Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72.154
Filtrar
1.
Mol Biol Rep ; 51(1): 572, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722394

RESUMEN

BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.


Asunto(s)
Disfunción Cognitiva , Crotonatos , Hidroxibutiratos , Nitrilos , Estrés Oxidativo , Toluidinas , Animales , Nitrilos/farmacología , Ratones , Hidroxibutiratos/farmacología , Crotonatos/farmacología , Toluidinas/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Estrés Oxidativo/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Escopolamina/farmacología , Cromonas/farmacología , Memoria/efectos de los fármacos , Cognición/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Morfolinas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Donepezilo/farmacología
2.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38725291

RESUMEN

A widely used psychotherapeutic treatment for post-traumatic stress disorder (PTSD) involves performing bilateral eye movement (EM) during trauma memory retrieval. However, how this treatment-described as eye movement desensitization and reprocessing (EMDR)-alleviates trauma-related symptoms is unclear. While conventional theories suggest that bilateral EM interferes with concurrently retrieved trauma memories by taxing the limited working memory resources, here, we propose that bilateral EM actually facilitates information processing. In two EEG experiments, we replicated the bilateral EM procedure of EMDR, having participants engaging in continuous bilateral EM or receiving bilateral sensory stimulation (BS) as a control while retrieving short- or long-term memory. During EM or BS, we presented bystander images or memory cues to probe neural representations of perceptual and memory information. Multivariate pattern analysis of the EEG signals revealed that bilateral EM enhanced neural representations of simultaneously processed perceptual and memory information. This enhancement was accompanied by heightened visual responses and increased neural excitability in the occipital region. Furthermore, bilateral EM increased information transmission from the occipital to the frontoparietal region, indicating facilitated information transition from low-level perceptual representation to high-level memory representation. These findings argue for theories that emphasize information facilitation rather than disruption in the EMDR treatment.


Asunto(s)
Electroencefalografía , Desensibilización y Reprocesamiento del Movimiento Ocular , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Desensibilización y Reprocesamiento del Movimiento Ocular/métodos , Movimientos Oculares/fisiología , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/terapia , Trastornos por Estrés Postraumático/psicología , Percepción Visual/fisiología , Memoria/fisiología , Encéfalo/fisiología , Estimulación Luminosa/métodos , Memoria a Corto Plazo/fisiología
3.
Mol Biol Rep ; 51(1): 640, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727848

RESUMEN

Memory issues are a prevalent symptom in different neurodegenerative diseases and can also manifest in certain psychiatric conditions. Despite limited medications approved for treating memory problems, research suggests a lack of sufficient options in the market. Studies indicate that a significant percentage of elderly individuals experience various forms of memory disorders. Metformin, commonly prescribed for type 2 diabetes, has shown neuroprotective properties through diverse mechanisms. This study explores the potential of metformin in addressing memory impairments. The current research gathered its data by conducting an extensive search across electronic databases including PubMed, Web of Science, Scopus, and Google Scholar. Previous research suggests that metformin enhances brain cell survival and memory function in both animal and clinical models by reducing oxidative stress, inflammation, and cell death while increasing beneficial neurotrophic factors. The findings of the research revealed that metformin is an effective medication for enhancing various types of memory problems in numerous studies. Given the rising incidence of memory disorders, it is plausible to utilize metformin, which is an affordable and accessible drug. It is often recommended as a treatment to boost memory.


Asunto(s)
Trastornos de la Memoria , Metformina , Metformina/uso terapéutico , Metformina/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Humanos , Animales , Estrés Oxidativo/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Memoria/efectos de los fármacos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo
4.
Sci Rep ; 14(1): 10907, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740808

RESUMEN

In this study, we investigated the electrical brain responses in a high-density EEG array (64 electrodes) elicited specifically by the word memory cue in the Think/No-Think paradigm in 46 participants. In a first step, we corroborated previous findings demonstrating sustained and reduced brain electrical frontal and parietal late potentials elicited by memory cues following the No-Think (NT) instructions as compared to the Think (T) instructions. The topographical analysis revealed that such reduction was significant 1000 ms after memory cue onset and that it was long-lasting for 1000 ms. In a second step, we estimated the underlying brain generators with a distributed method (swLORETA) which does not preconceive any localization in the gray matter. This method revealed that the cognitive process related to the inhibition of memory retrieval involved classical motoric cerebral structures with the left primary motor cortex (M1, BA4), thalamus, and premotor cortex (BA6). Also, the right frontal-polar cortex was involved in the T condition which we interpreted as an indication of its role in the maintaining of a cognitive set during remembering, by the selection of one cognitive mode of processing, Think, over the other, No-Think, across extended periods of time, as it might be necessary for the successful execution of the Think/No-Think task.


Asunto(s)
Electroencefalografía , Memoria , Corteza Motora , Humanos , Masculino , Femenino , Adulto , Memoria/fisiología , Corteza Motora/fisiología , Adulto Joven , Mapeo Encefálico , Pensamiento/fisiología , Encéfalo/fisiología , Potenciales Evocados/fisiología
5.
Eur J Med Res ; 29(1): 271, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711117

RESUMEN

Dexmedetomidine (Dex) has been used in surgery to improve patients' postoperative cognitive function. However, the role of Dex in stress-induced anxiety-like behaviors and cognitive impairment is still unclear. In this study, we tested the role of Dex in anxiety-like behavior and cognitive impairment induced by acute restrictive stress and analyzed the alterations of the intestinal flora to explore the possible mechanism. Behavioral and cognitive tests, including open field test, elevated plus-maze test, novel object recognition test, and Barnes maze test, were performed. Intestinal gut Microbe 16S rRNA sequencing was analyzed. We found that intraperitoneal injection of Dex significantly improved acute restrictive stress-induced anxiety-like behavior, recognition, and memory impairment. After habituation in the environment, mice (male, 8 weeks, 18-23 g) were randomly divided into a control group (control, N = 10), dexmedetomidine group (Dex, N = 10), AS with normal saline group (AS + NS, N = 10) and AS with dexmedetomidine group (AS + Dex, N = 10). By the analysis of intestinal flora, we found that acute stress caused intestinal flora disorder in mice. Dex intervention changed the composition of the intestinal flora of acute stress mice, stabilized the ecology of the intestinal flora, and significantly increased the levels of Blautia (A genus of anaerobic bacteria) and Coprobacillus. These findings suggest that Dex attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora.


Asunto(s)
Dexmedetomidina , Microbioma Gastrointestinal , Homeostasis , Estrés Psicológico , Animales , Dexmedetomidina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Homeostasis/efectos de los fármacos , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Memoria/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Aprendizaje por Laberinto/efectos de los fármacos , Ansiedad/tratamiento farmacológico
6.
Elife ; 122024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712831

RESUMEN

Representational drift refers to the dynamic nature of neural representations in the brain despite the behavior being seemingly stable. Although drift has been observed in many different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability is suggested to play a key role in regulating memory allocation, fluctuations of excitability could bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that drift is induced by co-activation of previously active neurons along with neurons with high excitability which leads to remodeling of the recurrent weights. Consistent with previous experimental works, the drifting ensemble is informative about its temporal history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal information from the activity of the ensemble. Finally, we show that the memory is preserved and can be decoded by an output neuron having plastic synapses with the main region.


Asunto(s)
Modelos Neurológicos , Plasticidad Neuronal , Neuronas , Neuronas/fisiología , Plasticidad Neuronal/fisiología , Memoria/fisiología , Encéfalo/fisiología , Red Nerviosa/fisiología , Animales , Humanos , Potenciales de Acción/fisiología
7.
Sci Rep ; 14(1): 10630, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724623

RESUMEN

Episodic counterfactual thinking (eCFT) is the process of mentally simulating alternate versions of experiences, which confers new phenomenological properties to the original memory and may be a useful therapeutic target for trait anxiety. However, it remains unclear how the neural representations of a memory change during eCFT. We hypothesized that eCFT-induced memory modification is associated with changes to the neural pattern of a memory primarily within the default mode network, moderated by dispositional anxiety levels. We tested this proposal by examining the representational dynamics of eCFT for 39 participants varying in trait anxiety. During eCFT, lateral parietal regions showed progressively more distinct activity patterns, whereas medial frontal neural activity patterns became more similar to those of the original memory. Neural pattern similarity in many default mode network regions was moderated by trait anxiety, where highly anxious individuals exhibited more generalized representations for upward eCFT (better counterfactual outcomes), but more distinct representations for downward eCFT (worse counterfactual outcomes). Our findings illustrate the efficacy of examining eCFT-based memory modification via neural pattern similarity, as well as the intricate interplay between trait anxiety and eCFT generation.


Asunto(s)
Ansiedad , Pensamiento , Humanos , Masculino , Ansiedad/fisiopatología , Femenino , Pensamiento/fisiología , Adulto Joven , Adulto , Imagen por Resonancia Magnética , Memoria/fisiología , Mapeo Encefálico , Encéfalo/fisiopatología , Encéfalo/fisiología
8.
Cells ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727282

RESUMEN

Impaired neuronal plasticity and cognitive decline are cardinal features of Alzheimer's disease and related Tauopathies. Aberrantly modified Tau protein and neurotransmitter imbalance, predominantly involving acetylcholine, have been linked to these symptoms. In Drosophila, we have shown that dTau loss specifically enhances associative long-term olfactory memory, impairs foot shock habituation, and deregulates proteins involved in the regulation of neurotransmitter levels, particularly acetylcholine. Interestingly, upon choline treatment, the habituation and memory performance of mutants are restored to that of control flies. Based on these surprising results, we decided to use our well-established genetic model to understand how habituation deficits and memory performance correlate with different aspects of choline physiology as an essential component of the neurotransmitter acetylcholine, the lipid phosphatidylcholine, and the osmoregulator betaine. The results revealed that the two observed phenotypes are reversed by different choline metabolites, implying that they are governed by different underlying mechanisms. This work can contribute to a broader knowledge about the physiologic function of Tau, which may be translated into understanding the mechanisms of Tauopathies.


Asunto(s)
Colina , Proteínas de Drosophila , Memoria , Proteínas tau , Animales , Colina/metabolismo , Proteínas tau/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Habituación Psicofisiológica , Drosophila melanogaster/metabolismo , Drosophila/metabolismo , Acetilcolina/metabolismo
9.
Cells ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38727294

RESUMEN

Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.


Asunto(s)
Conducta Animal , Mitocondrias , Oocitos , Estrés Oxidativo , Animales , Oocitos/metabolismo , Mitocondrias/metabolismo , Femenino , Ratones , Masculino , Ovulación , Ansiedad/metabolismo , Ansiedad/patología , Antioxidantes/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Blastocisto/metabolismo , Senescencia Celular , Memoria
10.
Nat Commun ; 15(1): 3722, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697981

RESUMEN

An important difference between brains and deep neural networks is the way they learn. Nervous systems learn online where a stream of noisy data points are presented in a non-independent, identically distributed way. Further, synaptic plasticity in the brain depends only on information local to synapses. Deep networks, on the other hand, typically use non-local learning algorithms and are trained in an offline, non-noisy, independent, identically distributed setting. Understanding how neural networks learn under the same constraints as the brain is an open problem for neuroscience and neuromorphic computing. A standard approach to this problem has yet to be established. In this paper, we propose that discrete graphical models that learn via an online maximum a posteriori learning algorithm could provide such an approach. We implement this kind of model in a neural network called the Sparse Quantized Hopfield Network. We show our model outperforms state-of-the-art neural networks on associative memory tasks, outperforms these networks in online, continual settings, learns efficiently with noisy inputs, and is better than baselines on an episodic memory task.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Humanos , Memoria/fisiología , Modelos Neurológicos , Encéfalo/fisiología , Plasticidad Neuronal/fisiología , Aprendizaje Profundo
11.
Commun Biol ; 7(1): 520, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698168

RESUMEN

The sulco-gyral pattern is a qualitative feature of the cortical anatomy that is determined in utero, stable throughout lifespan and linked to brain function. The intraparietal sulcus (IPS) is a nodal associative brain area, but the relation between its morphology and cognition is largely unknown. By labelling the left and right IPS of 390 healthy participants into two patterns, according to the presence or absence of a sulcus interruption, here we demonstrate a strong association between the morphology of the right IPS and performance on memory and language tasks. We interpret the results as a morphological advantage of a sulcus interruption, probably due to the underlying white matter organization. The right-hemisphere specificity of this effect emphasizes the neurodevelopmental and plastic role of sulcus morphology in cognition prior to lateralisation processes. The results highlight a promising area of investigation on the relationship between cognitive performance, sulco-gyral pattern and white matter bundles.


Asunto(s)
Lenguaje , Imagen por Resonancia Magnética , Memoria , Lóbulo Parietal , Humanos , Lóbulo Parietal/fisiología , Lóbulo Parietal/anatomía & histología , Femenino , Masculino , Adulto , Memoria/fisiología , Adulto Joven , Individualidad , Cognición/fisiología , Adolescente , Persona de Mediana Edad , Sustancia Blanca/fisiología , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen
12.
Trends Hear ; 28: 23312165241253653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715401

RESUMEN

This study aimed to preliminarily investigate the associations between performance on the integrated Digit-in-Noise Test (iDIN) and performance on measures of general cognition and working memory (WM). The study recruited 81 older adult hearing aid users between 60 and 95 years of age with bilateral moderate to severe hearing loss. The Chinese version of the Montreal Cognitive Assessment Basic (MoCA-BC) was used to screen older adults for mild cognitive impairment. Speech reception thresholds (SRTs) were measured using 2- to 5-digit sequences of the Mandarin iDIN. The differences in SRT between five-digit and two-digit sequences (SRT5-2), and between five-digit and three-digit sequences (SRT5-3), were used as indicators of memory performance. The results were compared to those from the Digit Span Test and Corsi Blocks Tapping Test, which evaluate WM and attention capacity. SRT5-2 and SRT5-3 demonstrated significant correlations with the three cognitive function tests (rs ranging from -.705 to -.528). Furthermore, SRT5-2 and SRT5-3 were significantly higher in participants who failed the MoCA-BC screening compared to those who passed. The findings show associations between performance on the iDIN and performance on memory tests. However, further validation and exploration are needed to fully establish its effectiveness and efficacy.


Asunto(s)
Cognición , Disfunción Cognitiva , Audífonos , Memoria a Corto Plazo , Humanos , Anciano , Femenino , Masculino , Persona de Mediana Edad , Anciano de 80 o más Años , Memoria a Corto Plazo/fisiología , Disfunción Cognitiva/diagnóstico , Ruido/efectos adversos , Percepción del Habla/fisiología , Prueba del Umbral de Recepción del Habla , Factores de Edad , Personas con Deficiencia Auditiva/psicología , Personas con Deficiencia Auditiva/rehabilitación , Pérdida Auditiva/rehabilitación , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/psicología , Pruebas de Estado Mental y Demencia , Memoria , Estimulación Acústica , Valor Predictivo de las Pruebas , Corrección de Deficiencia Auditiva/instrumentación , Umbral Auditivo
13.
BMC Psychiatry ; 24(1): 347, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720251

RESUMEN

BACKGROUND/AIMS: Older age and cognitive inactivity have been associated with cognitive impairment, which in turn is linked to economic and societal burdens due to the high costs of care, especially for care homes and informal care. Emerging non-pharmacological interventions using new technologies, such as virtual reality (VR) delivered on a head-mounted display (HMD), might offer an alternative to maintain or improve cognition. The study aimed to evaluate the efficacy and safety of a VR-based Digital Therapeutics application for improving cognitive functions among healthy older adults. METHODS: Seventy-two healthy seniors (experimental group N = 35, control group N = 37), aged 65-85 years, were recruited by the Medical University of Lodz (Poland). Participants were randomly allocated to the experimental group (a VR-based cognitive training which consists of a warm-up module and three tasks, including one-back and dual-N-back) or to the control group (a regular VR headset app only showing nature videos). The exercises are performed in different 360-degree natural environments while listening to a preferred music genre and delivered on a head-mounted display (HMD). The 12-week intervention of 12 min was delivered at least three times per week (36 sessions). Compliance and performance were followed through a web-based application. Primary outcomes included attention and working memory (CNS-Vital Signs computerized cognitive battery). Secondary outcomes comprised other cognitive domains. Mixed linear models were constructed to elucidate the difference in pre- and post-intervention measures between the experimental and control groups. RESULTS: The users performed, on average, 39.8 sessions (range 1-100), and 60% performed more than 36 sessions. The experimental group achieved higher scores in the visual memory module (B = 7.767, p = 0.011) and in the one-back continuous performance test (in terms of correct responses: B = 2.057, p = 0.003 and omission errors: B = -1.950, p = 0.007) than the control group in the post-test assessment. The results were independent of participants' sex, age, and years of education. The differences in CNS Vital Signs' global score, working memory, executive function, reaction time, processing speed, simple and complex attention, verbal memory, cognitive flexibility, motor speed, and psychomotor speed were not statistically significant. CONCLUSIONS: VR-based cognitive training may prove to be a valuable, efficacious, and well-received tool in terms of improving visual memory and some aspect of sustainability of attention among healthy older adults. This is a preliminary analysis based on part of the obtained results to that point. Final conclusions will be drawn after the analysis of the target sample size. TRIAL REGISTRATION: Clinicaltrials.gov ID NCT05369897.


Asunto(s)
Atención , Realidad Virtual , Humanos , Anciano , Masculino , Femenino , Anciano de 80 o más Años , Atención/fisiología , Memoria , Terapia de Exposición Mediante Realidad Virtual/métodos
14.
Proc Natl Acad Sci U S A ; 121(22): e2310979121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781212

RESUMEN

Humans have the highly adaptive ability to learn from others' memories. However, because memories are prone to errors, in order for others' memories to be a valuable source of information, we need to assess their veracity. Previous studies have shown that linguistic information conveyed in self-reported justifications can be used to train a machine-learner to distinguish true from false memories. But can humans also perform this task, and if so, do they do so in the same way the machine-learner does? Participants were presented with justifications corresponding to Hits and False Alarms and were asked to directly assess whether the witness's recognition was correct or incorrect. In addition, participants assessed justifications' recollective qualities: their vividness, specificity, and the degree of confidence they conveyed. Results show that human evaluators can discriminate Hits from False Alarms above chance levels, based on the justifications provided per item. Their performance was on par with the machine learner. Furthermore, through assessment of the perceived recollective qualities of justifications, participants were able to glean more information from the justifications than they used in their own direct decisions and than the machine learner did.


Asunto(s)
Recuerdo Mental , Humanos , Recuerdo Mental/fisiología , Femenino , Masculino , Adulto , Reconocimiento en Psicología/fisiología , Adulto Joven , Memoria/fisiología , Aprendizaje Automático
15.
Sci Rep ; 14(1): 11766, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783038

RESUMEN

Human tactile memory allows us to remember and retrieve the multitude of somatosensory experiences we undergo in everyday life. An unsolved question is how tactile memory mechanisms change with increasing age. We here use the ability to remember fine-grained tactile patterns passively presented to the fingertip to investigate age-related changes in tactile memory performance. In experiment 1, we varied the degree of similarity between one learned and several new tactile patterns to test on age-related changes in the "uniqueness" of a stored tactile memory trace. In experiment 2, we varied the degree of stimulus completeness of both known and new tactile patterns to test on age-related changes in the weighting between known and novel tactile information. Results reveal that older adults show only weak impairments in both precision and bias of tactile memories, however, they show specific deficits in reaching peak performance > 85% in both experiments. In addition, both younger and older adults show a pattern completion bias for touch, indicating a higher weighting of known compared to new information. These results allow us to develop new models on how younger and older adults store and recall tactile experiences of the past, and how this influences their everyday behavior.


Asunto(s)
Tacto , Humanos , Anciano , Masculino , Femenino , Adulto , Adulto Joven , Tacto/fisiología , Persona de Mediana Edad , Percepción del Tacto/fisiología , Envejecimiento/fisiología , Memoria/fisiología , Trastornos de la Memoria/fisiopatología , Anciano de 80 o más Años
16.
Curr Biol ; 34(10): 2247-2255.e5, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38714199

RESUMEN

Rapid eye movement (REM) sleep is known to facilitate fear extinction and play a protective role against fearful memories.1,2 Consequently, disruption of REM sleep after a traumatic event may increase the risk for developing PTSD.3,4 However, the underlying mechanisms by which REM sleep promotes extinction of aversive memories remain largely unknown. The infralimbic cortex (IL) is a key brain structure for the consolidation of extinction memory.5 Using calcium imaging, we found in mice that most IL pyramidal neurons are intensively activated during REM sleep. Optogenetically suppressing the IL specifically during REM sleep within a 4-h window after auditory-cued fear conditioning impaired extinction memory consolidation. In contrast, REM-specific IL inhibition after extinction learning did not affect the extinction memory. Whole-cell patch-clamp recordings demonstrated that inactivating IL neurons during REM sleep depresses their excitability. Together, our findings suggest that REM sleep after fear conditioning facilitates fear extinction by enhancing IL excitability and highlight the importance of REM sleep in the aftermath of traumatic events for protecting against traumatic memories.


Asunto(s)
Extinción Psicológica , Miedo , Sueño REM , Animales , Miedo/fisiología , Sueño REM/fisiología , Ratones , Extinción Psicológica/fisiología , Masculino , Ratones Endogámicos C57BL , Memoria/fisiología , Consolidación de la Memoria/fisiología , Condicionamiento Clásico/fisiología , Células Piramidales/fisiología
17.
Pharmacol Rep ; 76(3): 519-534, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38722542

RESUMEN

BACKGROUND: Synthetic cathinones (SC) constitute the second most frequently abused class of new psychoactive substances. They serve as an alternative to classic psychostimulatory drugs of abuse, such as methamphetamine, cocaine, or 3,4-methylenedioxymethamphetamine (MDMA). Despite the worldwide prevalence of SC, little is known about their long-term impact on the central nervous system. Here, we examined the effects of repeated exposure of mice during infancy, to 3,4-methylenedioxypyrovalerone (MDPV), a SC potently enhancing dopaminergic neurotransmission, on learning and memory in young adult mice. METHODS: All experiments were performed on C57BL/6J male and female mice. Animals were injected with MDPV (10 or 20 mg/kg) and BrdU (bromodeoxyuridine, 25 mg/kg) during postnatal days 11-20, which is a crucial period for the development of their hippocampus. At the age of 12 weeks, mice underwent an assessment of various types of memory using a battery of behavioral tests. Afterward, their brains were removed for detection of BrdU-positive cells in the dentate gyrus of the hippocampal formation with immunohistochemistry, and for measurement of the expression of synaptic proteins, such as synaptophysin and PSD95, in the hippocampus using Western blot. RESULTS: Exposure to MDPV resulted in impairment of spatial working memory assessed with Y-maze spontaneous alternation test, and of object recognition memory. However, no deficits in hippocampus-dependent spatial learning and memory were found using the Morris water maze paradigm. Consistently, hippocampal neurogenesis and synaptogenesis were not interrupted. All observed MDPV effects were sex-independent. CONCLUSIONS: MDPV administered repeatedly to mice during infancy causes learning and memory deficits that persist into adulthood but are not related to aberrant hippocampal development.


Asunto(s)
Benzodioxoles , Hipocampo , Trastornos de la Memoria , Ratones Endogámicos C57BL , Pirrolidinas , Cathinona Sintética , Animales , Benzodioxoles/administración & dosificación , Benzodioxoles/farmacología , Ratones , Femenino , Masculino , Pirrolidinas/administración & dosificación , Pirrolidinas/farmacología , Trastornos de la Memoria/inducido químicamente , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Memoria/efectos de los fármacos
18.
Nature ; 629(8013): 861-868, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38750353

RESUMEN

A central assumption of neuroscience is that long-term memories are represented by the same brain areas that encode sensory stimuli1. Neurons in inferotemporal (IT) cortex represent the sensory percept of visual objects using a distributed axis code2-4. Whether and how the same IT neural population represents the long-term memory of visual objects remains unclear. Here we examined how familiar faces are encoded in the IT anterior medial face patch (AM), perirhinal face patch (PR) and temporal pole face patch (TP). In AM and PR we observed that the encoding axis for familiar faces is rotated relative to that for unfamiliar faces at long latency; in TP this memory-related rotation was much weaker. Contrary to previous claims, the relative response magnitude to familiar versus unfamiliar faces was not a stable indicator of familiarity in any patch5-11. The mechanism underlying the memory-related axis change is likely intrinsic to IT cortex, because inactivation of PR did not affect axis change dynamics in AM. Overall, our results suggest that memories of familiar faces are represented in AM and perirhinal cortex by a distinct long-latency code, explaining how the same cell population can encode both the percept and memory of faces.


Asunto(s)
Reconocimiento en Psicología , Lóbulo Temporal , Lóbulo Temporal/fisiología , Lóbulo Temporal/citología , Masculino , Animales , Reconocimiento en Psicología/fisiología , Factores de Tiempo , Memoria a Largo Plazo/fisiología , Reconocimiento Facial/fisiología , Macaca mulatta , Corteza Perirrinal/fisiología , Corteza Perirrinal/citología , Neuronas/fisiología , Memoria/fisiología , Cara , Percepción Visual/fisiología , Femenino , Estimulación Luminosa
19.
Sci Rep ; 14(1): 11645, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773246

RESUMEN

The evaluation of cognitive functions interactions has become increasingly implemented in the cognition exploration. In the present study, we propose to examine the organization of the cognitive network in healthy participants through the analysis of behavioral performances in several cognitive domains. Specifically, we aim to explore cognitive interactions profiles, in terms of cognitive network, and as a function of participants' handedness. To this end, we proposed several behavioral tasks evaluating language, memory, executive functions, and social cognition performances in 175 young healthy right-handed and left-handed participants and we analyzed cognitive scores, from a network perspective, using graph theory. Our results highlight the existence of intricate interactions between cognitive functions both within and beyond the same cognitive domain. Language functions are interrelated with executive functions and memory in healthy cognitive functioning and assume a central role in the cognitive network. Interestingly, for similar high performance, our findings unveiled differential organizations within the cognitive network between right-handed and left-handed participants, with variations observed both at a global and nodal level. This original integrative network approach to the study of cognition provides new insights into cognitive interactions and modulations. It allows a more global understanding and consideration of cognitive functioning, from which complex behaviors emerge.


Asunto(s)
Cognición , Función Ejecutiva , Humanos , Cognición/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Función Ejecutiva/fisiología , Lenguaje , Lateralidad Funcional/fisiología , Memoria/fisiología , Pruebas Neuropsicológicas , Adolescente
20.
Sci Rep ; 14(1): 11557, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773352

RESUMEN

Juvenile loneliness is a risk factor for psychopathology in later life. Deprivation of early social experience due to peer rejection has a detrimental impact on emotional and cognitive brain function in adulthood. Accumulating evidence indicates that soy peptides have many positive effects on higher brain function in rodents and humans. However, the effects of soy peptide use on juvenile social isolation are unknown. Here, we demonstrated that soy peptides reduced the deterioration of behavioral and cellular functions resulting from juvenile socially-isolated rearing. We found that prolonged social isolation post-weaning in male C57BL/6J mice resulted in higher aggression and impulsivity and fear memory deficits at 7 weeks of age, and that these behavioral abnormalities, except impulsivity, were mitigated by ingestion of soy peptides. Furthermore, we found that daily intake of soy peptides caused upregulation of postsynaptic density 95 in the medial prefrontal cortex and phosphorylation of the cyclic adenosine monophosphate response element binding protein in the hippocampus of socially isolated mice, increased phosphorylation of the adenosine monophosphate-activated protein kinase in the hippocampus, and altered the microbiota composition. These results suggest that soy peptides have protective effects against juvenile social isolation-induced behavioral deficits via synaptic maturation and cellular functionalization.


Asunto(s)
Agresión , Suplementos Dietéticos , Miedo , Hipocampo , Ratones Endogámicos C57BL , Aislamiento Social , Animales , Aislamiento Social/psicología , Masculino , Miedo/efectos de los fármacos , Agresión/efectos de los fármacos , Ratones , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Proteínas de Soja/farmacología , Memoria/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA