withaferin-a exhibited the highest negative CMap score. In-vitro and in-vivo experiments demonstrated anti-arthritic effects of withaferin-a. SIGNIFICANCE: Ferroptosis participates in pathogenesis of RA, ferroptosis-related genes EGR1 and CDKN1A can be used as diagnostic and therapeutic targets for RA. Withaferin-a can be used as potential anti-arthritic treatment.


Asunto(s)
Artritis Reumatoide , Ferroptosis , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Humanos , Animales , Ratones , Membrana Sinovial/metabolismo , Membrana Sinovial/efectos de los fármacos , Masculino
3.
J Ethnopharmacol ; 332: 118286, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723919

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Di-Long (Pheretima vulgaris) is a classic animal sourced traditional Chinese medicine. It has been used for the treatment of joint inflammation and arthralgia for over two thousand years due to its effects of Tong-Luo-Zhi-Tong (dredging collaterals and alleviating pain). Our previous study showed that Chinese medicine Di-Long has significant anti-rheumatoid arthritis (RA) effects. AIM OF THE STUDY: Considering Di-Long as a potential source of active compounds with specific anti-RA therapeutic effects, this research was to obtain the anti-RA target-specific active fraction from Di-Long extracts (DL), and to further explore the chemical basis and verify the anti-RA mechanism of this active fraction. MATERIALS AND METHODS: Transcriptomic was applied to obtain the main anti-RA targets of DL on human RA fibroblast-like synoviocytes (FLS) and validated by qPCR. The target-corresponding active fraction was isolated from DL by ethanol precipitation and gel chromatography, and analyzed by nanoliter chromatography-mass spectrometry. Anti-RA effects of this active fraction was investigated by collagen-induced arthritis (CIA) in mice, and anti-RA mechanisms were verified in cocultured model of rat FLS and peripheral blood lymphocytes. RESULTS: We confirmed that CXCL10/CXCR3 was the main anti-RA target of DL. The active fraction - A (2182 - 890 Da) was isolated from DL based on its CXCL10 inhibiting effects in RA-FLS. Fraction A contains 195 peptides (192 were newly discovered), 26 of which might be bioactive and were considered to be the chemical basis of its anti-RA effects. Fraction A significantly ameliorated the joint destruction and overall inflammation in CIA mice, and downregulated CXCR3 expression in mice joint. Fraction A inhibited the chemotaxis of Th-cells in rat peripheral blood lymphocytes towards the TNF-α-induced rat FLS through CXCL10/CXCR3 pathway. CONCLUSIONS: Our work indicated that active fraction from DL containing small peptides exhibits promising therapeutic effects for RA through inhibiting CXCL10/CXCR3 chemotaxis.


Asunto(s)
Antirreumáticos , Artritis Experimental , Artritis Reumatoide , Quimiocina CXCL10 , Quimiotaxis , Receptores CXCR3 , Membrana Sinovial , Animales , Receptores CXCR3/metabolismo , Quimiocina CXCL10/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Masculino , Antirreumáticos/farmacología , Antirreumáticos/aislamiento & purificación , Ratas , Humanos , Quimiotaxis/efectos de los fármacos , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Ratones , Ratones Endogámicos DBA , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo
4.
J Drug Target ; 32(6): 724-735, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38712874

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune inflammation. Excessive proliferation and inadequate apoptosis of synovial macrophages are the crucial events of RA. Therefore, delivering therapeutic molecules to synovial macrophages specifically to tackle apoptotic insufficiency probably can be an efficient way to reduce joint inflammation and bone erosion. Based on the characteristics of dextran sulphate (DS) specifically binding scavenger receptor A (SR-A) on macrophage and celastrol (CLT) inducing apoptosis, we designed synovial macrophage-targeted nano-emulsions encapsulated with CLT (SR-CLTNEs) and explored their anti-RA effect. After intravenous injection, fluorescence-labelled SR-CLTNEs successfully targeted inflammatory joints and synovial macrophages in a mouse model of RA, with the macrophage targeting efficiency of SR-CLTNEs, CLTNEs and free DID was 20.53%, 13.93% and 9.8%, respectively. In vivo and in vitro studies showed that SR-CLTNEs effectively promoted the apoptosis of macrophages, reshaped the balance between apoptosis and proliferation, and ultimately treated RA in a high efficiency and low toxicity manner. Overall, our work demonstrates the efficacy of using SR-CLTNEs as a novel nanotherapeutic approach for RA therapy and the great translational potential of SR-CLTNEs.


Asunto(s)
Apoptosis , Artritis Reumatoide , Emulsiones , Macrófagos , Triterpenos Pentacíclicos , Animales , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/administración & dosificación , Artritis Reumatoide/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Nanopartículas/química , Masculino , Triterpenos/farmacología , Triterpenos/administración & dosificación , Membrana Sinovial/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Proliferación Celular/efectos de los fármacos , Sulfato de Dextran
5.
Acta Biomater ; 181: 425-439, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38729544

RESUMEN

Synovial macrophages play an important role in the progression of osteoarthritis (OA). In this study, we noted that synovial macrophages can activate pyroptosis in a gasdermin d-dependent manner and produce reactive oxygen species (ROS), aberrantly activating the mammalian target of rapamycin complex 1 (mTORC1) pathway and matrix metalloproteinase-9 (MMP9) expression in synovial tissue samples collected from both patients with OA and collagen-induced osteoarthritis (CIOA) mouse model. To overcome this, we constructed rapamycin- (RAPA, a mTORC1 inhibitor) loaded mesoporous Prussian blue nanoparticles (MPB NPs, for catalyzing ROS) and modified the NPs with MMP9-targeted peptides (favor macrophage targeting) to develop RAPA@MPB-MMP9 NPs. The inherent enzyme-like activity and RAPA released from RAPA@MPB-MMP9 NPs synergistically impeded the pyroptosis of macrophages and the activation of the mTORC1 pathway. In particular, the NPs decreased pyroptosis-mediated ROS generation, thereby inhibiting cGAS-STING signaling pathway activation caused by the release of mitochondrial DNA. Moreover, the NPs promoted macrophage mitophagy to restore mitochondrial stability, alleviate pyroptosis-related inflammatory responses, and decrease senescent synoviocytes. After the as-prepared NPs were intra-articularly injected into the CIOA mouse model, they efficiently attenuated synovial macrophage pyroptosis and cartilage degradation. In conclusion, our study findings provide a novel therapeutic strategy for OA that modulates the pyroptosis and mitophagy of synovial macrophage by utilizing functionalized NPs. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) presents a significant global challenge owing to its complex pathogenesis and finite treatment options. Synovial macrophages have emerged as key players in the progression of OA, managing inflammation and tissue destruction. In this study, we discovered a novel therapeutic strategy in which the pyroptosis and mitophagy of synovial macrophages are targeted to mitigate OA pathology. For this, we designed and prepared rapamycin-loaded mesoporous Prussian blue nanoparticles (RAPA@MPB-MMP9 NPs) to specifically target synovial macrophages and modulate their inflammatory responses. These NPs could efficiently suppress macrophage pyroptosis, diminish reactive oxygen species production, and promote mitophagy, thereby alleviating inflammation and protecting cartilage integrity. Our study findings not only clarify the intricate mechanisms underlying OA pathogenesis but also present a promising therapeutic approach for effectively managing OA by targeting dysregulation in synovial macrophages.


Asunto(s)
Macrófagos , Mitofagia , Nanopartículas , Osteoartritis , Piroptosis , Especies Reactivas de Oxígeno , Osteoartritis/patología , Osteoartritis/tratamiento farmacológico , Animales , Piroptosis/efectos de los fármacos , Nanopartículas/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/patología , Mitofagia/efectos de los fármacos , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Masculino , Sirolimus/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Progresión de la Enfermedad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Membrana Sinovial/patología , Membrana Sinovial/efectos de los fármacos , Ratones Endogámicos C57BL , Ferrocianuros
6.
BMC Musculoskelet Disord ; 25(1): 375, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734632

RESUMEN

BACKGROUND: Synovitis, characterized by inflammation of the synovial membrane, is commonly induced by meniscus tears. However, significant differences in inflammatory responses and the key inflammatory mediators of synovium induced by different types of meniscal tears remain unclear. METHODS: Magnetic resonance imaging (MRI) was employed to identify the type of meniscus tear, and the quantification of synovial inflammation was assessed through H&E staining assay. Transcription and expression levels of IL-1ß and IL-6 were evaluated using bioinformatics, ELISA, RT-qPCR, and IHC of CD68 staining assays. The therapeutic potential of Docosapentaenoic Acid (DPA) was determined through network pharmacology, ELISA, and RT-qPCR assays. The safety of DPA was assessed using colony formation and EdU staining assays. RESULTS: The results indicate that both IL-1ß and IL-6 play pivotal roles in synovitis pathogenesis, with distinct expression levels across various subtypes. Among tested meniscus tears, oblique tear and bucket handle tear induced the most severe inflammation, followed by radial tear and longitudinal tear, while horizontal tear resulted in the least inflammation. Furthermore, in synovial inflammation induced by specific meniscus tears, the anterior medial tissues exhibited significantly higher local inflammation than the anterior lateral and suprapatellar regions, highlighting the clinical relevance and practical guidance of anterior medial tissues' inflammatory levels. Additionally, we identified the essential omega-3 fatty acid DPA as a potential therapeutic agent for synovitis, demonstrating efficacy in blocking the transcription and expression of IL-1ß and IL-6 with minimal side effects. CONCLUSION: These findings provide valuable insights into the nuanced nature of synovial inflammation induced by various meniscal tear classifications and contribute to the development of new adjunctive therapeutic agents in the management of synovitis.


Asunto(s)
Ácidos Grasos Insaturados , Interleucina-1beta , Imagen por Resonancia Magnética , Membrana Sinovial , Sinovitis , Lesiones de Menisco Tibial , Lesiones de Menisco Tibial/tratamiento farmacológico , Lesiones de Menisco Tibial/metabolismo , Sinovitis/tratamiento farmacológico , Sinovitis/metabolismo , Sinovitis/patología , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Humanos , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/uso terapéutico , Masculino , Interleucina-1beta/metabolismo , Animales , Interleucina-6/metabolismo , Femenino , Meniscos Tibiales/efectos de los fármacos , Meniscos Tibiales/metabolismo , Ratones , Modelos Animales de Enfermedad
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 739-747, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38708508

RESUMEN

OBJECTIVE: To explore the inhibitory effect of Sidaxue, a traditional Miao herbal medicine formula, on articular bone and cartilage destruction and synovial neovascularization in rats with collagen-induced arthritis (CIA). METHODS: In a SD rat model of CIA, we tested the effects of daily gavage of Sidaxue at low, moderate and high doses (10, 20, and 40 g/kg, respectively) for 21 days, with Tripterygium glycosides (GTW) as the positive control, on swelling in the hind limb plantar regions by arthritis index scoring. Pathologies in joint synovial membrane of the rats were observed with HE staining, and serum TNF-α and IL-1ß levels were detected with ELISA. The expressions of NF-κB p65, matrix metalloproteinase 1 (MMP1), MMP2 and MMP9 at the mRNA and protein levels in the synovial tissues were detected using real-time PCR and Western blotting. Network pharmacology analysis was conducted to identify the important target proteins in the pathways correlated with the therapeutic effects of topical Sidaxue treatment for RA, and the core target proteins were screened by topological analysis. RESULTS: Treatment with GTW and Sidaxue at the 3 doses all significantly alleviated plantar swelling, lowered arthritis index scores, improved cartilage and bone damage and reduced neovascularization in CIA rats (P<0.05), and the effects of Sidaxue showed a dose dependence. Both GTW and Sidaxue treatments significantly lowered TNF-α, IL-1ß, NF-κB p65, MMP1, MMP2, and MMP9 mRNA and protein expressions in the synovial tissues of CIA rats (P<0.05). Network pharmacological analysis identified MMPs as the core proteins associated with topical Sidaxue treatment of RA. CONCLUSION: Sidaxue alleviates articular bone and cartilage damages and reduces synovial neovascularization in CIA rats possibly by downregulating MMPs via the TNF-α/IL-1ß/NF-κB-MMP1, 2, 9 signaling pathway, and MMPs probably plays a key role in mediating the effect of Sidaxue though the therapeutic pathways other than oral administration.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Metaloproteinasa 1 de la Matriz , Ratas Sprague-Dawley , Membrana Sinovial , Factor de Necrosis Tumoral alfa , Animales , Ratas , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Metaloproteinasa 1 de la Matriz/metabolismo , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Tripterygium/química , Factor de Transcripción ReIA/metabolismo
8.
Pharmacology ; 109(3): 156-168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38565085

RESUMEN

INTRODUCTION: IDN5706 is a tetrahydro derivative of hyperforin. In this study, we aimed to explore the effect of IDN5706 on synovial macrophages in osteoarthritis (OA) rats and the underlying mechanisms. METHODS: OA rats were employed for the in vivo experiments, and RAW264.7 cells were employed for the in vitro experiments. Histopathological changes in synovium were examined using hematoxylin-eosin staining. Cell apoptosis in synovium was assessed by TUNEL staining. Macrophage polarization was determined by immunohistochemical analysis and flow cytometry. The mRNA expression and protein level of genes were detected by qRT-PCR and Western blot. The efferocytosis of macrophages was assessed by flow cytometry. RESULTS: IDN5706 reversed the increased CD86-positive cells (M1 macrophages) and decreased CD206-positive cells (M2 macrophages), both in synovium and synovial fluid of OA rats. The in vitro experiments further confirmed the promotion effect of IDN5706 on M2 macrophages, accompanied by the elevated Arg-1 and reduced iNOS. Also, the upregulated p-mTOR in synovium and synovial fluid of OA rats were reversed by IDN5706, and the decreased M1 macrophages and increased M2 macrophages induced by IDN5706 were reversed by the mTOR activator. IDN5706 enhanced the efferocytosis of IL-4-treated RAW264.7 cells, and the animal experiments further revealed the involvement of efferocytosis in the improvement of OA by IDN5706. CONCLUSIONS: IDN5706 enhanced the efferocytosis of synovial macrophages by inducing M2 polarization via inhibiting p-mTOR, thus suppressing synovial inflammation and OA development, providing a theoretical basis for IDN5706 as a clinical drug for inflammatory diseases.


Asunto(s)
Macrófagos , Osteoartritis , Membrana Sinovial , Animales , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Ratones , Ratas , Masculino , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología , Membrana Sinovial/metabolismo , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Terpenos/farmacología , Terpenos/uso terapéutico , Modelos Animales de Enfermedad , Sinovitis/tratamiento farmacológico , Sinovitis/patología , Serina-Treonina Quinasas TOR/metabolismo
9.
Int Immunopharmacol ; 133: 111727, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636369

RESUMEN

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease and management of it still a challenge. Given report evaluates protective effect of phlorizin on RA and also postulates the molecular mechanism of its action. Bovine type II collagen (CIA) and Freund's incomplete adjuvant (1:1 and 1 mg/ml) was administered on 1st and 8th day of protocol to induce RA in rats and treatment with phlorizin 60 and 120 mg/kg was started after 4th week of protocol. Level of inflammatory cytokines and expression of proteins were estimated in phlorizin treated RA rats. Moreover in-vitro study was performed on Fibroblast-like synoviocytes (FLSs) and effect of phlorizin was estimated on proliferation, apoptosis and expression of mTOR pathway protein after stimulating these cell lines with Tumour Necrosis Factor alpha (TNF-α). Data of study suggest that phlorizin reduces inflammation and improves weight in CIA induced RA rats. Level of inflammatory cytokines in the serum and expression of Akt/PI3K/mTOR proteins in the join tissue was reduced in phlorizin treated RA rats. Phlorizin also reported to reverse the histopathological changes in the joint tissue of RA rats. In-vitro study supports that phlorizin reduces proliferation and no apoptotic effect on TNF-α stimulated FLSs. Expression of Akt/PI3K/mTOR proteins also downregulated in phlorizin treated TNF-α stimulated FLSs. In conclusion, phlorizin protects inflammation and reduces injury to the synovial tissues in RA, as it reduces autophagy by regulating Akt/PI3K/mTOR pathway.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Hiperplasia , Florizina , Sinoviocitos , Serina-Treonina Quinasas TOR , Animales , Humanos , Masculino , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Apoptosis/efectos de los fármacos , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Hiperplasia/tratamiento farmacológico , Florizina/farmacología , Florizina/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología , Sinoviocitos/efectos de los fármacos , Sinoviocitos/patología , Serina-Treonina Quinasas TOR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Cytokine ; 179: 156616, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38626647

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease induced by TNF-α, which increases fibroblast-like synoviocytes inflammation, resulting in cartilage destruction. The current work sought to comprehend the pathophysiological importance of TNF-α stimulation on differential protein expression and their regulation by apigenin using in-vitro and in-vivo models of RA. METHODS: The human RA synovial fibroblast cells were stimulated with or without TNF-α (10 ng/ml) and treated with 40 µM apigenin. In-silico, in-vitro and in-vivo studies were performed to confirm the pathophysiological significance of apigenin on pro-inflammatory cytokines and on differential expression of TTR and RAGE proteins. RESULTS: TNF-α induced inflammatory response in synoviocytes revealed higher levels of IL-6, IL-1ß, and TNF-α cytokines and upregulated differential expression of TTR and RAGE. In-silico results demonstrated that apigenin has a binding affinity towards TNF-α, indicating its potential effect in the inflammatory process. Both in-vitro and in-vivo results obtained by Western Blot analysis suggested that apigenin reduced the level of p65 (p = 0.005), TTR (p = 0.002), and RAGE (p = 0.020). CONCLUSION: The findings of this study suggested that TNF-α promotes the differential expression of pro-inflammatory cytokines, TTR, and RAGE via NF-kB pathways activation. Anti-inflammatory effect of apigenin impedes TNF-α mediated dysregulation or expression associated with RA pathogenesis.


Asunto(s)
Apigenina , Artritis Reumatoide , Receptor para Productos Finales de Glicación Avanzada , Factor de Necrosis Tumoral alfa , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Apigenina/farmacología , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Sinoviocitos/metabolismo , Sinoviocitos/efectos de los fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología , Citocinas/metabolismo , Animales , Inflamación/metabolismo , Inflamación/tratamiento farmacológico
11.
J Nat Med ; 78(3): 732-740, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38592349

RESUMEN

Three new biflavonoids (1-3) and two known flavonoids (4, 5) were isolated from Xylia kerrii collected in Thailand. Compounds 1-5 showed selective cytotoxicity against the rheumatoid fibroblast-like synovial MH7A cell line, and these compounds showed weak cytotoxicity against the human lung synovial fibroblast WI-38 VA13 sub 2 RA cell line. Notably, compound 1 was highly selective toward MH7A cells with an IC50 value of 6.9 µM, whereas the IC50 value for WI-38 VA13 sub 2 RA cells was > 100 µM. The western blotting analysis of MH7A cells treated with compound 1 showed increased CDKN2A /p16INK4A and caspase-8 levels.


Asunto(s)
Artritis Reumatoide , Biflavonoides , Fibroblastos , Extractos Vegetales , Hojas de la Planta , Humanos , Fibroblastos/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Línea Celular , Biflavonoides/farmacología , Biflavonoides/química , Biflavonoides/aislamiento & purificación , Tailandia , Membrana Sinovial/efectos de los fármacos , Estructura Molecular
12.
In Vivo ; 38(3): 1182-1191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688626

RESUMEN

BACKGROUND/AIM: Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, and management of it is still a challenge. The present investigation assessed the potential preventive effect of phlorizin on rats with RA. MATERIALS AND METHODS: A total of 40 healthy Wistar rats were used for this study. Bovine type II collagen and Freund's incomplete adjuvant (1:1 and 1 mg/ml) were administered on days 1 and 8 of the protocol to induce RA in rats; treatment with phlorizin at 60 or 120 mg/kg was started after the 4th week of the protocol, and its effect on inflammation, level of inflammatory cytokines, and expression of proteins were estimated in RA rats. Moreover, an in vitro study was performed on fibroblast-like synoviocytes (FLSs), and the effects of phlorizin on proliferation, apoptosis, and expression of the mechanistic target of rapamycin kinase pathway protein after stimulating these cells with tumor necrosis factor α (TNF-α) were estimated. RESULTS: The data obtained from the study indicate that phlorizin has the potential to mitigate inflammation and enhance weight management in rats with RA induced by bovine type II collagen (CII). The level of inflammatory cytokines in the serum and the expression of protein kinase B (AKT), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and mechanistic target of rapamycin kinase (mTOR) proteins in the joint tissue were reduced in phlorizin-treated rats with RA. In this investigation, phlorizin was shown to reverse the histological abnormalities in the joint tissue of rats with RA. The in-vitro study showed that phlorizin reduced proliferation and had no apoptotic effect on TNF-α-stimulated FLSs. Expression of AKT, PI3K, and mTOR proteins was also down-regulated in phlorizin-treated TNF-α-stimulated FLSs. CONCLUSION: Phlorizin protects against inflammation and reduces injury to synovial tissues in RA by modulating the AKT/PI3K/mTOR pathway.


Asunto(s)
Artritis Reumatoide , Hiperplasia , Inflamación , Florizina , Transducción de Señal , Sinoviocitos , Serina-Treonina Quinasas TOR , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Serina-Treonina Quinasas TOR/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Florizina/farmacología , Inflamación/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Sinoviocitos/patología , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Modelos Animales de Enfermedad , Citocinas/metabolismo , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Masculino , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/metabolismo , Ratas Wistar , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
J Ethnopharmacol ; 329: 118061, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614265

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fangji Huangqi Decoction (FHD) is frequently prescribed for the clinical treatment of wind-cold and wind-dampness pathogenic superficial deficiency syndrome. It also has a notable curative effect on rheumatoid arthritis (RA). AIM OF THE STUDY: The study aimed to explore the possible mechanism of FHD against RA and provided a theoretical basis for alternative therapies for RA. MATERIALS AND METHODS: We used UPLC-Q-TOF-MS to analysis the ingredients and absorbed blood components of FHD. At the same time, the collagen-induced arthritis (CIA) rat model was established to estimate the therapeutic effects on FHD by considering body weight, arthritis score, paw swelling, autonomous movement ability, and synovial microvessel counts. Subsequently, immunofluorescence, immunohistochemistry, and Western blot were employed to detect the anti-angiogenic capacity of FHD in vivo, as well as the levels of apoptosis and autophagy in the synovial tissue. In addition, flow cytometry and Western blot were used to assess the effects of FHD on apoptosis and autophagy in MH7A cells. The effects of FHD on the proliferation and migration of MH7A cells were measured by CCK8 assay, cell migration and, invasion experiments. Finally, a tube formation assay was performed to evaluate the angiogenic capacity of FHD in co-cultures of MH7A cells and HUVEC cells. RESULTS: Through testing of FHD's original formula, a total of 26 active ingredients have been identified, with 17 of them being absorbed into the bloodstream. FHD significantly improved the pathological symptoms and synovial hyperplasia of CIA rats. FHD could suppress the expression of HIF-1α, promote apoptosis in CIA rat synovial tissue, and suppress autophagy and angiogenesis. In vitro experiments showed that serum containing FHD inhibited the proliferation, migration, and invasion of MH7A cells, and also suppressed the expression of autophagy-related proteins while promoting apoptosis. FHD markedly repressed the expression of HIF-1α protein in TNF-α-stimulated MH7A cells and inhibited the tube formation capacity induced by MH7A cells in HUVEC cells. CONCLUSIONS: The study had proven that FHD played an excellent anti-RA role, which may be attributed to its potential mechanism of regulating the balance between autophagy and apoptosis in RA FLS by suppressing the HIF-1α, thus contributing to its anti-angiogenic activities.


Asunto(s)
Apoptosis , Artritis Experimental , Artritis Reumatoide , Autofagia , Medicamentos Herbarios Chinos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neovascularización Patológica , Animales , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Autofagia/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Ratas , Masculino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Antirreumáticos/farmacología , Angiogénesis
14.
Am J Vet Res ; 85(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38513345

RESUMEN

OBJECTIVE: Polyacrylamide hydrogel (4% PAHG) is an inert viscoelastic supplement used to manage osteoarthritis in horses. Even with a prolonged clinical effect, horses may be administered multiple doses during their performance career. The effect of the serial 4% PAHG treatments is not known. The objectives of this study were to evaluate the clinical, histologic, and synovial fluid biomarker effects following serial administration of 4% PAHG in normal equine fetlock joints. ANIMALS: 8 healthy horses. METHODS: In a blinded, controlled in vivo study, horses received serial intra-articular injections of 4% PAHG (Noltrex Vet; Nucleus ProVets LLC) and contralateral 0.9% saline control on days 0, 45, 90, and 135. Treatment and control joints were randomly assigned. Synovial fluid was collected before administration of 4% PAHG or 0.9% saline on day 0 and at study completion for cellular and biomarker evaluation. Serial physical and lameness examinations were performed throughout the study. On day 240, gross examination and harvest of cartilage and synovial membrane for histology were completed. RESULTS: There were no histologic changes in articular cartilage or synovial fluid biomarkers. The 4% PAHG was seen on the surface of the synovium in 5 of 8 treated joints 105 days after the last treatment. There are minimal effects following serial injections of 4% PAHG on normal joints in horses following administration at 0, 45, 90, and 135 days, with final evaluation on day 240. CLINICAL RELEVANCE: Serial administration of intra-articular 4% PAHG in horses may provide long-term joint lubrication with no detrimental effects.


Asunto(s)
Resinas Acrílicas , Biomarcadores , Líquido Sinovial , Animales , Caballos , Líquido Sinovial/efectos de los fármacos , Líquido Sinovial/química , Resinas Acrílicas/administración & dosificación , Inyecciones Intraarticulares/veterinaria , Femenino , Masculino , Enfermedades de los Caballos/tratamiento farmacológico , Enfermedades de los Caballos/inducido químicamente , Enfermedades de los Caballos/patología , Cojera Animal/inducido químicamente , Membrana Sinovial/efectos de los fármacos , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Osteoartritis/veterinaria , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Articulaciones/efectos de los fármacos , Articulaciones/patología
15.
Environ Toxicol ; 39(6): 3283-3291, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38380842

RESUMEN

Rheumatoid arthritis (RA) is a well-known autoimmune disorder related with joint pain, joint swelling, cartilage and bone degradation as well as deformity. Fibroblast growth factor 23 (FGF23) is an endocrine factor of the FGF family primarily produced by osteocytes and osteoblasts, involves an essential effect in pathogenesis of RA. IL-1ß is a vital proinflammatory factor in the development of RA. However, the role of FGF23 on IL-1ß synthesis in RA has not been fully explored. Our analysis of database revealed higher levels of FGF23 and IL-1ß in RA samples compared with healthy controls. High-throughput screening demonstrated that IL-1ß is a potential candidate factor after FGF23 treatment in RA synovial fibroblasts (RASFs). FGF23 concentration dependently promotes IL-1ß synthesis in RASFs. FGF23 enhances IL-1ß expression by activating the PI3K, Akt, and NF-κB pathways. Our findings support the notion that FGF23 is a promising target in the remedy of RA.


Asunto(s)
Artritis Reumatoide , Factor-23 de Crecimiento de Fibroblastos , Fibroblastos , Interleucina-1beta , Transducción de Señal , Femenino , Humanos , Masculino , Artritis Reumatoide/metabolismo , Células Cultivadas , Factores de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(3): 367-374, 2022 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-35426800

RESUMEN

OBJECTIVE: To investigate the effect of triptolide (TPL) on inflammatory response and migration of fibroblast like synovial cells (FLS) in rheumatoid arthritis (RA-FLS) and the mechanism of circular noncoding RNA (circRNA) 0003353 for mediating this effect. METHODS: We collected peripheral blood mononuclear cells (PBMCs) and serum samples from 50 hospitalized RA patients and 30 healthy individuals for detecting the expression of circRNA 0003353, immune and inflammatory indexes (ESR, CRP, RF, anti-CCP, IgA, IgG, IgM, C3, and C4) and DAS28 score. Cultured RA-FLS was treated with 10 ng/mL TPL and transfected with a circRNA 0003353 overexpression plasmid, and cell counting kit-8 (CCK-8) assay and Transwell assay were used to detect the changes in the viability and migration of the cells. Enzyme-linked immunosorbent assay (ELISA) was used to examine the cytokines IL-4, IL-6, and IL-17, and real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect the expression of circRNA 003353; Western blotting was used to detect the expressions of p-JAK2, pSTAT3, JAK2 and STAT3 proteins in the treated cells. RESULTS: The expression of circRNA 0003353 was significantly increased in PBMCs from RA patients and showed a good performance in assisting the diagnosis of RA (AUC=90.5%, P < 0.001, 95% CI: 0.83-0.98). CircRNA 0003353 expression was positively correlated with ESR, RF and DAS28 (P < 0.05). Treatment with TPL significantly decreased the expression of circRNA 0003353, suppressed the viability and migration ability, decreased the expressions of IL-6 and IL-17, and increased the expression IL-4 in cultured RA-FLS in a time-dependent manner (P < 0.01). TNF-α stimulation of RA-FLS significantly increased the ratios of p-JAK2/JAK2 and p-STAT3/STAT3, which were obviously lowered by TPL treatment (P < 0.01). TPL-treated RA-FLS overexpressing circRNA 0003353 showed significantly increased cell viability and migration ability with decreased IL-4 expression and increased IL-6 and IL-17 expressions and ratios of p-JAK2/ JAK2 and p-STAT3/STAT3 (P < 0.01). CONCLUSION: The expression of circRNA 0003353 is increased in PBMCs in RA patients and in RA-FLS. TPL treatment can regulate JAK2/STAT3 signal pathway and inhibit the inflammatory response and migration of RA-FLS through circRNA 0003353.


Asunto(s)
Artritis Reumatoide , Diterpenos , Compuestos Epoxi , Interleucina-17 , Janus Quinasa 2 , Fenantrenos , ARN Circular , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Células Cultivadas , Diterpenos/farmacología , Compuestos Epoxi/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Janus Quinasa 2/metabolismo , Leucocitos Mononucleares/metabolismo , Fenantrenos/farmacología , ARN Circular/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patología
17.
PLoS One ; 17(2): e0263254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35148358

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammatory bone destruction in which tumor necrosis factor alpha (TNF-α) plays a key role. Bovine lactoferrin (bLF) is a multifunctional protein with anti-inflammatory and immunomodulatory properties. This study aimed to clarify the inhibitory effects of bLF on the pathological progression of RA. The mannan-induced arthritis model in SKG mice (genetic RA model) was used. Orally applied liposomal bLF (LbLF) markedly reduced ankle joint swelling and bone destruction. Histologically, pannus formation and osteoclastic bone destruction were prevented in the LbLF-treated animals. Moreover, orally administered LbLF improved the balance between Th17 cells and regulatory T cells isolated from the spleen of mannan-treated SKG mice. In an in vitro study, the anti-inflammatory effects of bLF on TNF-α-induced TNF-α production and downstream signaling pathways were analyzed in human synovial fibroblasts from RA patients (RASFs). bLF suppressed TNF-α production from RASFs by inhibiting the nuclear factor kappa B and mitogen-activated protein kinase pathways. The intracellular accumulation of bLF in RASFs increased in an applied bLF dose-dependent manner. Knockdown of the lipoprotein receptor-related protein-1 (LRP1) siRNA gene reduced bLF expression in RASFs, indicating that exogenously applied bLF was mainly internalized through LRP-1. Immunoprecipitated proteins with anti-TNF receptor-associated factor 2 (TRAF2; an adapter protein/ubiquitin ligase) included bLF, indicating that bLF binds directly to the TRAF2-TRADD-RIP complex. This indicates that LbLF may effectively prevent the pathological progression of RA by suppressing TNF-α production by binding to the TRAF2-TRADD-RIP complex from the RASFs in the pannus. Therefore, supplemental administration of LbLF may have a beneficial effect on preventive/therapeutic reagents for RA.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Lactoferrina/administración & dosificación , Osteogénesis/efectos de los fármacos , Membrana Sinovial/citología , Factor de Necrosis Tumoral alfa/efectos adversos , Administración Oral , Animales , Artritis Reumatoide/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Lactoferrina/farmacología , Masculino , Ratones , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Células Th17/metabolismo
18.
Arthritis Rheumatol ; 74(3): 441-452, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34435471

RESUMEN

OBJECTIVE: Findings from recent transcriptome analyses of the synovium of patients with rheumatoid arthritis (RA) have revealed that 15-fold expanded HLA-DR+CD90+ synovial fibroblasts potentially act as key mediators of inflammation. The reasons for the expansion of HLA-DR+CD90+ synovial fibroblasts are unclear, but genetic signatures indicate that interferon-γ (IFNγ) plays a central role in the generation of this fibroblast subset. The present study was undertaken to investigate the generation, function and therapeutically intended blockage of HLA-DR+CD90+ synovial fibroblasts. METHODS: We combined functional assays using primary human materials and focused bioinformatic analyses of mass cytometry and transcriptomics patient data sets. RESULTS: We detected enriched and activated Fcγ receptor type IIIa-positive (CD16+) NK cells in the synovial tissue from patients with active RA. Soluble immune complexes were recognized by CD16 in a newly described reporter cell model, a mechanism that could be contributing to the activation of natural killer (NK) cells in RA. In vitro, NK cell-derived IFNγ induced HLA-DR on CD90+ synovial fibroblasts, leading to an inflammatory, cytokine-secreting HLA-DR+CD90+ phenotype. HLA-DR+CD90+ synovial fibroblasts consecutively activated CD4+ T cells upon receptor crosslinking via superantigens. HLA-DR+CD90+ synovial fibroblasts also activated CD4+ T cells in the absence of superantigens, an effect that was initiated by NK cell-derived IFNγ and that was 4 times stronger in patients with RA compared to patients with osteoarthritis. Finally, JAK inhibition in synovial fibroblasts prevented HLA-DR induction and blocked proinflammatory signals to T cells. CONCLUSION: The HLA-DR+CD90+ phenotype represents an activation state of synovial fibroblasts during the process of inflammation in RA that can be induced by IFNγ, likely generated from infiltrating leukocytes such as activated NK cells. The induction of these proinflammatory, interleukin-6-producing, and likely antigen-presenting synovial fibroblasts can be targeted by JAK inhibition.


Asunto(s)
Artritis Reumatoide/metabolismo , Fibroblastos/efectos de los fármacos , Antígenos HLA-DR/metabolismo , Interferón gamma/farmacología , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Antígenos Thy-1/metabolismo , Artritis Reumatoide/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología
19.
Mol Immunol ; 141: 13-20, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34781187

RESUMEN

Matrine (Mat) is an alkaloid of tetracycline quinazine, and previous studies have demonstrated its specific effect on relieving rheumatoid arthritis (RA). However, the effect of Mat on joint synovial angiogenesis in the pathogenesis of RA has not been elucidated. In this study, body weight, joint swelling, arthritis index (AI) score, histopathological changes, immunohistochemical, and western blot- were used in collagen-induced arthritis (CIA) rats to detect pro-inflammatory factors and, - expression levels of key cytokines and proteins along the hypoxia-inducible factor (HIF)-endothelial growth factor (VEGF)-angiopoietin (Ang) axis and VEGF-phosphoinositide 3-kinase (PI3K) / protein kinase B (Akt) pathway. In vitro experiments were conducted to observe the effect of Mat on the proliferation, migration and lumen formation of RA-fibroblast-like synovial cells (FLS) and human umbilical vein endothelial cells (HUVECs). Results showed that Mat reduced the degree of paw swelling and AI score in CIA rats, joint synovial tissue proliferation, inflammatory cell infiltration, and neovascularization; moreover, it down-regulated the expression levels of inflammatory factors interleukin-1ß, interferon-γ, and pro-angiogenic factors VEGF, placental growth factor, HIF-α, Ang-1, Ang-2, Tie-2, and phosphorylation-Akt in the ankle joint of CIA rats. In addition, the in vitro experiments showed that Mat inhibited the proliferation and migration of RA-FLS and inhibited the proliferation and lumen formation of HUVECs. Therefore, Mat exerts an anti-angiogenesis effect by regulating the HIF-VEGF-Ang axis and inhibiting the PI3K/Akt signaling pathway. This inhibits the pathogenesis and improve the symptoms of RA, and may be offered as a candidate drug for the treatment of RA.


Asunto(s)
Alcaloides/farmacología , Artritis Experimental/tratamiento farmacológico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Quinolizinas/farmacología , Ribonucleasa Pancreática/metabolismo , Membrana Sinovial/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Artritis Experimental/metabolismo , Artritis Experimental/patología , Células Cultivadas , Colágeno/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Sinoviocitos/patología , Matrinas
20.
Mol Immunol ; 141: 53-59, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808482

RESUMEN

Rheumatoid arthritis (RA) is a common autoimmune disease in the elderly and it has been recently reported to be significantly associated with the activation of mast cells in joint tissues. IL-17A is a vital mediator that stimulates the activation of inflammation. Allopurinol is a classic agent for the suppression of uric acid production, recently reported to exert therapeutic effects on RA. In the present study, we investigated the regulatory effect of allopurinol against IL-17A-induced inflammatory response in mast cells and explored the potential mechanism of allopurinol on RA treatment. Firstly, we found that compared to normal synovium, IL-17A was significantly upregulated in the human RA synovium. IL-17A was used to stimulate an inflammatory state in mast cells in the absence or presence of allopurinol. We found that the production of inflammatory factors, PGE2, and COX-2 was significantly elevated in IL-17A-treated mast cells, accompanied by the activation of the iNOS/NO axis and the elevated secretion of ROS. After treatment with allopurinol, the elevated inflammation, activated COX-2/PGE2 and iNOS/NO axis, and oxidative stress were all dramatically alleviated. Mechanistically, the activated JNK/AP-1 and NF-κB pathways in IL-17A-treated mast cells were dramatically suppressed by the introduction of allopurinol. Taken together, our data reveal that allopurinol significantly alleviated the IL-17A-induced inflammatory response in mast cells.


Asunto(s)
Alopurinol/farmacología , Inflamación/tratamiento farmacológico , Interleucina-17/metabolismo , Mastocitos/efectos de los fármacos , Sustancias Protectoras/farmacología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/metabolismo , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Humanos , Inflamación/metabolismo , Mastocitos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA