Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
PLoS Pathog ; 20(9): e1012041, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39312588

RESUMEN

Malaria pathogenesis and parasite multiplication depend on the ability of Plasmodium merozoites to invade human erythrocytes. Invasion is a complex multi-step process involving multiple parasite proteins which can differ between species and has been most extensively studied in P. falciparum. However, dissecting the precise role of individual proteins has to date been limited by the availability of quantifiable phenotypic assays. In this study, we apply a new approach to assigning function to invasion proteins by using optical tweezers to directly manipulate recently egressed P. falciparum merozoites and erythrocytes and quantify the strength of attachment between them, as well as the frequency with which such attachments occur. Using a range of inhibitors, antibodies, and genetically modified strains including some generated specifically for this work, we quantitated the contribution of individual P. falciparum proteins to these merozoite-erythrocyte attachment interactions. Conditional deletion of the major P. falciparum merozoite surface protein PfMSP1, long thought to play a central role in initial attachment, had no impact on the force needed to pull merozoites and erythrocytes apart, whereas interventions that disrupted the function of several members of the EBA-175 like Antigen (PfEBA) family and Reticulocyte Binding Protein Homologue (PfRH) invasion ligand families did have a significant negative impact on attachment. Deletion of individual PfEBA and PfRH ligands reinforced the known redundancy within these families, with the deletion of some ligands impacting detachment force while others did not. By comparing over 4000 individual merozoite-erythrocyte interactions in a range of conditions and strains, we establish that the PfEBA/PfRH families play a central role in P. falciparum merozoite attachment, not the major merozoite surface protein PfMSP1.


Asunto(s)
Eritrocitos , Malaria Falciparum , Proteína 1 de Superficie de Merozoito , Merozoítos , Pinzas Ópticas , Plasmodium falciparum , Proteínas Protozoarias , Eritrocitos/parasitología , Plasmodium falciparum/fisiología , Merozoítos/fisiología , Merozoítos/metabolismo , Humanos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Malaria Falciparum/parasitología , Proteína 1 de Superficie de Merozoito/metabolismo , Ligandos , Antígenos de Protozoos/metabolismo
2.
Parasite ; 31: 51, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39212528

RESUMEN

Cryptosporidium is a globally distributed zoonotic protozoan parasite that can cause severe diarrhea in humans and animals. L-type lectins are carbohydrate-binding proteins involved in multiple pathways in animals and plants, including protein transportation, secretion, innate immunity, and the unfolded protein response signaling pathway. However, the biological function of the L-type lectins remains unknown in Cryptosporidium parvum. Here, we preliminarily characterized an L-type lectin in C. parvum (CpLTL) that contains a lectin-leg-like domain. Immunofluorescence assay confirmed that CpLTL is located on the wall of oocysts, the surface of the mid-anterior region of the sporozoite and the cytoplasm of merozoites. The involvement of CpLTL in parasite invasion is partly supported by experiments showing that an anti-CpLTL antibody could partially block the invasion of C. parvum sporozoites into host cells. Moreover, the recombinant CpLTL showed binding ability with mannose and the surface of host cells, and competitively inhibited the invasion of C. parvum. Two host cell proteins were identified by proteomics which should be prioritized for future validation of CpLTL-binding. Our data indicated that CpLTL is potentially involved in the adhesion and invasion of C. parvum.


Title: Une protéine mono-transmembranaire, lectine de type L spécifique du mannose, potentiellement impliquée dans l'adhésion et l'invasion de Cryptosporidium parvum. Abstract: Cryptosporidium est un parasite protozoaire zoonotique répandu dans le monde entier qui peut provoquer de graves diarrhées chez les humains et les animaux. Les lectines de type L sont des protéines liant les glucides impliquées dans de multiples voies chez les animaux et les plantes, notamment le transport des protéines, la sécrétion, l'immunité innée et la voie de signalisation de la réponse protéique dépliée. Cependant, la fonction biologique des lectines de type L reste inconnue chez Cryptosporidium parvum. Ici, nous avons caractérisé de manière préliminaire une lectine de type L chez C. parvum (CpLTL) qui contient un domaine de type jambe de lectine. Le test d'immunofluorescence a confirmé que CpLTL est localisée sur la paroi des oocystes, la surface de la région médio-antérieure du sporozoïte et le cytoplasme des mérozoïtes. L'implication de CpLTL dans l'invasion parasitaire est en partie étayée par des expériences montrant qu'un anticorps anti-CpLTL peut bloquer partiellement l'invasion des sporozoïtes de C. parvum dans les cellules hôtes. De plus, la CpLTL recombinante a montré une capacité de liaison avec le mannose et la surface des cellules hôtes et a inhibé de manière compétitive l'invasion de C. parvum. Deux protéines de cellules hôtes ont été identifiées par protéomique et devraient être prioritaires pour la validation future de la liaison avec CpLTL. Nos données indiquent que CpLTL est potentiellement impliquée dans l'adhésion et l'invasion de C. parvum.


Asunto(s)
Cryptosporidium parvum , Manosa , Proteínas Protozoarias , Esporozoítos , Cryptosporidium parvum/fisiología , Cryptosporidium parvum/metabolismo , Cryptosporidium parvum/genética , Esporozoítos/fisiología , Esporozoítos/metabolismo , Animales , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Humanos , Manosa/metabolismo , Oocistos/fisiología , Criptosporidiosis/parasitología , Merozoítos/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Adhesión Celular , Proteómica
3.
Nat Commun ; 15(1): 5794, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987258

RESUMEN

Plasmodium falciparum is the causative agent of malaria and remains a pathogen of global importance. Asexual blood stage replication, via a process called schizogony, is an important target for the development of new antimalarials. Here we use ultrastructure-expansion microscopy to probe the organisation of the chromosome-capturing kinetochores in relation to the mitotic spindle, the centriolar plaque, the centromeres and the apical organelles during schizont development. Conditional disruption of the kinetochore components, PfNDC80 and PfNuf2, is associated with aberrant mitotic spindle organisation, disruption of the centromere marker, CENH3 and impaired karyokinesis. Surprisingly, kinetochore disruption also leads to disengagement of the centrosome equivalent from the nuclear envelope. Severing the connection between the nucleus and the apical complex leads to the formation of merozoites lacking nuclei. Here, we show that correct assembly of the kinetochore/spindle complex plays a previously unrecognised role in positioning the nascent apical complex in developing P. falciparum merozoites.


Asunto(s)
Centrosoma , Cinetocoros , Plasmodium falciparum , Proteínas Protozoarias , Huso Acromático , Cinetocoros/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiología , Centrosoma/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Huso Acromático/metabolismo , Humanos , Merozoítos/metabolismo , Merozoítos/fisiología , Mitosis , Centrómero/metabolismo , Membrana Nuclear/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/metabolismo
4.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575357

RESUMEN

Increasing numbers of antimalarial compounds are being identified that converge mechanistically at inhibition of cytoplasmic translation, regardless of the molecular target or mechanism. A deeper understanding of how their effectiveness as liver stage translation inhibitors relates to their chemoprotective potential could prove useful. Here, we probed that relationship using the Plasmodium berghei-HepG2 liver stage infection model. After determining translation inhibition EC50s for five compounds, we tested them at equivalent effective concentrations to compare the parasite response to, and recovery from, a brief period of translation inhibition in early schizogony, followed by parasites to 120 h post-infection to assess antiplasmodial effects of the treatment. We show compound-specific heterogeneity in single parasite and population responses to translation inhibitor treatment, with no single metric strongly correlated to the release of hepatic merozoites for all compounds. We also demonstrate that DDD107498 is capable of exerting antiplasmodial effects on translationally arrested liver stage parasites and uncover unexpected growth dynamics during the liver stage. Our results demonstrate that translation inhibition efficacy does not determine antiplasmodial efficacy for these compounds.


Asunto(s)
Antimaláricos , Parásitos , Animales , Plasmodium berghei/fisiología , Antimaláricos/farmacología , Hígado , Merozoítos/fisiología
5.
mBio ; 15(3): e0019824, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38386597

RESUMEN

Malaria symptoms are associated with the asexual multiplication of Plasmodium falciparum within human red blood cells (RBCs) and fever peaks coincide with the egress of daughter merozoites following the rupture of the parasitophorous vacuole (PV) and the RBC membranes. Over the last two decades, it has emerged that the release of competent merozoites is tightly regulated by a complex cascade of events, including the unusual multi-step activation mechanism of the pivotal subtilisin-like protease 1 (Sub1) that takes place in three different cellular compartments and remains poorly understood. Following an initial auto-maturation in the endoplasmic reticulum (ER) between its pro- and catalytic domains, the Sub1 prodomain (PD) undergoes further cleavages by the parasite aspartic protease plasmepsin X (PmX) within acidic secretory organelles that ultimately lead to full Sub1 activation upon discharge into the PV. Here, we report the crystal structure of full-length P. falciparum Sub1 (PfS1FL) and demonstrate, through structural, biochemical, and biophysical studies, that the atypical Plasmodium-specific Sub1 PD directly promotes the assembly of inactive enzyme homodimers at acidic pH, whereas Sub1 is primarily monomeric at neutral pH. Our results shed new light into the finely tuned Sub1 spatiotemporal activation during secretion, explaining how PmX processing and full activation of Sub1 can occur in different cellular compartments, and uncover a robust mechanism of pH-dependent subtilisin autoinhibition that plays a key role in P. falciparum merozoites egress from infected host cells.IMPORTANCEMalaria fever spikes are due to the rupture of infected erythrocytes, allowing the egress of Plasmodium sp. merozoites and further parasite propagation. This fleeting tightly regulated event involves a cascade of enzymes, culminating with the complex activation of the subtilisin-like protease 1, Sub1. Differently than other subtilisins, Sub1 activation strictly depends upon the processing by a parasite aspartic protease within acidic merozoite secretory organelles. However, Sub1 biological activity is required in the pH neutral parasitophorous vacuole, to prime effectors involved in the rupture of the vacuole and erythrocytic membranes. Here, we show that the unusual, parasite-specific Sub1 prodomain is directly responsible for its acidic-dependent dimerization and autoinhibition, required for protein secretion, before its full activation at neutral pH in a monomeric form. pH-dependent Sub1 dimerization defines a novel, essential regulatory element involved in the finely tuned spatiotemporal activation of the egress of competent Plasmodium merozoites.


Asunto(s)
Malaria Falciparum , Plasmodium , Animales , Humanos , Subtilisina/metabolismo , Merozoítos/fisiología , Dimerización , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Eritrocitos/parasitología , Concentración de Iones de Hidrógeno
6.
PLoS Pathog ; 19(12): e1011807, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38051755

RESUMEN

Malaria is caused by the rapid proliferation of Plasmodium parasites in patients and disease severity correlates with the number of infected red blood cells in circulation. Parasite multiplication within red blood cells is called schizogony and occurs through an atypical multinucleated cell division mode. The mechanisms regulating the number of daughter cells produced by a single progenitor are poorly understood. We investigated underlying regulatory principles by quantifying nuclear multiplication dynamics in Plasmodium falciparum and knowlesi using super-resolution time-lapse microscopy. This confirmed that the number of daughter cells was consistent with a model in which a counter mechanism regulates multiplication yet incompatible with a timer mechanism. P. falciparum cell volume at the start of nuclear division correlated with the final number of daughter cells. As schizogony progressed, the nucleocytoplasmic volume ratio, which has been found to be constant in all eukaryotes characterized so far, increased significantly, possibly to accommodate the exponentially multiplying nuclei. Depleting nutrients by dilution of culture medium caused parasites to produce fewer merozoites and reduced proliferation but did not affect cell volume or total nuclear volume at the end of schizogony. Our findings suggest that the counter mechanism implicated in malaria parasite proliferation integrates extracellular resource status to modify progeny number during blood stage infection.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Parásitos/fisiología , Malaria Falciparum/parasitología , Malaria/parasitología , Plasmodium falciparum/fisiología , Merozoítos/fisiología , Eritrocitos/parasitología
7.
Sci Adv ; 9(24): eadf2161, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327340

RESUMEN

Critical events in the life cycle of malaria-causing parasites depend on cyclic guanosine monophosphate homeostasis by guanylyl cyclases (GCs) and phosphodiesterases, including merozoite egress or invasion of erythrocytes and gametocyte activation. These processes rely on a single GCα, but in the absence of known signaling receptors, how this pathway integrates distinct triggers is unknown. We show that temperature-dependent epistatic interactions between phosphodiesterases counterbalance GCα basal activity preventing gametocyte activation before mosquito blood feed. GCα interacts with two multipass membrane cofactors in schizonts and gametocytes: UGO (unique GC organizer) and SLF (signaling linking factor). While SLF regulates GCα basal activity, UGO is essential for GCα up-regulation in response to natural signals inducing merozoite egress and gametocyte activation. This work identifies a GC membrane receptor platform that senses signals triggering processes specific to an intracellular parasitic lifestyle, including host cell egress and invasion to ensure intraerythrocytic amplification and transmission to mosquitoes.


Asunto(s)
Culicidae , Plasmodium , Animales , Señales (Psicología) , Plasmodium/fisiología , Eritrocitos/parasitología , Merozoítos/fisiología , Estadios del Ciclo de Vida , Culicidae/parasitología
8.
mBio ; 13(4): e0163522, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35862778

RESUMEN

In model organisms, type IV ATPases (P4-ATPases) require cell division control protein 50 (CDC50) chaperones for their phospholipid flipping activity. In the malaria parasite Plasmodium falciparum, guanylyl cyclase alpha (GCα) is an integral membrane protein that is essential for release (egress) of merozoites from their host erythrocytes. GCα is unusual in that it contains both a C-terminal cyclase domain and an N-terminal P4-ATPase domain of unknown function. We sought to investigate whether any of the three CDC50 orthologues (termed A, B, and C) encoded by P. falciparum are required for GCα function. Using gene tagging and conditional gene disruption, we demonstrate that CDC50B and CDC50C but not CDC50A are expressed in the clinically important asexual blood stages and that CDC50B is a binding partner of GCα whereas CDC50C is the binding partner of another putative P4-ATPase, phospholipid-transporting ATPase 2 (ATP2). Our findings indicate that CDC50B has no essential role for intraerythrocytic parasite maturation but modulates the rate of parasite egress by interacting with GCα for optimal cGMP synthesis. In contrast, CDC50C is essential for blood stage trophozoite maturation. Additionally, we find that the CDC50C-ATP2 complex may influence parasite endocytosis of host cell hemoglobin and consequently hemozoin formation. IMPORTANCE Malaria morbidity arises due to successive rounds of replication of Plasmodium parasites within red blood cells. Mature daughter merozoites are released from infected erythrocytes to invade new cells in a tightly regulated process termed egress. Previous studies have shown that a unique bifunctional guanylyl cyclase, GCα, initiates egress by synthesis of cGMP. GCα has an N-terminal P4-ATPase domain of unknown function. In model organisms, P4-ATPases function through interaction with a CDC50 partner protein. Here, we investigate the role of CDC50 orthologues in P. falciparum and show that GCα binds CDC50B, an interaction that regulates egress efficiency. We also find that CDC50C is essential and binds a putative P4-ATPase, ATP2, in a complex that influences endocytosis of host hemaglobin. Our results highlight the heterogenous and critical role of CDC50 proteins in P. falciparum.


Asunto(s)
Malaria Falciparum , Malaria , Adenosina Trifosfatasas/genética , Animales , Eritrocitos/parasitología , Guanilato Ciclasa , Humanos , Malaria Falciparum/parasitología , Merozoítos/fisiología , Fosfolípidos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trofozoítos/metabolismo
9.
Sci Rep ; 11(1): 23663, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880327

RESUMEN

Babesiosis is one of the most common infections in free-living animals and is rapidly becoming significant among human zoonoses. Cases of acute renal failure in humans caused by Babesia spp. have been described in the literature. The kidneys are characterised by intense blood flow through the blood vessels, which increases the likelihood of contact with the intra-erythrocyte parasite. The aim of this study was to observe the influence of B. microti (ATCC 30221) on renal epithelial cells in vitro cultured (NRK-52E line) and Wistar rats' kidney. Both NRK-52E cells and rats' kidney sections were analysed by light microscopy, transmission electron microscopy (TEM) and fluorescence in situ hybridization (FISH). Necrotic changes in renal epithelial cells have been observed in vitro and in vivo. In many cross-sections through the rats' kidney, adhesion of blood cells to the vascular endothelium, accumulation of erythrocytes and emboli were demonstrated. In NRK-52E culture, elements with a distinctly doubled cell membrane resembling B. microti were found inside the cytoplasm and adjacent to the cell layer. The study indicates a chemotactic tendency for B. microti to adhere to the renal tubules' epithelium, a possibility of piroplasms entering the renal epithelial cells, their proliferation within the cytoplasm and emboli formation.


Asunto(s)
Babesia microti/fisiología , Células Epiteliales/metabolismo , Interacciones Huésped-Parásitos , Túbulos Renales/citología , Merozoítos/fisiología , Animales , Babesiosis/parasitología , Células Cultivadas , Técnicas de Cocultivo , Células Epiteliales/ultraestructura , Eritrocitos/parasitología , Eritrocitos/ultraestructura , Ratas
10.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819379

RESUMEN

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


Asunto(s)
Eritrocitos/parasitología , Merozoítos/fisiología , Plasmodium falciparum/genética , Plasmodium/metabolismo , Proteínas Protozoarias/metabolismo , Esporozoítos/fisiología , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Animales , Eritrocitos/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración 50 Inhibidora , Locomoción , Proteínas de la Membrana/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA