Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.406
Filtrar
1.
J Biomech ; 168: 112132, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718594

RESUMEN

Minimizing lumbar spine flexion during lifting requires greater lower extremity joint motion. However, the effects of these kinematic changes on lumbar and lower extremity joint kinetics are unknown. Further, it is unclear whether the distribution of biomechanical demands throughout the lumbar spine and lower extremity during lumbar spine flexion restricted lifting are modulated by task factors like lift origin height and object mass. This study examined the influence of restricting lumbar spine flexion during lifting on the distribution of biomechanical demands, operationalized as mechanical energy expenditure (MEE), across the lumbar spine and lower extremity joints during lifting tasks. Twenty participants performed a series of lifting tasks that varied by lift origin height, object mass and presence or absence of lumbar spine motion restricting harness. MEE was quantified for the lumbar spine and lower extremity joints and summed across all joints to represent the total MEE. Distributions of MEE were compared across combinations of the three task factors. Total MEE was greater when lifting with restricted spine motion (p < 0.001). MEE was redistributed away from the lumbar spine and predominantly to the hips in the spine restricted conditions (p < 0.001). The nature and magnitude of this effect was modulated by lift origin height for the lumbar spine (p < 0.001) and hips (p < 0.001). Findings demonstrated that biomechanical demands can be shifted from the lumbar spine to the lower extremity when lifting with restricted spine flexion, which might help mitigate overuse injuries through coordinative variability.


Asunto(s)
Metabolismo Energético , Elevación , Vértebras Lumbares , Humanos , Vértebras Lumbares/fisiología , Masculino , Femenino , Metabolismo Energético/fisiología , Fenómenos Biomecánicos/fisiología , Adulto , Rango del Movimiento Articular/fisiología , Adulto Joven
2.
J Neurosci Res ; 102(5): e25342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38773878

RESUMEN

Glucose is the primary energy source for neural stem cells (NSCs), supporting their proliferation, differentiation, and quiescence. However, the high demand for glucose during brain development often exceeds its supply, leading to the utilization of alternative energy sources including ketone bodies. Ketone bodies, including ß-hydroxybutyrate, are short-chain fatty acids produced through hepatic ketogenesis and play a crucial role in providing energy and the biosynthetic components for NSCs when required. The interplay between glucose and ketone metabolism influences NSC behavior and fate decisions, and disruptions in these metabolic pathways have been linked to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Additionally, ketone bodies exert neuroprotective effects on NSCs and modulate cellular responses to oxidative stress, energy maintenance, deacetylation, and inflammation. As such, understanding the interdependence of glucose and ketone metabolism in NSCs is crucial to understanding their roles in NSC function and their implications for neurological conditions. This article reviews the mechanisms of glucose and ketone utilization in NSCs, their impact on NSC function, and the therapeutic potential of targeting these metabolic pathways in neurological disorders.


Asunto(s)
Glucosa , Cuerpos Cetónicos , Células-Madre Neurales , Cuerpos Cetónicos/metabolismo , Células-Madre Neurales/metabolismo , Humanos , Animales , Glucosa/metabolismo , Metabolismo Energético/fisiología , Diferenciación Celular/fisiología
3.
Rev Invest Clin ; 76(2): 65-79, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718804

RESUMEN

UNASSIGNED: Excess body weight has become a global epidemic and a significant risk factor for developing chronic diseases, which are the leading causes of worldwide morbidities. Adipose tissue (AT), primarily composed of adipocytes, stores substantial amounts of energy and plays a crucial role in maintaining whole-body glucose and lipid metabolism. This helps prevent excessive body fat accumulation and lipotoxicity in peripheral tissues. In addition, AT contains endothelial cells and a substantial population of immune cells (constituting 60-70% of non-adipocyte cells), including macrophages, T and B lymphocytes, and natural killer cells. These resident immune cells engage in crosstalk with adipocytes, contributing to the maintenance of metabolic and immune homeostasis in AT. An exacerbated inflammatory response or inadequate immune resolution can lead to chronic systemic low-grade inflammation, triggering the development of metabolic alterations and the onset of chronic diseases. This review aims to elucidate the regulatory mechanisms through which immune cells influence AT function and energy homeostasis. We also focus on the interactions and functional dynamics of immune cell populations, highlighting their role in maintaining the delicate balance between metabolic health and obesity-related inflammation. Finally, understanding immunometabolism is crucial for unraveling the pathogenesis of metabolic diseases and developing targeted immunotherapeutic strategies. These strategies may offer innovative avenues in the rapidly evolving field of immunometabolism. (Rev Invest Clin. 2024;76(2):65-79).


Asunto(s)
Tejido Adiposo , Inflamación , Enfermedades Metabólicas , Obesidad , Humanos , Tejido Adiposo/metabolismo , Tejido Adiposo/inmunología , Obesidad/inmunología , Obesidad/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Enfermedades Metabólicas/inmunología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Metabolismo Energético/fisiología , Adipocitos/metabolismo , Adipocitos/inmunología , Metabolismo de los Lípidos/fisiología , Animales , Homeostasis
4.
PLoS One ; 19(5): e0302758, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748652

RESUMEN

Measuring breathing rates is a means by which oxygen intake and metabolic rates can be estimated to determine food requirements and energy expenditure of killer whales (Orcinus orca) and other cetaceans. This relatively simple measure also allows the energetic consequences of environmental stressors to cetaceans to be understood but requires knowing respiration rates while they are engaged in different behaviours such as resting, travelling and foraging. We calculated respiration rates for different behavioural states of southern and northern resident killer whales using video from UAV drones and concurrent biologging data from animal-borne tags. Behavioural states of dive tracks were predicted using hierarchical hidden Markov models (HHMM) parameterized with time-depth data and with labeled tracks of drone-identified behavioural states (from drone footage that overlapped with the time-depth data). Dive tracks were sequences of dives and surface intervals lasting ≥ 10 minutes cumulative duration. We calculated respiration rates and estimated oxygen consumption rates for the predicted behavioural states of the tracks. We found that juvenile killer whales breathed at a higher rate when travelling (1.6 breaths min-1) compared to resting (1.2) and foraging (1.5)-and that adult males breathed at a higher rate when travelling (1.8) compared to both foraging (1.7) and resting (1.3). The juveniles in our study were estimated to consume 2.5-18.3 L O2 min-1 compared with 14.3-59.8 L O2 min-1 for adult males across all behaviours based on estimates of mass-specific tidal volume and oxygen extraction. Our findings confirm that killer whales take single breaths between dives and indicate that energy expenditure derived from respirations requires using sex, age, and behavioural-specific respiration rates. These findings can be applied to bioenergetics models on a behavioural-specific basis, and contribute towards obtaining better predictions of dive behaviours, energy expenditure and the food requirements of apex predators.


Asunto(s)
Buceo , Consumo de Oxígeno , Frecuencia Respiratoria , Orca , Animales , Orca/fisiología , Orca/metabolismo , Masculino , Frecuencia Respiratoria/fisiología , Femenino , Consumo de Oxígeno/fisiología , Buceo/fisiología , Metabolismo Energético/fisiología , Respiración , Conducta Alimentaria/fisiología
5.
Physiol Rep ; 12(10): e16023, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760177

RESUMEN

To determine whether body fat and body mass index (BMI) affect the energy cost of walking (Cw; J/kg/m), ventilation, and gas exchange data from 205 adults (115 females; percent body fat range = 3.0%-52.8%; BMI range = 17.5-43.2 kg/m2) were obtained at rest and during treadmill walking at 1.34 m/s to calculate gross and net Cw. Linear regression was used to assess relationships between body composition indices, Cw, and standing metabolic rate (SMR). Unpaired t-tests were used to assess differences between sex, and one-way ANOVA was used to assess differences by BMI categories: normal weight, <25.0 kg/m2; overweight, 25.0-29.9 km/m2; and obese, ≥30 kg/m2. Net Cw was not related to body fat percent, fat mass, or BMI (all R2 ≤ 0.011). Furthermore, mean net Cw was similar by sex (male: 2.19 ± 0.30 J/kg/m; female: 2.24 ± 0.37 J/kg/m, p = 0.35) and across BMI categories (normal weight: 2.23 ± 0.36 J/kg/m; overweight: 2.18 ± 0.33 J/kg/m; obese: 2.26 ± 0.31, p = 0.54). Gross Cw and SMR were inversely associated with percent body fat, fat mass, and BMI (all R2 between 0.033 and 0.270; all p ≤ 0.008). In conclusion, Net Cw is not influenced by body fat percentage, total body fat, and BMI and does not differ by sex.


Asunto(s)
Índice de Masa Corporal , Metabolismo Energético , Caminata , Humanos , Masculino , Femenino , Adulto , Caminata/fisiología , Persona de Mediana Edad , Metabolismo Energético/fisiología , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiología , Prueba de Esfuerzo/métodos , Consumo de Oxígeno/fisiología , Anciano , Obesidad/fisiopatología , Obesidad/metabolismo , Adulto Joven
6.
J Pineal Res ; 76(4): e12961, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38751172

RESUMEN

Melatonin is a neurohormone synthesized from dietary tryptophan in various organs, including the pineal gland and the retina. In the pineal gland, melatonin is produced at night under the control of the master clock located in the suprachiasmatic nuclei of the hypothalamus. Under physiological conditions, the pineal gland seems to constitute the unique source of circulating melatonin. Melatonin is involved in cellular metabolism in different ways. First, the circadian rhythm of melatonin helps the maintenance of proper internal timing, the disruption of which has deleterious effects on metabolic health. Second, melatonin modulates lipid metabolism, notably through diminished lipogenesis, and it has an antidiabetic effect, at least in several animal models. Third, pharmacological doses of melatonin have antioxidative, free radical-scavenging, and anti-inflammatory properties in various in vitro cellular models. As a result, melatonin can be considered both a circadian time-giver and a homeostatic monitor of cellular metabolism, via multiple mechanisms of action that are not all fully characterized. Aging, circadian disruption, and artificial light at night are conditions combining increased metabolic risks with diminished circulating levels of melatonin. Accordingly, melatonin supplementation could be of potential therapeutic value in the treatment or prevention of metabolic disorders. More clinical trials in controlled conditions are needed, notably taking greater account of circadian rhythmicity.


Asunto(s)
Ritmo Circadiano , Homeostasis , Melatonina , Melatonina/metabolismo , Animales , Humanos , Ritmo Circadiano/fisiología , Homeostasis/fisiología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Glándula Pineal/metabolismo
7.
Cell Death Dis ; 15(4): 243, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570521

RESUMEN

The etiopathology of Parkinson's disease has been associated with mitochondrial defects at genetic, laboratory, epidemiological, and clinical levels. These converging lines of evidence suggest that mitochondrial defects are systemic and causative factors in the pathophysiology of PD, rather than being mere correlates. Understanding mitochondrial biology in PD at a granular level is therefore crucial from both basic science and translational perspectives. In a recent study, we investigated mitochondrial alterations in fibroblasts obtained from PD patients assessing mitochondrial function in relation to clinical measures. Our findings demonstrated that the magnitude of mitochondrial alterations parallels disease severity. In this study, we extend these investigations to blood cells and dopamine neurons derived from induced pluripotent stem cells reprogrammed from PD patients. To overcome the inherent metabolic heterogeneity of blood cells, we focused our analyses on metabolically homogeneous, accessible, and expandable erythroblasts. Our results confirm the presence of mitochondrial anomalies in erythroblasts and induced dopamine neurons. Consistent with our previous findings in fibroblasts, we observed that mitochondrial alterations are reversible, as evidenced by enhanced mitochondrial respiration when PD erythroblasts were cultured in a galactose medium that restricts glycolysis. This observation indicates that suppression of mitochondrial respiration may constitute a protective, adaptive response in PD pathogenesis. Notably, this effect was not observed in induced dopamine neurons, suggesting their distinct bioenergetic behavior. In summary, we provide additional evidence for the involvement of mitochondria in the disease process by demonstrating mitochondrial abnormalities in additional cell types relevant to PD. These findings contribute to our understanding of PD pathophysiology and may have implications for the development of novel biomarkers and therapeutic strategies.


Asunto(s)
Enfermedades Mitocondriales , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Mitocondrias/metabolismo , Metabolismo Energético/fisiología , Fibroblastos/metabolismo , Enfermedades Mitocondriales/metabolismo
8.
Am J Physiol Endocrinol Metab ; 326(5): E648-E662, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568152

RESUMEN

We investigated if a bout of exercise in a hot environment (HEAT) would reduce the postprandial hyperglycemia induced by glucose ingestion. The hypothesis was that HEAT stimulating carbohydrate oxidation and glycogen use would increase the disposal of an ingested glucose load [i.e., oral glucose tolerance test (OGTT); 75 g of glucose]. Separated by at least 1 wk, nine young healthy individuals underwent three trials after an overnight fast in a randomized order. Two trials included 50 min of pedaling at 58 ± 5% V̇o2max either in a thermoneutral (21 ± 1°C; NEUTRAL) or in a hot environment (33 ± 1°C; HEAT) eliciting similar energy expenditure (503 ± 101 kcal). These two trials were compared with a no-exercise trial (NO EXER). Twenty minutes after exercise (or rest), subjects underwent an OGTT, while carbohydrate oxidation (CHOxid, using indirect calorimetry) plasma blood glucose, insulin concentrations (i.e., [glucose], [insulin]), and double tracer glucose kinetics ([U-13C] glucose ingestion and [6,6-2H2] glucose infusion) were monitored for 120 min. At rest, [glucose], [insulin], and rates of appearance/disappearance of glucose in plasma (glucose Ra/Rd) were similar among trials. During exercise, heart rate, tympanic temperature, [glucose], glycogen oxidation, and total CHOxid were higher during HEAT than NEUTRAL (i.e., 149 ± 35 vs. 124 ± 31 µmol·kg-1·min-1, P = 0.010). However, during the following OGTT, glucose Rd was similar in HEAT and NEUTRAL trials (i.e., 25.1 ± 3.6 vs. 25.2 ± 5.3 µmol·kg-1·min-1, P = 0.981). Insulin sensitivity (i.e., ISIndexMATSUDA) only improved in NEUTRAL compared with NO EXER (10.1 ± 4.6 vs. 8.8 ± 3.7 au; P = 0.044). In summary, stimulating carbohydrate use with exercise in a hot environment does not improve postprandial plasma glucose disposal or insulin sensitivity in a subsequent OGTT.NEW & NOTEWORTHY Exercise in the heat increases estimated muscle glycogen use. Reduced muscle glycogen after exercise in the heat could increase insulin-mediated glucose uptake during a subsequent oral glucose tolerance test (OGTT). However, plasma glucose kinetics are not improved during the OGTT in response to a bout of exercise in the heat, and insulin sensitivity worsens. Heat stress activates glucose counterregulatory hormones whose actions may linger during the OGTT, preventing increased glucose uptake.


Asunto(s)
Glucemia , Metabolismo de los Hidratos de Carbono , Metabolismo Energético , Ejercicio Físico , Prueba de Tolerancia a la Glucosa , Glucosa , Calor , Humanos , Masculino , Ejercicio Físico/fisiología , Adulto , Adulto Joven , Glucemia/metabolismo , Femenino , Metabolismo de los Hidratos de Carbono/fisiología , Glucosa/metabolismo , Metabolismo Energético/fisiología , Insulina/sangre , Insulina/metabolismo , Oxidación-Reducción , Voluntarios Sanos , Glucógeno/metabolismo , Periodo Posprandial/fisiología , Hiperglucemia/metabolismo , Hiperglucemia/prevención & control
9.
Medicine (Baltimore) ; 103(17): e37916, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669419

RESUMEN

Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors with diverse clinical presentations. Alterations in energy expenditure state are commonly observed in patients with PPGL. However, the reported prevalence of hypermetabolism varies significantly and the underlying mechanisms and implications of this presentation have not been well elucidated. This review discusses and analyzes the factors that contribute to energy consumption. Elevated catecholamine levels in patients can significantly affect substance and energy metabolism. Additionally, changes in the activation of brown adipose tissue (BAT), inflammation, and the inherent energy demands of the tumor can contribute to increased resting energy expenditure (REE) and other energy metabolism indicators. The PPGL biomarker, chromogranin A (CgA), and its fragments also influence energy metabolism. Chronic hypermetabolic states may be detrimental to these patients, with surgical tumor removal remaining the primary therapeutic intervention. The high energy expenditure of PPGL has not received the attention it deserves, and an accurate assessment of energy metabolism is the cornerstone for an adequate understanding and treatment of the disease.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Metabolismo Energético , Paraganglioma , Feocromocitoma , Humanos , Metabolismo Energético/fisiología , Feocromocitoma/metabolismo , Paraganglioma/metabolismo , Neoplasias de las Glándulas Suprarrenales/metabolismo , Catecolaminas/metabolismo , Tejido Adiposo Pardo/metabolismo , Cromogranina A/metabolismo
11.
J Endocrinol ; 262(1)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642585

RESUMEN

Binge eating is a central component of two clinical eating disorders: binge eating disorder and bulimia nervosa. However, the large treatment gap highlights the need to identify other strategies to decrease binge eating. Novel pharmacotherapies may be one such approach. Glucagon-like peptide-1 (GLP-1) is an intestinal and brain-derived neuroendocrine signal with a critical role in promoting glycemic control through its incretin effect. Additionally, the energy balance effects of GLP-1 are well-established; activation of the GLP-1 receptor (GLP-1R) reduces food intake and body weight. Aligned with these beneficial metabolic effects, there are GLP-1R agonists that are currently used for the treatment of diabetes and obesity. A growing body of literature suggests that GLP-1 may also play an important role in binge eating. Dysregulation of the endogenous GLP-1 system is associated with binge eating in non-human animal models, and GLP-1R agonists may be a promising approach to suppress the overconsumption that occurs during binge eating. Here, we briefly discuss the role of GLP-1 in normal energy intake and reward and then review the emerging evidence suggesting that disruptions to GLP-1 signaling are associated with binge eating. We also consider the potential utility of GLP-1-based pharmacotherapies for reducing binge eating behavior.


Asunto(s)
Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Humanos , Péptido 1 Similar al Glucagón/metabolismo , Animales , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Trastorno por Atracón/tratamiento farmacológico , Trastorno por Atracón/metabolismo , Bulimia/metabolismo , Ingestión de Energía/fisiología , Metabolismo Energético/fisiología
12.
Biochem Pharmacol ; 224: 116185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561091

RESUMEN

Cardiac ATP production is tightly regulated in order to satisfy the evolving energetic requirements imposed by different cues during health and pathological conditions. In order to sustain high ATP production rates, cardiac cells are endowed with a vast mitochondrial network that is essentially acquired during the perinatal period. Nevertheless, adult cardiac cells also adapt their mitochondrial mass and oxidative function to changes in energy demand and substrate availability by fine-tuning the pathways and mitochondrial machinery involved in energy production. The reliance of cardiac cells on mitochondrial metabolism makes them particularly sensitive to alterations in proper mitochondrial function, so that deficiency in energy production underlies or precipitates the development of heart diseases. Mitochondrial biogenesis is a complex process fundamentally controlled at the transcriptional level by a network of transcription factors and co-regulators, sometimes with partially redundant functions, that ensure adequate energy supply to the working heart. Novel uncovered regulators, such as RIP140, PERM1, MED1 or BRD4 have been recently shown to modulate or facilitate the transcriptional activity of the PGC-1s/ERRs/PPARs regulatory axis, allowing cardiomyocytes to adapt to a variety of physiological or pathological situations requiring different energy provision. In this review, we summarize the current knowledge on the mechanisms that regulate cardiac mitochondrial biogenesis, highlighting the recent discoveries of new transcriptional regulators and describing the experimental models that have provided solid evidence of the relevant contribution of these factors to cardiac function in health and disease.


Asunto(s)
Metabolismo Energético , Animales , Metabolismo Energético/fisiología , Metabolismo Energético/genética , Humanos , Transcripción Genética/fisiología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/genética , Cardiopatías/metabolismo , Cardiopatías/genética , Miocardio/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Modelos Animales de Enfermedad , Miocitos Cardíacos/metabolismo
13.
Clin Sci (Lond) ; 138(8): 491-514, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38639724

RESUMEN

The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.


Asunto(s)
Insuficiencia Cardíaca , Daño por Reperfusión , Humanos , Creatina Quinasa/metabolismo , Adenosina Trifosfato/metabolismo , Corazón , Metabolismo Energético/fisiología , Daño por Reperfusión/metabolismo , Fosfocreatina/metabolismo , Enfermedad Crónica , Miocardio/patología
14.
Sci Rep ; 14(1): 9030, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641659

RESUMEN

This study compared the effects of blood flow restriction (BFR) on intensity and perceived enjoyment during an exergame. Fourteen healthy young participants engaged in a boxing exergame for 20 min, with or without BFR, across two sessions. Perceived enjoyment levels were assessed using the Physical Activity Enjoyment Scale. Heart rate was monitored, and energy expenditure (EE) during exercise was calculated. A mixed model analysis of variance with repeated measures was used to evaluate differences in EE and enjoyment between exergame conditions (with and without BFR) as well as the interaction effects of these protocols with gender. Although not statistically significant, perceived enjoyment decreased with BFR inclusion for both genders. No significant differences were observed between men and women for both protocols. Regarding EE, there was no significant difference between the two groups (with and without BFR). However, a significant main effect of gender was found, with men exhibiting higher EE values in both protocols compared to women. In conclusion, exergames incorporating BFR impact perceptual responses, particularly perceived enjoyment. Furthermore, significant gender differences in EE were found, with men displaying higher values.


Asunto(s)
Videojuego de Ejercicio , Placer , Humanos , Femenino , Masculino , Hemodinámica , Ejercicio Físico/fisiología , Metabolismo Energético/fisiología
15.
Nat Commun ; 15(1): 3377, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643150

RESUMEN

Zinc-alpha2-glycoprotein (AZGP1) has been implicated in peripheral metabolism; however, its role in regulating energy metabolism in the brain, particularly in POMC neurons, remains unknown. Here, we show that AZGP1 in POMC neurons plays a crucial role in controlling whole-body metabolism. POMC neuron-specific overexpression of Azgp1 under high-fat diet conditions reduces energy intake, raises energy expenditure, elevates peripheral tissue leptin and insulin sensitivity, alleviates liver steatosis, and promotes adipose tissue browning. Conversely, mice with inducible deletion of Azgp1 in POMC neurons exhibit the opposite metabolic phenotypes, showing increased susceptibility to diet-induced obesity. Notably, an increase in AZGP1 signaling in the hypothalamus elevates STAT3 phosphorylation and increases POMC neuron excitability. Mechanistically, AZGP1 enhances leptin-JAK2-STAT3 signaling by interacting with acylglycerol kinase (AGK) to block its ubiquitination degradation. Collectively, these results suggest that AZGP1 plays a crucial role in regulating energy homeostasis and glucose/lipid metabolism by acting on hypothalamic POMC neurons.


Asunto(s)
Leptina , Proopiomelanocortina , Ratones , Animales , Leptina/metabolismo , Fosforilación , Proopiomelanocortina/metabolismo , Hipotálamo/metabolismo , Homeostasis/fisiología , Metabolismo Energético/fisiología , Neuronas/metabolismo
16.
Int J Rehabil Res ; 47(2): 64-74, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616768

RESUMEN

Metabolic diseases disproportionately affect people with spinal cord injury (SCI). Increasing energy expenditure and remodeling body composition may offset deleterious consequences of SCI to improve cardiometabolic health. Evidence is emerging that robotic exoskeleton use increases physical activity in SCI, but little is known about its effects on energy expenditure and body composition. This study therefore aimed to evaluate the impact of robotic exoskeleton training on body composition and energy expenditure in adults with SCI. A systematic literature review was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Five databases were searched to retrieve studies meeting pre-set eligibility criteria: adults with SCI, interventions evaluating the effects of robotic exoskeleton devices on body composition or energy expenditure. The PEDro scale guided quality assessments with findings described narratively. Of 2163 records, 10 studies were included. Robotic exoskeleton training does not significantly improve energy expenditure compared to other exercise interventions. Significant changes ( P  < 0.05) in body composition, particularly reduced fat mass, however, were reported. High variability seen with the interventions was coupled with poor quality of the studies. While robotic exoskeleton interventions may propose modest cardiometabolic benefits in adults with SCI, further robust trials in larger samples are needed to strengthen these findings.


Asunto(s)
Composición Corporal , Metabolismo Energético , Dispositivo Exoesqueleto , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/rehabilitación , Metabolismo Energético/fisiología , Composición Corporal/fisiología , Adulto
17.
J Physiol ; 602(9): 1967-1986, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564214

RESUMEN

Mitochondria within skeletal muscle cells are located either between the muscle contractile apparatus (interfibrillar mitochondria, IFM) or beneath the cell membrane (subsarcolemmal mitochondria, SSM), with several structural and functional differences reported between IFM and SSM. However, recent 3D imaging studies demonstrate that mitochondria are particularly concentrated in the proximity of capillaries embedded in sarcolemmal grooves rather than in proximity to the sarcolemma itself (paravascular mitochondria, PVM). To evaluate the impact of capillary vs. sarcolemmal proximity, we compared the structure and function of skeletal muscle mitochondria located either lateral to embedded capillaries (PVM), adjacent to the sarcolemma but not in PVM pools (SSM) or interspersed between sarcomeres (IFM). Mitochondrial morphology and interactions were assessed by 3D electron microscopy coupled with machine learning segmentation, whereas mitochondrial energy conversion was assessed by two-photon microscopy of mitochondrial membrane potential, content, calcium, NADH redox and flux in live, intact cells. Structurally, although PVM and SSM were similarly larger than IFM, PVM were larger, rounder and had more physical connections to neighbouring mitochondria compared to both IFM and SSM. Functionally, PVM had similar or greater basal NADH flux compared to SSM and IFM, respectively, despite a more oxidized NADH pool and a greater membrane potential, signifying a greater activation of the electron transport chain in PVM. Together, these data indicate that proximity to capillaries has a greater impact on resting mitochondrial energy conversion and distribution in skeletal muscle than the sarcolemma alone. KEY POINTS: Capillaries have a greater impact on mitochondrial energy conversion in skeletal muscle than the sarcolemma. Paravascular mitochondria are larger, and the outer mitochondrial membrane is more connected with neighbouring mitochondria. Interfibrillar mitochondria are longer and have greater contact sites with other organelles (i.e. sarcoplasmic reticulum and lipid droplets). Paravascular mitochondria have greater activation of oxidative phosphorylation than interfibrillar mitochondria at rest, although this is not regulated by calcium.


Asunto(s)
Capilares , Mitocondrias Musculares , Músculo Esquelético , Sarcolema , Sarcolema/metabolismo , Sarcolema/ultraestructura , Sarcolema/fisiología , Animales , Capilares/fisiología , Capilares/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/ultraestructura , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigación sanguínea , Ratones , Metabolismo Energético/fisiología , Masculino , Ratones Endogámicos C57BL , Potencial de la Membrana Mitocondrial/fisiología
18.
J Strength Cond Res ; 38(5): 842-847, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662882

RESUMEN

ABSTRACT: Barbosa, PH, Bueno de Camargo, JB, Jonas de Oliveira, J, Reis Barbosa, CG, Santos da Silva, A, Dos-Santos, JW, Verlengia, R, Barreira, J, Braz, TV, and Lopes, CR. Resistance exercise sessions comprising multijoint vs. single-joint exercises result in similar metabolic and hormonal responses, but distinct levels of muscle damage in trained men. J Strength Cond Res 38(5): 842-847, 2024-Resistance-type exercise (RE) elicits distinct acute metabolic and hormonal responses, which can be modulated by the manipulation of training variables. The purpose of this study was to compare the metabolic (blood lactate and estimated lactic anaerobic system energy expenditure) and hormonal (growth hormone [GH]) responses to RE sessions composed exclusively of multijoint (MULTI) or single-joint (SINGLE) exercises. Assessments of creatine kinase (CK) levels were also performed. In a crossover design, 10 recreationally resistance-trained men (age: 26.9 ± 3.0 years, total body mass: 83.2 ± 13.8 kg; height: 176 ± 7.0 cm; training experience: 5.5 ± 2.4 years) were randomly submitted to both protocols. Blood collections were made pre, 3 minutes after, and 36 hours after each experimental session. No significant difference between MULTI vs. SINGLE was observed for the rises in blood lactate (p = 0.057) and GH (p = 0.285) levels. For CK, a significant difference between the protocols was noted, in which MULTI resulted in significant rises after 3 minutes (p = 0.017) and 36 hours (p = 0.043) compared with SINGLE. In conclusion, the findings of this study suggest that resistance-trained individuals display similar metabolic and hormonal responses when performing MULTI and SINGLE exercise protocols. Also, RE sessions comprising MULTI exercises induce a higher magnitude of muscle damage, which may require a longer recovery period compared with SINGLE.


Asunto(s)
Creatina Quinasa , Estudios Cruzados , Ácido Láctico , Músculo Esquelético , Entrenamiento de Fuerza , Humanos , Masculino , Entrenamiento de Fuerza/métodos , Ácido Láctico/sangre , Adulto , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Creatina Quinasa/sangre , Adulto Joven , Metabolismo Energético/fisiología , Hormona de Crecimiento Humana/sangre
19.
Sci Rep ; 14(1): 9530, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664457

RESUMEN

To develop and validate a machine learning based algorithm to estimate physical activity (PA) intensity using the smartwatch with the capacity to record PA and determine outdoor state. Two groups of participants, including 24 adults (13 males) and 18 children (9 boys), completed a sequential activity trial. During each trial, participants wore a smartwatch, and energy expenditure was measured using indirect calorimetry as gold standard. The support vector machine algorithm and the least squares regression model were applied for the metabolic equivalent (MET) estimation using raw data derived from the smartwatch. Exercise intensity was categorized based on MET values into sedentary activity (SED), light activity (LPA), moderate activity (MPA), and vigorous activity (VPA). The classification accuracy was evaluated using area under the ROC curve (AUC). The METs estimation accuracy were assessed via the mean absolute error (MAE), the correlation coefficient, Bland-Altman plots, and intraclass correlation (ICC). A total of 24 adults aged 21-34 years and 18 children aged 9-13 years participated in the study, yielding 1790 and 1246 data points for adults and children respectively for model building and validation. For adults, the AUC for classifying SED, MVPA, and VPA were 0.96, 0.88, and 0.86, respectively. The MAE between true METs and estimated METs was 0.75 METs. The correlation coefficient and ICC were 0.87 (p < 0.001) and 0.89, respectively. For children, comparable levels of accuracy were demonstrated, with the AUC for SED, MVPA, and VPA being 0.98, 0.89, and 0.85, respectively. The MAE between true METs and estimated METs was 0.80 METs. The correlation coefficient and ICC were 0.79 (p < 0.001) and 0.84, respectively. The developed model successfully estimated PA intensity with high accuracy in both adults and children. The application of this model enables independent investigation of PA intensity, facilitating research in health monitoring and potentially in areas such as myopia prevention and control.


Asunto(s)
Algoritmos , Ejercicio Físico , Humanos , Masculino , Femenino , Ejercicio Físico/fisiología , Niño , Adulto , Adolescente , Adulto Joven , Metabolismo Energético/fisiología , Calorimetría Indirecta/métodos , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , Curva ROC
20.
BMC Surg ; 24(1): 129, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678284

RESUMEN

BACKGROUND: Mitochondria dysfunction is one of the major causes of insulin resistance, and other countless complications of obesity. PGC-1α, and UCP-2 play key roles in energy expenditure regulation in the mitochondrial thermogenesis. However, the effects of bariatric surgery on the level of PGC-1α and UCP-2 and their relationships are unclear. OBJECTIVE: This study aimed to investigate the effect of bariatric surgery on key pathways in energy, and to assess the potential predictive role of body composition and metabolic parameters in this regard. SETTINGS: Hazrat-e Rasool General Hospital, Center of Excellence of International Federation for Surgery of Obesity. METHODS: This prospective cohort study was carried out on 45 patients with morbid obesity who underwent Roux-en-Y gastric bypass surgery. The patients have evaluated three-time points at baseline, three, and six months after the surgery. Body composition components, the levels of PGC-1α, UCP-2, and metabolic parameters were measured three times during this study. RESULTS: Significant changes in TWL%, EBMIL%, and metabolic lab tests were observed at three- and six months post-surgery (P < 0.001). The PGC-1α and UCP-2 had a significant increase three and then six-month post-operation compared with the baseline (P < 0.001). Moreover, multivariate linear regression analysis identified that the changing trend of PGC-1α was associated with insulin, uric Acid, HOMA-IR, fat mass and trunk fat mass. UCP-2 was associated with TSH, AST, fat mass and FFM. CONCLUSIONS: Bariatric surgery has been shown to have a positive effect on UCP-2 and PGC-1α levels, as well as body composition and metabolic parameters. As a result, it is believed that bariatric surgery could improve thermogenesis and energy expenditure by enhancing mitochondrial biogenesis and function. However, further studies are needed to fully understand the precise mechanisms and possible causal relationship.


Asunto(s)
Biomarcadores , Metabolismo Energético , Obesidad Mórbida , Proteína Desacopladora 2 , Humanos , Femenino , Estudios Prospectivos , Metabolismo Energético/fisiología , Masculino , Adulto , Biomarcadores/metabolismo , Biomarcadores/sangre , Obesidad Mórbida/cirugía , Obesidad Mórbida/metabolismo , Proteína Desacopladora 2/metabolismo , Persona de Mediana Edad , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Cirugía Bariátrica , Derivación Gástrica , Composición Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA