Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Carbohydr Polym ; 346: 122647, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245532

RESUMEN

Incorporating 5-aminosalicylic acid (5-ASA) into a colon-specific carrier is crucial for treating inflammatory bowel diseases (IBD), as it enhances therapeutic efficacy, targets the affected regions directly, and minimizes side effects. This study evaluated the impact of incorporating cellulose nanofibers (CNF) on the in vitro and in vivo biological performance of retrograded starch/pectin (RS/P) microparticles (MPs) containing 5-ASA. Using Fourier Transform Infrared (FTIR) Spectroscopy, shifts in the spectra of retrograded samples containing CNF were observed with increasing CNF proportions, suggesting the establishment of new supramolecular interactions. Liquid absorption exhibited pH-dependent behaviors, with reduced absorption in simulated gastric fluid (∼269 %) and increased absorption in simulated colonic fluid (∼662 %). Increasing CNF concentrations enhanced mucoadhesion in porcine colonic sections, with a maximum force of 3.4 N at 50 % CNF. Caco-2 cell viability tests showed biocompatibility across all tested concentrations (0.0625-2.0000 mg/mL). Evaluation of intestinal permeability in Caco-2 cell monolayers demonstrated up to a tenfold increase in 5-ASA permeation, ranging from 29 % to 48 %. An in vivo study using Galleria mellonella larvae, with inflammation induced by LPS, showed reduction of inflammation. Given the scalability of spray-drying, these findings suggest the potential of CNF-incorporated RS/P microparticles for targeted 5-ASA delivery in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Mesalamina , Nanofibras , Pectinas , Almidón , Mesalamina/química , Mesalamina/farmacología , Mesalamina/administración & dosificación , Animales , Células CACO-2 , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Nanofibras/química , Nanofibras/toxicidad , Porcinos , Pectinas/química , Almidón/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Supervivencia Celular/efectos de los fármacos , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación
2.
Inflammopharmacology ; 32(5): 3247-3258, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39192162

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that lasts a long time and has a variety of causes. AIM: The primary aim of this study was to evaluate pentoxifylline's (PTX) essential function in patients with UC. METHODS: Fifty-two mild to moderate UC patients who matched the eligibility requirements participated in this clinical study. One gram of mesalamine (t.i.d.) and a placebo were administered to the mesalamine group (n = 26) for a duration of 24 weeks. Mesalamine 1 g t.i.d. and PTX 400 mg two times daily were administered to the PTX group (n = 26) for 24 weeks. A gastroenterologist investigated patients at the start and 6 months after the medication was given to assess disease activity index (DAI) and numeric pain rating scale (NRS). Also, interleukin-6 (IL-6), sphingosine 1 phosphate (S1P), tumor necrosis factor-alpha (TNF-α), and fecal myeloperoxidase (MPO) were measured before and after therapy. Zonula occuldin-1 (ZO-1) and signal transducer and activator of transcription factor-3 (STAT-3) expression was assessed before and after therapy as well as histological assessment. Short Form 36 Health Survey (SF-36), was assessed for each patient before and after 6 months of treatment. RESULTS: The PTX group showed statistically lower levels of serum SIP, TNF-α, IL-6, faecal MPO, gene expression of STAT-3, and a significant increase of ZO-1 in comparison with the mesalamine group. DAI and NRS significantly decreased whereas SF-36 significantly increased in the PTX group. CONCLUSION: PTX could alleviate inflammation in patients with UC, so it might be promising adjunctive for patients with UC. TRIAL REGISTRATION IDENTIFIER: NCT05558761.


Asunto(s)
Colitis Ulcerosa , Interleucina-6 , Mesalamina , Pentoxifilina , Factor de Transcripción STAT3 , Proteína de la Zonula Occludens-1 , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Factor de Transcripción STAT3/metabolismo , Método Doble Ciego , Masculino , Femenino , Adulto , Mesalamina/farmacología , Mesalamina/administración & dosificación , Interleucina-6/metabolismo , Pentoxifilina/farmacología , Pentoxifilina/administración & dosificación , Persona de Mediana Edad , Proteína de la Zonula Occludens-1/metabolismo , Lisofosfolípidos/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación , Transducción de Señal/efectos de los fármacos
3.
Turk J Gastroenterol ; 35(7): 523-531, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39128087

RESUMEN

BACKGROUND/AIMS:  This study aimed to investigate the possible positive effects of arbutin in a trinitrobenzene sulfonic acid (TNBS)- induced experimental colitis model, to compare it with mesalazine, which is used in treating inflammatory bowel disease and to observe the effect of its concomitant use. MATERIALS AND METHODS:  Forty Wistar albino species male rats were randomized into 5 groups as control, colitis, colitis+arbutin (Arb), colitis+mesalazine (Mes), and colitis+mesalazine+arbutin (M+A). Proinflammatory cytokines [interleukin (IL)-6, IL-1ß, tumor necrosis factor alpha (TNF-α)] and oxidant/antioxidant parameters [malondialdehyde (MDA), superoxide dismutase inhibition (SOD) inhibition, myeloperoxidase (MPO), and catalase, glutathione peroxidase (GPx)] were processed from the samples. Histopathological evaluation evaluated goblet cell reduction, cellular infiltration, and mucosal loss. RESULTS:  When the treatment groups and the TNBS group were compared, statistical significance was achieved in MDA, MPO, SOD inhibition, GPx values, IL-6, IL-1ß and TNF-α levels. Histopathological evaluation revealed a statistically significant decrease in the mucosal loss value in the group where mesalazine and arbutin were used together compared to the TNBS group. CONCLUSION:  Our study's results elaborated that using arbutin alone or in combination with mesalazine produced positive effects in colitis-induced rats.


Asunto(s)
Arbutina , Colitis , Modelos Animales de Enfermedad , Mesalamina , Peroxidasa , Ratas Wistar , Ácido Trinitrobencenosulfónico , Animales , Masculino , Arbutina/farmacología , Arbutina/uso terapéutico , Ratas , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Ácido Trinitrobencenosulfónico/toxicidad , Mesalamina/farmacología , Mesalamina/uso terapéutico , Peroxidasa/metabolismo , Superóxido Dismutasa/metabolismo , Citocinas/metabolismo , Malondialdehído/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Factor de Necrosis Tumoral alfa , Distribución Aleatoria , Glutatión Peroxidasa/metabolismo , Interleucina-1beta/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico
4.
ACS Appl Mater Interfaces ; 16(35): 46090-46101, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39174346

RESUMEN

Epigallocatechin gallate (EGCG)-based nanosystems have garnered significant attention for their ability to alleviate inflammation due to their excellent anti-inflammatory properties and enhanced drug delivery capabilities. However, the degradation of EGCG in strongly acidic environments poses a challenge for potential administration, particularly in oral formulations, where gastric resistance is essential. In this study, we develop a "disintegration and reorganization" strategy to create acid-resistant antioxidant nanoparticles (EGA NPs) based on EGCG and 5-aminosalicylic acid (5-ASA) for mitigating inflammation in colitis and acute kidney injury. At acidic pH, the ester bond in EGCG breaks down, producing two building blocks. These, together with 5-ASA and formaldehyde, form oligomers through a combination of phenol-aldehyde condensation and the Mannich reaction. The resulting oligomers self-assemble into EGA NPs, which exhibit significant stability under both acidic and neutral pH conditions. This stability makes them suitable for oral administration, allowing them to withstand harsh gastric conditions, as well as for intravenous injection. Importantly, these oligomers retain the antioxidant and anti-inflammatory properties of EGCG, effectively scavenging reactive oxygen species and reducing intracellular oxidative stress. Additionally, EGA shows potential as a drug carrier, efficiently loading the anti-inflammatory agent curcumin (Cur) to form Cur@EGA NPs. In vivo studies demonstrate the efficacy of Cur@EGA and EGA in alleviating acute colitis and kidney injury following oral and intravenous administration, respectively. These nanoparticulate formulations exhibit superior inflammation reduction compared to free Cur in vivo. Overall, our findings introduce a novel acid-resistant nanoplatform based on EGCG for the treatment of acute inflammation.


Asunto(s)
Lesión Renal Aguda , Antioxidantes , Catequina , Nanopartículas , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Animales , Antioxidantes/química , Antioxidantes/farmacología , Ratones , Nanopartículas/química , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Colitis/tratamiento farmacológico , Colitis/patología , Inflamación/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Mesalamina/química , Mesalamina/farmacología , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Masculino , Portadores de Fármacos/química , Humanos
5.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39201548

RESUMEN

The mechanism underlying intestinal fibrosis, the main complication of inflammatory bowel disease (IBD), is not yet fully understood, and there is no therapy to prevent or reverse fibrosis. We evaluated, in in vitro cellular models, the ability of different classes of drugs currently used in IBD to counteract two pivotal processes of intestinal fibrosis, the differentiation of intestinal fibroblasts to activated myofibroblasts using CCD-18Co cells, and the epithelial-to-mesenchymal transition (EMT) of intestinal epithelial cells using Caco-2 cells (IEC), both being processes induced by transforming growth factor-ß1 (TGF-ß1). The drugs tested included mesalamine, azathioprine, methotrexate, prednisone, methylprednisolone, budesonide, infliximab, and adalimumab. The expression of fibrosis and EMT markers (collagen-I, α-SMA, pSmad2/3, occludin) was assessed by Western blot analysis and by immunofluorescence. Of the drugs used, only prednisone, methylprednisolone, budesonide, and adalimumab were able to antagonize the pro-fibrotic effects induced by TGF-ß1 on CCD-18Co cells, reducing the fibrosis marker expression. Methylprednisolone, budesonide, and adalimumab were also able to significantly counteract the TGF-ß1-induced EMT process on Caco-2 IEC by increasing occludin and decreasing α-SMA expression. This is the first study that evaluates, using in vitro cellular models, the direct antifibrotic effects of drugs currently used in IBD, highlighting which drugs have potential antifibrotic effects.


Asunto(s)
Budesonida , Transición Epitelial-Mesenquimal , Fibrosis , Enfermedades Inflamatorias del Intestino , Factor de Crecimiento Transformador beta1 , Humanos , Células CACO-2 , Transición Epitelial-Mesenquimal/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Budesonida/farmacología , Adalimumab/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Metilprednisolona/farmacología , Mesalamina/farmacología , Prednisona/farmacología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Antiinflamatorios/farmacología , Infliximab/farmacología , Infliximab/uso terapéutico , Azatioprina/farmacología , Metotrexato/farmacología , Intestinos/efectos de los fármacos , Intestinos/patología , Diferenciación Celular/efectos de los fármacos
6.
ACS Biomater Sci Eng ; 10(8): 4985-5000, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39079030

RESUMEN

AIM: Colorectal cancer is an extremely aggressive form of cancer that often leads to death. Lactoferrin shows potential for targeting and treating colorectal cancer; however, oral delivery faces hurdles hampering clinical applications. We engineered dual-responsive lactoferrin nanostructured microbeads to overcome delivery hurdles and enhance drug targeting. METHODS: The hydrophobic drug mesalazine (MSZ) was coupled to lactoferrin to form amphiphilic conjugate nanoparticles, dispersed in water. The lipid-soluble polyphenolic drug resveratrol (RSV) was then encapsulated into the hydrophobic core of LF-MSZ nanoparticles. To impart thermoresponsive properties, the dual-payload NPs were coupled with a PNIPAAm shell; finally, to further endow the nanoparticles with gastrointestinal resistance and pH responsiveness, the nanoparticles were microencapsulated into ionically cross-linked pectin-alginate beads. RESULTS: The nanoparticles showed enhanced internalization and cytotoxicity against HCT colon cancer cells via LF-receptor-mediated endocytosis. Thermal triggering and tuned release were conferred by the temperature-sensitive polymer. The coatings protected the drugs from degradation. Orally delivered microbeads significantly reduced tumor burden in a mouse colon cancer model, lowering carcinoembryonic antigen and elevating antioxidant enzymes. Apoptotic pathways were stimulated, indicated by heightened Bax/Bcl2 ratio and caspase-3/9 expression. CONCLUSION: Overall, we propose the innovative lactoferrin nanostructured microbeads as a paradigm shift in oral colorectal cancer therapeutics.


Asunto(s)
Neoplasias Colorrectales , Lactoferrina , Lactoferrina/química , Lactoferrina/farmacología , Lactoferrina/administración & dosificación , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Administración Oral , Humanos , Ratones , Concentración de Iones de Hidrógeno , Microesferas , Nanoestructuras/química , Mesalamina/farmacología , Mesalamina/química , Mesalamina/administración & dosificación , Mesalamina/uso terapéutico , Resveratrol/farmacología , Resveratrol/química , Resveratrol/administración & dosificación , Nanopartículas/química , Temperatura , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química
7.
Int Immunopharmacol ; 139: 112661, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39008936

RESUMEN

The therapeutic effect of 5-amino salicylic acid (5-ASA), a first-line therapeutic agent for the treatment of ulcerative colitis (UC), is limited by the modest bioavailability afforded by its oral administration. In this study, a 5-ASA oral delivery system was developed using Eudragit S100-coated iron oxide-chitosan nanocomposites (ES-IOCS/5-ASA) to address this issue. According to drug release studies in vitro, ES-IOCS/5-ASA only released a small amount of drug in simulated gastric fluid with a pH of 1.2. However, in a medium with a pH of 7.5, a relatively rapid and complete release was noted. 5-ASA-loaded iron oxide-chitosan nanocomposites (IOCS/5-ASA) could be effectively taken up by NCM460 cells and performed better anti-inflammatory effects than free 5-ASA. At the same time, IOCS/5-ASA improved barrier damage in DSS-induced NCM460 cells. In vivo models of dextran sulphate sodium (DSS)-induced colitis were used to assess the therapeutic efficacy of oral administration of ES-IOCS/5-ASA. ES-IOCS/5-ASA significantly relieved DSS-induced colitis and enhanced the integrity of the intestinal epithelial barrier. ES-IOCS/5-ASA also reduced the expression of NLRP3, ASC and IL-1ß. Additionally, iron oxide nanoparticles used as nanozymes could alleviate inflammation. In summary, this study indicates that ES-IOCS/5-ASA exert anti-inflammatory effects on DSS-induced colitis by improving intestinal barrier function and inhibiting NLRP3 inflammasome expression, presenting a viable therapeutic choice for the treatment of UC.


Asunto(s)
Quitosano , Colitis Ulcerosa , Colon , Inflamasomas , Mesalamina , Proteína con Dominio Pirina 3 de la Familia NLR , Nanocompuestos , Ácidos Polimetacrílicos , Quitosano/química , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Mesalamina/uso terapéutico , Mesalamina/farmacología , Mesalamina/administración & dosificación , Mesalamina/química , Colitis Ulcerosa/tratamiento farmacológico , Inflamasomas/metabolismo , Nanocompuestos/química , Humanos , Ácidos Polimetacrílicos/química , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Ratones , Compuestos Férricos/química , Sulfato de Dextran , Línea Celular , Ratones Endogámicos C57BL , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Funcion de la Barrera Intestinal
8.
ACS Nano ; 18(25): 16297-16311, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38867457

RESUMEN

While mesalamine, a 5-aminosalicylic acid (5-ASA), is pivotal in the management of inflammatory bowel disease (IBD) through both step-up and top-down approaches in clinical settings, its widespread utilization is limited by low bioavailability at the desired site of action due to rapid and extensive absorption in the upper gastrointestinal (GI) tract. Addressing mesalamine's pharmacokinetic challenges, here, we introduce nanoassemblies composed exclusively of a mesalamine prodrug that pairs 5-ASA with a mucoadhesive and cathepsin B-cleavable peptide. In an IBD model, orally administered nanoassemblies demonstrate enhanced accumulation and sustained retention in the GI tract due to their mucoadhesive properties and the epithelial enhanced permeability and retention (eEPR) effect. This retention enables the efficient uptake by intestinal pro-inflammatory macrophages expressing high cathepsin B, triggering a burst release of the 5-ASA. This cascade fosters the polarization toward an M2 macrophage phenotype, diminishes inflammatory responses, and simultaneously facilitates the delivery of active agents to adjacent epithelial cells. Therefore, the nanoassemblies show outstanding therapeutic efficacy in inhibiting local inflammation and contribute to suppressing systemic inflammation by restoring damaged intestinal barriers. Collectively, this study highlights the promising role of the prodrug nanoassemblies in enhancing targeted drug delivery, potentially broadening the use of mesalamine in managing IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Macrófagos , Mesalamina , Profármacos , Mesalamina/química , Mesalamina/farmacología , Profármacos/química , Profármacos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Animales , Ratones , Humanos , Nanopartículas/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Ratones Endogámicos C57BL , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación
9.
Immun Inflamm Dis ; 12(6): e1208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38860759

RESUMEN

BACKGROUND: Banxia Xiexin decoction (BXD) can control irinotecan (CPT-11)-caused delayed diarrhea, but the corresponding mechanism remains undefined. AIMS: This paper aimed to uncover the mechanism of BXD in regulating CPT-11-caused delayed diarrhea. MATERIALS & METHODS: Sprague-Dawley (SD) rats were assigned into the control, model, BXD low-dose (BXD-L, 5 g/kg), BXD medium-dose (BXD-M, 10 g/kg), BXD high-dose (BXD-H, 15 g/kg), 5-aminosalicylic acid (5-ASA, 10 mL/kg), and BXD-M + 5-ASA groups. Rats were injected intraperitoneally with 150 mg/kg CPT-11 at Day 4 and Day 5 to induce delayed diarrhea, and later treated with various doses (low, medium, and high) of BXD and 5-ASA for 9 days, except for rats in control group. The body weight of rats was measured. The rat colon tissue injury, inflammatory cytokine levels, and the activation of toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signaling pathway were detected. RESULTS: BXD (5, 10, or 15 g/kg) or 5-ASA (10 mL/kg) alleviated body weight loss and colon tissue injury, decreased levels of inflammatory cytokines, and inactivated TLR4/NF-κB signaling pathway in CPT-11-induced model rats. BXD at 10 g/kg (the optimal concentration) could better treat CPT-11-induced intestinal dysfunction, as evidenced by the resulting approximately 50% reduction on injury score of model rats. Moreover, BXD-M (10 g/kg) synergistic with 5-ASA (10 mL/kg) further strengthened the inhibition on rat body weight loss, colon tissue injury, inflammatory cytokine levels, and TLR4/NF-κB signaling pathway. CONCLUSION: To sum up, BXD has a protective effect against CPT-11-induced intestinal dysfunction by inhibiting inflammation through inactivation TLR4/NF-κB signaling pathway. In particular, the combined use of BXD and 5-ASA holds great promise for treating CPT-11-induced delayed diarrhea.


Asunto(s)
Diarrea , Medicamentos Herbarios Chinos , Irinotecán , Mesalamina , FN-kappa B , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Irinotecán/efectos adversos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Diarrea/tratamiento farmacológico , Diarrea/inducido químicamente , Diarrea/prevención & control , Masculino , Mesalamina/farmacología , Mesalamina/administración & dosificación , Modelos Animales de Enfermedad , Quimioterapia Combinada
10.
Chem Biol Interact ; 398: 111074, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844255

RESUMEN

5-Aminosalicylic acid (5-ASA) is a first-line agent in both remission and maintenance therapy for ulcerative colitis (UC). However, the mucosal concentration of 5-ASA was significantly lower in patients with severe histological inflammation, which further led to a poor response to 5-ASA treatment. Our study aimed to clarify the mechanism of 5-ASA uptake into colonic epithelial cells and to further explore the reason for the decreased colonic mucosal 5-ASA concentration in UC patients. Our results demonstrated that the colonic 5-ASA concentration was notably reduced in DSS-induced colitis mice and inversely correlated with colonic inflammation. 5-ASA was not a substrate of carnitine/organic cation transporter 1/2 (OCTN1/2) or multidrug resistance protein 1 (MDR1), whereas organic anion transporting polypeptide 2B1 (OATP2B1) and sodium-coupled monocarboxylate transporter 1 (SMCT1) mediated the uptake of 5-ASA, with a greater contribution from OATP2B1 than SMCT1. Inhibitors and siRNAs targeting OATP2B1 significantly reduced 5-ASA absorption in colonic cell lines. Moreover, OATP2B1 expression was dramatically downregulated in colon tissues from UC patients and dextran sodium sulfate (DSS)-induced colitis mice, and was also negatively correlated with colonic inflammation. Mechanistically, mixed proinflammatory cytokines downregulated the expression of OATP2B1 in a time- and concentration-dependent manner through the hepatocyte nuclear factor 4 α (HNF4α) pathway. In conclusion, OATP2B1 was the pivotal transporter involved in colonic 5-ASA uptake, which indicated that inducing OATP2B1 expression may be a strategy to promote 5-ASA uptake and further improve the concentration and anti-inflammatory efficacy of 5-ASA in UC.


Asunto(s)
Colitis Ulcerosa , Citocinas , Regulación hacia Abajo , Mesalamina , Transportadores de Anión Orgánico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Animales , Humanos , Regulación hacia Abajo/efectos de los fármacos , Transportadores de Anión Orgánico/metabolismo , Ratones , Mesalamina/farmacología , Mesalamina/uso terapéutico , Citocinas/metabolismo , Masculino , Sulfato de Dextran , Ratones Endogámicos C57BL , Colon/metabolismo , Colon/patología , Colon/efectos de los fármacos , Femenino , Antiinflamatorios no Esteroideos/farmacología
11.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791116

RESUMEN

Ulcerative colitis (UC) is characterized by continuous mucosal ulceration of the colon, starting in the rectum. 5-Aminosalicylic acid (5-ASA) is the main therapy for ulcerative colitis; however, it has side effects. Physical exercise effectively increases the number of anti-inflammatory and anti-immune cells in the body. In the current study, the effects of simultaneous treatment of treadmill exercise and 5-ASA were compared with monotherapy with physical exercise or 5-ASA in UC mice. To induce the UC animal model, the mice consumed 2% dextran sulfate sodium dissolved in drinking water for 7 days. The mice in the exercise groups exercised on a treadmill for 1 h once a day for 14 days after UC induction. The 5-ASA-treated groups received 5-ASA by enema injection using a 200 µL polyethylene catheter once a day for 14 days. Simultaneous treatment improved histological damage and increased body weight, colon weight, and colon length, whereas the disease activity index score and collagen deposition were decreased. Simultaneous treatment with treadmill exercise and 5-ASA suppressed pro-inflammatory cytokines and apoptosis following UC. The benefits of this simultaneous treatment may be due to inhibition on nuclear factor-κB/mitogen-activated protein kinase signaling activation. Based on this study, simultaneous treatment of treadmill exercise and 5-ASA can be considered as a new therapy of UC.


Asunto(s)
Colitis Ulcerosa , Modelos Animales de Enfermedad , Mesalamina , Condicionamiento Físico Animal , Animales , Mesalamina/uso terapéutico , Mesalamina/farmacología , Colitis Ulcerosa/terapia , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Ratones , Masculino , Colon/patología , Colon/efectos de los fármacos , Colon/metabolismo , Sulfato de Dextran , FN-kappa B/metabolismo , Citocinas/metabolismo , Apoptosis/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico
12.
Int Immunopharmacol ; 134: 112255, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744176

RESUMEN

Inflammatory bowel disease (IBD) is distinguished by persistent immune-mediated inflammation of the gastrointestinal tract. Previous experimental investigations have shown encouraging outcomes for the use of mesenchymal stem cell (MSC)-based therapy in the treatment of IBD. However, as a primary medication for IBD patients, there is limited information regarding the potential interaction between 5-aminosalicylates (5-ASA) and MSCs. In this present study, we employed the dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model to examine the influence of a combination of MSCs and 5-ASA on the development of UC. The mice were subjected to weight measurement, DAI scoring, assessment of calprotectin expression, and collection of colons for histological examination. The findings revealed that both 5-ASA and MSCs have demonstrated efficacy in the treatment of UC. However, it is noteworthy that 5-ASA exhibits a quicker onset of action, while MSCs demonstrate more advantageous and enduring therapeutic effects. Additionally, the combination of 5-ASA and MSC treatment shows a less favorable efficacy compared to the MSCs alone group. Moreover, our study conducted in vitro revealed that 5-ASA could promote MSC migration, but it could also inhibit MSC proliferation, induce apoptosis, overexpress inflammatory factors (IL-2, IL-12P70, and TNF-α), and reduce the expression of PD-L1 and PD-L2. Furthermore, a significant decrease in the viability of MSCs within the colon was observed as a result of 5-ASA induction. These findings collectively indicate that the use of 5-ASA has the potential to interfere with the therapeutic efficacy of MSC transplantation for the treatment of IBD.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Modelos Animales de Enfermedad , Mesalamina , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Colitis Ulcerosa/terapia , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Colitis Ulcerosa/inducido químicamente , Mesalamina/farmacología , Mesalamina/uso terapéutico , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Humanos , Ratones Endogámicos C57BL , Colon/patología , Colon/efectos de los fármacos , Colon/inmunología , Células Cultivadas , Masculino , Proliferación Celular/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico
13.
Immunopharmacol Immunotoxicol ; 46(4): 436-449, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38816915

RESUMEN

BACKGROUND: Intestinal mucosal immune cells, notably mast cells, are pivotal in ulcerative colitis (UC) pathophysiology. Its activation elevates tissue concentrations of histamine. Inhibiting colonic histamine release could be an effective therapeutic strategy for treating UC. Experimental model like 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats mimic human IBD, aiding treatment investigations. Drug repurposing is a promising strategy to explore new indications for established drugs. Desloratadine (DES) is second-generation antihistamine utilized for managing allergies by blocking histamine action in the body. It also has reported anti-inflammatory and antioxidant actions. OBJECTIVE: DES was investigated for its repurposing potential in UC by preclinical screening in TNBS-induced colitis in Wistar rats. METHODS: Therapeutic efficacy of DES was evaluated both individually and in combination with standard drug 5-aminosalicylicacid (5-ASA). Rats were orally administered DES (10 mg/kg), 5-ASA (25 mg/kg), and DES + 5-ASA (5 mg + 12.15 mg) following the induction of colitis. Parameters including disease activity score rate (DASR), colon/body weight ratio (CBWR), colon length, diameter, pH, histological injury, and scoring were evaluated. Inflammatory biomarkers such as IL-1ß, TNF-α, along with reduced glutathione (GSH), and malondialdehyde (MDA) were assessed. RESULTS: Significant protective effects of DES, especially in combination with 5-ASA, against TNBS-induced inflammation were observed as evidenced by reduced DASR, CBWR, and improved colon morphology. Drugs significantly lowered plasma and colon histamine and, cytokines levels. GSH restoration, and decreased MDA content were also observed. CONCLUSION: DES and DES + 5-ASA demonstrated potential in alleviating colonic inflammation associated with TNBS-induced colitis in rats. The effect can be attributed to its antihistamine, anticytokine, and antioxidative properties.


Asunto(s)
Antiinflamatorios , Antioxidantes , Colitis , Loratadina , Ratas Wistar , Ácido Trinitrobencenosulfónico , Animales , Loratadina/farmacología , Loratadina/análogos & derivados , Ácido Trinitrobencenosulfónico/toxicidad , Antioxidantes/farmacología , Ratas , Masculino , Antiinflamatorios/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Colitis/metabolismo , Modelos Animales de Enfermedad , Mesalamina/farmacología , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo
14.
J Control Release ; 369: 630-641, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599548

RESUMEN

Successful treatment of ulcerative colitis (UC) is highly dependent on several parameters, including dosing regimen and the ability to deliver drugs to the disease site. In this study two strategies for delivering mesalazine (5-aminosalicylic acid, 5-ASA) to the colon were compared in an advanced in vitro model of the human gastrointestinal (GI) tract, the SHIME® system. Herein, a prodrug strategy employing bacteria-mediated drug release (sulfasalazine, Azulfidine®) was evaluated alongside a formulation strategy that utilised pH and bacteria-mediated release (5-ASA, Octasa® 1600 mg). SHIME® experiments were performed simulating both the GI physiology and colonic microbiota under healthy and inflammatory bowel disease (IBD) conditions, to study the impact of the disease state and ileal pH variability on colonic 5-ASA delivery. In addition, the effects of the products on the colonic microbiome were investigated by monitoring bacterial growth and metabolites. Results demonstrated that both the prodrug and formulation approaches resulted in a similar percentage of 5-ASA recovery under healthy conditions. On the contrary, during experiments simulating the GI physiology and microbiome of IBD patients (the target population) the formulation strategy resulted in a higher proportion of 5-ASA delivery to the colonic region as compared to the prodrug approach (P < 0.0001). Interestingly, the two products had distinct effects on the synthesis of key bacterial metabolites, such as lactate and short chain fatty acids, which varied according to disease state and ileal pH variability. Further, both 5-ASA and sulfasalazine significantly reduced the growth of the faecal microbiota sourced from six healthy humans. The findings support that the approach selected for colonic drug delivery could significantly influence the effectiveness of UC treatment, and highlight that drugs licensed for UC may differentially impact the growth and functioning of the colonic microbiota.


Asunto(s)
Antiinflamatorios no Esteroideos , Colon , Microbioma Gastrointestinal , Mesalamina , Sulfasalazina , Mesalamina/administración & dosificación , Mesalamina/farmacología , Humanos , Colon/microbiología , Colon/metabolismo , Colon/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Sulfasalazina/administración & dosificación , Profármacos/administración & dosificación , Sistemas de Liberación de Medicamentos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Concentración de Iones de Hidrógeno , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/microbiología , Liberación de Fármacos
15.
J Pharm Sci ; 113(8): 2331-2341, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38582281

RESUMEN

The oral formulation design for colon-specific drug delivery brings some therapeutic benefits in the ulcerative colitis treatment. We recently reported the specific delivery of hemoglobin nanoparticles-conjugating 5-aminosalicylic acid (5-ASA-HbNPs) to the inflamed site. In the current study, the therapeutic effect of the 5-ASA-HbNPs formulation was confirmed in vivo. This evaluation of 5-ASA-HbNPs not only shows longer colonic retention time due to adhesive properties, also provides full support for it as compared with free 5-ASA. It was considered as a suitable bio-adhesive nanoparticle with mucoadhesive property to pass through the mucus layer and accumulate into the mucosa. In UC model mice, a two-fold decrease in the disease activity indexes and colon weight/length ratios was significantly observed in the group treated with 5-ASA-HbNPs. This group received one percent of the standard dosage of 5-ASA (50 µg/kg), while, a similar result was observed for a significant amount of free 5-ASA (5 mg/kg). Furthermore, microscopic images of histological sections of the extracted colons demonstrated that the 5-ASA-HbNPs and 5-ASA groups displayed instances of inflammatory damage within the colon. However, in comparison to the colitis group, the extent of this damage was relatively moderate, suggesting 5-ASA-HbNPs improved therapeutic efficacy with the lower dosage form.


Asunto(s)
Colitis Ulcerosa , Colon , Hemoglobinas , Mesalamina , Nanopartículas , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Mesalamina/administración & dosificación , Mesalamina/química , Mesalamina/farmacología , Hemoglobinas/administración & dosificación , Nanopartículas/química , Ratones , Administración Oral , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Masculino , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/farmacología , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química
16.
Molecules ; 29(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542946

RESUMEN

Biocatalysis processes based on oxidoreductases, such as fungal laccase, are important for discovering new organic compounds with broad structures and potential applications. They include bioactive compounds, which can be obtained through laccase-mediated oxidation of organic substrates having hydroxyl and/or amino groups especially, e.g., 5-aminosalicylic acid (5-ASA) is characterised for its potential for oxidation by a fungal laccase obtained from a Cerrena unicolor strain. The biotransformation process was optimised in terms of the buffer and co-solvent concentration, buffer pH value, and laccase activity. Selected crude dyes were analysed for their bioactive properties, toxicity, and suitability for the dyeing of wool fibres. The data obtained clearly indicated that a low concentration of the reaction buffer in the pH range from 5 to 6 and in the presence of 10% acetonitrile increased the rate of substrate oxidation and the amount of the product formed. The red-brown compound obtained via laccase-mediated oxidation of 5-aminosalicylic acid showed antioxidant properties and unique antimicrobial activity against Staphylococcus aureus and Staphylococcus epidermidis strains with the MIC value of 0.125 mg/mL detected for the purest dye. In addition, it was reported to have good wool fibre dyeing properties and no irritant effect after patch tests on a selected group with increased skin sensitivity.


Asunto(s)
Lacasa , Mesalamina , Animales , Lacasa/metabolismo , Mesalamina/farmacología , Oxidación-Reducción , Antioxidantes/química , Colorantes/química , Concentración de Iones de Hidrógeno
17.
Nat Commun ; 15(1): 1024, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310093

RESUMEN

Osteoarthritis (OA) is a progressive and irreversible degenerative joint disease that is characterized by cartilage destruction, osteophyte formation, subchondral bone remodeling, and synovitis. Despite affecting millions of patients, effective and safe disease-modifying osteoarthritis drugs are lacking. Here we reveal an unexpected role for the small molecule 5-aminosalicylic acid (5-ASA), which is used as an anti-inflammatory drug in ulcerative colitis. We show that 5-ASA competes with extracellular-matrix collagen-II to bind to osteoclast-associated receptor (OSCAR) on chondrocytes. Intra-articular 5-ASA injections ameliorate OA generated by surgery-induced medial-meniscus destabilization in male mice. Significantly, this effect is also observed when 5-ASA was administered well after OA onset. Moreover, mice with DMM-induced OA that are treated with 5-ASA at weeks 8-11 and sacrificed at week 12 have thicker cartilage than untreated mice that were sacrificed at week 8. Mechanistically, 5-ASA reverses OSCAR-mediated transcriptional repression of PPARγ in articular chondrocytes, thereby suppressing COX-2-related inflammation. It also improves chondrogenesis, strongly downregulates ECM catabolism, and promotes ECM anabolism. Our results suggest that 5-ASA could serve as a DMOAD.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Masculino , Animales , Ratones , Mesalamina/farmacología , Mesalamina/uso terapéutico , PPAR gamma/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Modelos Animales de Enfermedad
18.
Drug Metab Rev ; 56(1): 80-96, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38230664

RESUMEN

Two aminosalicylate isomers have been found to possess useful pharmacological behavior: p-aminosalicylate (PAS, 4AS) is an anti-tubercular agent that targets M. tuberculosis, and 5-aminosalicylate (5AS, mesalamine, mesalazine) is used in the treatment of ulcerative colitis (UC) and other inflammatory bowel diseases (IBD). PAS, a structural analog of pABA, is biosynthetically incorporated by bacterial dihydropteroate synthase (DHPS), ultimately yielding a dihydrofolate (DHF) analog containing an additional hydroxyl group in the pABA ring: 2'-hydroxy-7,8-dihydrofolate. It has been reported to perturb folate metabolism in M. tuberculosis, and to selectively target M. tuberculosis dihydrofolate reductase (mtDHFR). Studies of PAS metabolism are reviewed, and possible mechanisms for its mtDHFR inhibition are considered. Although 5AS is a more distant structural relative of pABA, multiple lines of evidence suggest a related role as a pABA antagonist that inhibits bacterial folate biosynthesis. Structural data support the likelihood that 5AS is recognized by the DHPS pABA binding site, and its effects probably range from blocking pABA binding to formation of a dead-end dihydropterin-5AS adduct. These studies suggest that mesalamine acts as a gut bacteria-directed antifolate, that selectively targets faster growing, more folate-dependent species.


Asunto(s)
Ácido Aminosalicílico , Mycobacterium tuberculosis , Tuberculosis , Humanos , Mesalamina/farmacología , Ácido 4-Aminobenzoico/farmacología , Ácido Aminosalicílico/farmacología , Ácido Fólico/metabolismo , Ácido Fólico/farmacología
19.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1611-1622, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37695333

RESUMEN

The study aimed to investigate the potential of low dose chitooligosaccharide (COS) in ameliorating dextran sodium sulfate (DSS) induced chronic colitis by regulating microbial dysbiosis and pro-inflammatory responses. Chronic colitis was induced in BALB/c mice by DSS (4% w/v, 3 cycles of 5 days) administration. The mice were divided into four groups: vehicle, DSS, DSS + mesalamine and DSS+COS. COS and mesalamine were administered orally, daily once, from day 1 to day 30 at a dose of 20 mg/kg and 50 mg/kg respectively. The disease activity index (DAI), colon length, histopathological score, microbial composition, and pro-inflammatory cytokine expression were evaluated. COS (20 mg/kg, COSLow) administration reduced the disease activity index, and colon shortening, caused by DSS significantly. Furthermore, COSLow restored the altered microbiome in the gut and inhibited the elevated pro-inflammatory cytokines (IL-1 and IL-6) in the colon against DSS-induced chronic colitis in mice. Moreover, COSLow treatment improved the probiotic microflora thereby restoring the gut homeostasis. In conclusion, this is the first study where microbial dysbiosis and pro-inflammatory responses were modulated by chronic COSLow treatment against DSS-induced chronic colitis in Balb/c mice. Therefore, COS supplementation at a relatively low dose could be efficacious for chronic inflammatory bowel disease.


Asunto(s)
Quitosano , Colitis Ulcerosa , Colitis , Oligosacáridos , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colon , Mesalamina/farmacología , Ratones Endogámicos BALB C , Disbiosis/tratamiento farmacológico , Disbiosis/metabolismo , Disbiosis/patología , Inflamación/patología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo
20.
Int J Biol Macromol ; 254(Pt 1): 127811, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923042

RESUMEN

Microalgae polysaccharides (MAPS) have emerged as novel prebiotics, but their direct effects on intestinal epithelial barrier are largely unknown. Here, MAPS isolated from Chlorella pyrenoidosa, Spirulina platensis, and Synechococcus sp. PCC 7002 were characterized as mainly branched heteropolysaccharides, and were bioavailable to Caco-2 cells based on fluorescein isothiocyanate labeling and flow cytometry analysis. These MAPS were equally effective to scavenge hydroxyl and superoxide radicals in vitro and to attenuate the H2O2-, dextran sodium sulfate-, tumor necrosis factor α-, and interleukin 1ß-induced burst of intracellular reactive oxygen species and mitochondrial superoxide radicals, interleukin-8 production, cyclooxygenase-2 and inducible nitric oxide synthase expression, and/or tight junction disruption in polarized Caco-2 cells. MAPS and a positive drug Mesalazine were intragastrically administered to C57BL/6 mice daily for 7 d during and after 4-d dextran sodium sulfate exposure. Clinical signs and colon histopathology revealed equivalent anti-colitis efficacies of MAPS and Mesalazine, and based on biochemical analysis of colonic tight junction proteins, goblet cells, mucin 2 and trefoil factor 3 transcription, and colonic and peripheral pro-inflammatory cytokines, MAPS alleviated dextran sodium sulfate-induced intestinal epithelial barrier dysfunction, and their activities were even superior than Mesalazine. Overall, MAPS confer direct antioxidant and anti-inflammatory protection to intestinal epithelial barrier function.


Asunto(s)
Chlorella , Colitis , Microalgas , Humanos , Animales , Ratones , Antioxidantes/metabolismo , Dextranos/farmacología , Células CACO-2 , Mesalamina/farmacología , Peróxido de Hidrógeno/metabolismo , Superóxidos/metabolismo , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Células Epiteliales , Antiinflamatorios/uso terapéutico , Sulfato de Dextran/toxicidad , Mucosa Intestinal/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA