Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
1.
Curr Microbiol ; 81(11): 369, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305321

RESUMEN

Multidrug resistance in clinical pathogens is a significant challenge in healthcare, requiring the development of novel approaches to combat infections. In this study, we report the identification of novel antimicrobial biosynthetic gene clusters from Brevibacillus parabrevis WGTm-23, the bacterial strain isolated from a termitarium. This strain showed an antagonistic effect against drug-resistant clinical pathogens, such as Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella paratyphi, Streptococcus gordonii, and enteropathogenic Escherichia coli. The whole genome of this strain was sequenced using the Illumina platform. The genome mining revealed a total of 17 biosynthetic gene clusters (BGCs) responsible for the synthesis of secondary metabolites. The metabolites produced by this strain were predicted by constructing an identity network of the BGCs and performing a comparative analysis with genetically related strains. The genome contains multiple BGCs coding for ribosomally synthesized and post-translationally modified peptides (RiPPs). In the genome of Br. parabrevis WGTm-23, we identified BGCs that code for ulbactin F, ulbactin G, gramicidin, and bacillopaline with the highest identity. We also identified a few BGCs with less than 50% sequence identity to MC-LR/MC-LHty/MC-HphHty/MC-LHph/MC-HphHph, xenocoumacin 1/xenocoumacin II, and tyrocidine. In addition, we found fourteen BGCs that do not resemble or show identity to any entries within the antiSMASH database. Therefore, Br. parabrevis WGTm-23 has the potential to synthesize new classes of antimicrobial compounds.


Asunto(s)
Brevibacillus , Familia de Multigenes , Brevibacillus/genética , Brevibacillus/metabolismo , Brevibacillus/clasificación , Animales , Genoma Bacteriano , Antibacterianos/farmacología , Antibacterianos/biosíntesis , Metabolismo Secundario/genética , Secuenciación Completa del Genoma
2.
Physiol Plant ; 176(5): e14501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39256953

RESUMEN

Cold stress seriously affects plant development and secondary metabolism. The basic region/leucine zipper (bZIP) is one of the largest transcription factor (TFs) family and widely involved in plant cold stress response. However, the function of bZIP in Dendrobium catenatum has not been well-documented. Cold inhibited the growth of D. catenatum and increased total polysaccharide and alkaloid contents in stems. Here, 62 DcbZIP genes were identified in D. catenatum, which were divided into 13 subfamilies. Among them, 58 DcbZIPs responded to cold stress, which were selected based on the transcriptome database produced from cold-treated D. catenatum seedlings. Specifically, the expression of DcbZIP3/6/28 was highly induced by cold treatment in leaves or stems. Gene sequence analysis indicated that DcbZIP3/6/28 contains the bZIP conserved domain and is localized to the cell nucleus. Co-expression networks showed that DcbZIP6 was significantly negatively correlated with PAL2 (palmitoyl-CoA), which is involved in flavonoid metabolism. Moreover, DcbZIP28 has significant negative correlations with various metabolism-related genes in the polysaccharide metabolic pathway, including PFKA1 (6-phosphofructokinase), ALDO2 (aldose-6-phosphate reductase) and SCRK5 (fructokinase). These results implied that DcbZIP6 or DcbZIP28 are mainly involved in flavonoid or polysaccharide metabolism. Overall, these findings provide new insights into the roles of the DcbZIP gene family in secondary metabolism in D. catenatum under cold stress.


Asunto(s)
Respuesta al Choque por Frío , Dendrobium , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Metabolismo Secundario , Dendrobium/genética , Dendrobium/metabolismo , Dendrobium/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Metabolismo Secundario/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Frío , Filogenia
3.
Sci Rep ; 14(1): 20601, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232097

RESUMEN

DEFENSE NO DEATH 1 (DND1) is a cyclic nucleotide-gated ion channel protein. Earlier, it was shown that the silencing of DND1 in the potato (Solanum tuberosum L.) leads to resistance to late blight, powdery mildew, and gray mold diseases. At the same time, however, it can reduce plant growth and cause leaf necrosis. To obtain knowledge of the molecular events behind the pleiotropic effect of DND1 downregulation in the potato, metabolite and transcriptome analyses were performed on three DND1 silenced lines of the cultivar 'Désirée.' A massive increase in the salicylic acid content of leaves was detected. Concentrations of jasmonic acid and chlorogenic acid and their derivatives were also elevated. Expression of 1866 genes was altered in the same way in all three DND1 silenced lines, including those related to the synthesis of secondary metabolites. The activation of several alleles of leaf rust, late blight, and other disease resistance genes, as well as the induction of pathogenesis-related genes, was detected. WRKY and NAC transcription factor families were upregulated, whereas bHLHs were downregulated, indicating their central role in transcriptome changes. These results suggest that the maintenance of the constitutive defense state leads to the reduced growth of DND1 silenced potato plants.


Asunto(s)
Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas , Solanum tuberosum , Transcriptoma , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Silenciador del Gen , Resistencia a la Enfermedad/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Oxilipinas/metabolismo , Perfilación de la Expresión Génica , Ácido Salicílico/metabolismo , Metabolismo Secundario/genética
4.
Plant Physiol Biochem ; 215: 108988, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094480

RESUMEN

Phytochrome-interacting factors (PIFs) are pivotal transcriptional regulators controlling photomorphogenesis, environmental responses, and development in plants. However, their specific roles in coordinating adaptation towards abiotic stress and metabolism remain underexplored in tea plants. Here, we identified seven PIF members from four distinct clades (PIF1, PIF3, PIF7, and PIF8). Promoter analysis implicated CsPIFs in integrating light, stress, hormone, and circadian signals. Most CsPIFs exhibited rapid increase in expression under shading, especially CsPIF7b/8a, which displayed significant changes in long-term shading condition. Under drought/salt stress, CsPIF3b emerged as a potential positive regulator. CsPIF3a was induced by low temperature and co-expressed with CsCBF1/3 and CsDREB2A cold response factors. Dual-luciferase assays confirmed that act as negative regulator of the CBF pathway. Expression profiling across 11 tea cultivars associated specific CsPIFs with chlorophyll biosynthesis and accumulation of anthocyanins, flavonols, and other metabolites. In summary, this study highlights the significance of CsPIFs as central coordinators in managing intricate transcriptional reactions to simultaneous abiotic stresses and metabolic adjustments in tea plants. This insight informs future strategies for enhancing this economically crucial crop through crop improvement initiatives.


Asunto(s)
Camellia sinensis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Camellia sinensis/genética , Camellia sinensis/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitocromo/metabolismo , Fitocromo/genética , Metabolismo Secundario/genética , Genoma de Planta
5.
BMC Genomics ; 25(1): 720, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054421

RESUMEN

BACKGROUND: Paenibacillus polymyxa is a bacterial species of high interest, as suggested by the increased number of publications on its functions in the past years. Accordingly, the number of described strains and sequenced genomes is also on the rise. While functional diversity of P. polymyxa has been suggested before, the available genomic data is now sufficient for robust comparative genomics analyses. RESULTS: Using 157 genomes, we found significant disparities among strains currently affiliated to P. polymyxa. Multiple taxonomic groups were identified with conserved predicted functions putatively impacting their respective ecology. As strains of this species have been reported to exhibit considerable potential in agriculture, medicine, and bioremediation, it is preferable to clarify their taxonomic organization to facilitate reliable and durable approval as active ingredients. CONCLUSIONS: Strains currently affiliated to P. polymyxa can be separated into two major species groups with differential potential in nitrogen fixation, plant interaction, secondary metabolism, and antimicrobial resistance, as inferred from genomic data.


Asunto(s)
Variación Genética , Genoma Bacteriano , Genómica , Paenibacillus polymyxa , Filogenia , Paenibacillus polymyxa/genética , Genómica/métodos , Fijación del Nitrógeno/genética , Metabolismo Secundario/genética
6.
Mar Genomics ; 76: 101124, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39009498

RESUMEN

Microorganisms living with higher organisms are valuable sources of bioactive substances like antibiotics, which could assist them competing for more and better nutrients or space. Here, we focused on a marine animal-associated bacterium, 'Aliisedimentitalea scapharcae' KCTC 42119T, which was isolated from ark shell collected from Gang-Jin bay of South Korea. We evaluated its biosynthetic potentials of medicinal secondary metabolites by de novo genome sequencing. The complete genome of strain KCTC 42119T sequenced is 5,083,900 bp and is comprised of one circular chromosome and four circular plasmids. Functional genome analysis by antiSMASH v7.1.0 showed that there are nine biosynthetic gene clusters encoded on the chromosome. The annotated secondary metabolites include antibiotic corynecin, cytoprotective ectoine and antineoplastic ET-743 (Yondelis), which suggested strain KCTC 42119T possesses potentials to synthesize a series of secondary metabolites of pharmaceutical utility. Genome analysis of 'A. scapharcae' also provides more insights into mining bioactive substances from animal-associated microorganisms.


Asunto(s)
Genoma Bacteriano , Animales , República de Corea , Metabolismo Secundario/genética
7.
Microb Cell Fact ; 23(1): 201, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026318

RESUMEN

BACKGROUND: Ethanol shock significantly affects expression of over 1200 genes in Streptomyces venezuelae NRRL B-65,442, including those involved in secondary metabolite biosynthesis and a cryptic gene pepX, which encodes a 19-amino acid peptide with an unknown function. RESULTS: To establish a possible correlation between the PepX peptide and secondary metabolism in S. venezuelae, its gene was deleted, followed by analyses of the transcriptome and secondary metabolome of the mutant. Although the secondary metabolome of the pepX mutant was not strongly affected, pepX deletion, similar to ethanol shock, mostly resulted in downregulated expression of secondary metabolite biosynthesis gene clusters (BGCs). At the same time, there was a reverse correlation between the expression of certain extracytoplasmic function sigma factors (ECFs) and several BGCs. Individual deletions of three selected ECF-coding genes conserved in Streptomyces that were upregulated upon both pepX deletion and ethanol shock, had a profound positive effect on the expression of BGCs, which also correlated with the overproduction of specific secondary metabolites. Deletion of one such ECF-coding gene in a marine sponge-derived Streptomyces sp. also significantly altered the secondary metabolite profile, suggesting an important role of this ECF in the regulation of secondary metabolism. CONCLUSIONS: These findings pave the way for the activation or upregulation of BGCs in Streptomyces bacteria harboring genes for ECFs homologous to those identified in this study, hereby assisting in the discovery of novel bioactive secondary metabolites.


Asunto(s)
Metabolismo Secundario , Factor sigma , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Metabolismo Secundario/genética , Factor sigma/genética , Factor sigma/metabolismo , Regulación Bacteriana de la Expresión Génica , Eliminación de Gen , Familia de Multigenes , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Etanol/metabolismo , Transcriptoma
8.
Sci Rep ; 14(1): 15096, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956049

RESUMEN

Antibiotic resistance is a worldwide problem that imposes a devastating effect on developing countries and requires immediate interventions. Initially, most of the antibiotic drugs were identified by culturing soil microbes. However, this method is prone to discovering the same antibiotics repeatedly. The present study employed a shotgun metagenomics approach to investigate the taxonomic diversity, functional potential, and biosynthetic capacity of microbiomes from two natural agricultural farmlands located in Bekeka and Welmera Choke Kebelle in Ethiopia for the first time. Analysis of the small subunit rRNA revealed bacterial domain accounting for 83.33% and 87.24% in the two selected natural farmlands. Additionally, the analysis showed the dominance of Proteobacteria representing 27.27% and 28.79% followed by Actinobacteria making up 12.73% and 13.64% of the phyla composition. Furthermore, the analysis revealed the presence of unassigned bacteria in the studied samples. The metagenome functional analysis showed 176,961 and 104, 636 number of protein-coding sequences (pCDS) from the two samples found a match with 172,655 and 102, 275 numbers of InterPro entries, respectively. The Genome ontology annotation suggests the presence of 5517 and 3293 pCDS assigned to the "biosynthesis process". Numerous Kyoto Encyclopedia of Genes and Genomes modules (KEGG modules) involved in the biosynthesis of terpenoids and polyketides were identified. Furthermore, both known and novel Biosynthetic gene clusters, responsible for the production of secondary metabolites, such as polyketide synthases, non-ribosomal peptide synthetase, ribosomally synthesized and post-translationally modified peptides (Ripp), and Terpene, were discovered. Generally, from the results it can be concluded that the microbiomes in the selected sampling sites have a hidden functional potential for the biosynthesis of secondary metabolites. Overall, this study can serve as a strong preliminary step in the long journey of bringing new antibiotics to the market.


Asunto(s)
Metagenoma , Metagenómica , Microbiota , Familia de Multigenes , Metabolismo Secundario , Microbiología del Suelo , Metagenómica/métodos , Microbiota/genética , Metabolismo Secundario/genética , Granjas , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Etiopía , Filogenia
9.
Appl Microbiol Biotechnol ; 108(1): 427, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046587

RESUMEN

Filamentous fungi are prolific producers of bioactive natural products and play a vital role in drug discovery. Yet, their potential cannot be fully exploited since many biosynthetic genes are silent or cryptic under laboratory culture conditions. Several strategies have been applied to activate these genes, with heterologous expression as one of the most promising approaches. However, successful expression and identification of new products are often hindered by host-dependent factors, such as low gene targeting efficiencies, a high metabolite background, or a lack of selection markers. To overcome these challenges, we have constructed a Penicillium crustosum expression host in a pyrG deficient strain by combining the split-marker strategy and CRISPR-Cas9 technology. Deletion of ligD and pcribo improved gene targeting efficiencies and enabled the use of an additional selection marker in P. crustosum. Furthermore, we reduced the secondary metabolite background by inactivation of two highly expressed gene clusters and abolished the formation of the reactive ortho-quinone methide. Finally, we replaced the P. crustosum pigment gene pcr4401 with the commonly used Aspergillus nidulans wA expression site for convenient use of constructs originally designed for A. nidulans in our P. crustosum host strain. As proof of concept, we successfully expressed a single polyketide synthase gene and an entire gene cluster at the P. crustosum wA locus. Resulting transformants were easily detected by their albino phenotype. With this study, we provide a highly efficient platform for heterologous expression of fungal genes. KEY POINTS: Construction of a highly efficient Penicillium crustosum heterologous expression host Reduction of secondary metabolite background by genetic dereplication strategy Integration of wA site to provide an alternative host besides Aspergillus nidulans.


Asunto(s)
Sistemas CRISPR-Cas , Penicillium , Metabolismo Secundario , Penicillium/genética , Penicillium/metabolismo , Metabolismo Secundario/genética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Familia de Multigenes , Marcación de Gen/métodos , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vías Biosintéticas/genética , Ingeniería Metabólica/métodos , Expresión Génica
10.
Microb Biotechnol ; 17(8): e14533, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39075735

RESUMEN

Marine microorganisms are increasingly recognized as primary producers of marine secondary metabolites, drawing growing research interest. Many of these organisms are unculturable, posing challenges for study. Metagenomic techniques enable research on these unculturable microorganisms, identifying various biosynthetic gene clusters (BGCs) related to marine microbial secondary metabolites, thereby unveiling their secrets. This review comprehensively analyses metagenomic methods used in discovering marine microbial secondary metabolites, highlighting tools commonly employed in BGC identification, and discussing the potential and challenges in this field. It emphasizes the key role of metagenomics in unveiling secondary metabolites, particularly in marine sponges and tunicates. The review also explores current limitations in studying these metabolites through metagenomics, noting how long-read sequencing technologies and the evolution of computational biology tools offer more possibilities for BGC discovery. Furthermore, the development of synthetic biology allows experimental validation of computationally identified BGCs, showcasing the vast potential of metagenomics in mining marine microbial secondary metabolites.


Asunto(s)
Organismos Acuáticos , Metagenómica , Metabolismo Secundario , Metagenómica/métodos , Metabolismo Secundario/genética , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Animales , Familia de Multigenes , Poríferos/microbiología , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Productos Biológicos/metabolismo , Biología Computacional/métodos , Vías Biosintéticas/genética , Urocordados/microbiología
11.
Mol Ecol ; 33(16): e17466, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39022998

RESUMEN

Gall-forming insects induce various types of galls on their host plants by altering gene expression in host plant organs, and recent studies have been conducted for gene expression in galls. However, the evolutionary trajectories of gene expression patterns and the resulting phenotypes have not yet been studied using multiple related species. We investigated the speciation and the diversification process of galls induced by four closely related aphid species (Hormaphidini) on a host plant species (Hamamelis japonica) by examining the phylogenetic congruence between the geographical divergences of aphids and the host plant, and by comparing their gene expression patterns and resulting phenotypes. Phylogenetic analysis of aphids and the host plant showed that geographical isolation among host plant populations has interrupted gene flow in aphids and accelerated the speciation process. The concentration of phenolics and the complexity of the internal structure of galls were correlated with the expression levels of genes for the biosynthesis of phenolics and morphogenesis respectively. These results suggest that the expression levels of genes for the biosynthesis of phenolics and morphogenesis have evolutionarily increased in galls accelerated by the speciation process of aphids due to the distribution change of the host plant, leading to the related phenotypic evolution. Our study showed the evolutionary process of phenotypic traits in galls in the wild from both gene expression and actual phenotype levels.


Asunto(s)
Áfidos , Filogenia , Tumores de Planta , Áfidos/genética , Animales , Tumores de Planta/parasitología , Tumores de Planta/genética , Fenotipo , Flujo Génico , Evolución Biológica , Metabolismo Secundario/genética , Interacciones Huésped-Parásitos/genética , Especiación Genética , Expresión Génica , Fenoles/metabolismo
12.
Commun Biol ; 7(1): 812, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965407

RESUMEN

Wheat blast caused by Pyricularia oryzae pathotype Triticum is now becoming a very serious threat to global food security. Here, we report an essential pathogenicity factor of the wheat blast fungus that is recognized and may be targeted by a rice resistance gene. Map-based cloning of Pwt2 showed that its functional allele is the ACE1 secondary metabolite gene cluster of the wheat blast fungus required for its efficient penetration of wheat cell walls. ACE1 is required for the strong aggressiveness of Triticum, Eleusine, and Lolium pathotypes on their respective hosts, but not for that of Oryza and Setaria pathotypes on rice and foxtail millet, respectively. All ACE1 alleles found in wheat blast population are recognized by a rice resistance gene, Pi33, when introduced into rice blast isolates. ACE1 mutations for evading the recognition by Pi33 do not affect the aggressiveness of the rice blast fungus on rice but inevitably impair the aggressiveness of the wheat blast fungus on wheat. These results suggest that a blast resistance gene already defeated in rice may be revived as a durable resistance gene in wheat by targeting an Achilles heel of the wheat blast fungus.


Asunto(s)
Familia de Multigenes , Oryza , Enfermedades de las Plantas , Triticum , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Oryza/microbiología , Ascomicetos/genética , Ascomicetos/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Resistencia a la Enfermedad/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Metabolismo Secundario/genética
13.
Sci Rep ; 14(1): 15839, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982154

RESUMEN

Saffron (Crocus sativus L.) is being embraced as the most important medicinal plant and the commercial source of saffron spice. Despite the beneficial economic and medicinal properties of saffron, the regulatory mechanism of the correlation of TFs and genes related to the biosynthesis of the apocarotenoids pathway is less obvious. Realizing these regulatory hierarchies of gene expression networks related to secondary metabolites production events is the main challenge owing to the complex and extensive interactions between the genetic behaviors. Recently, high throughput expression data have been highly feasible for constructing co-regulation networks to reveal the regulated processes and identifying novel candidate hub genes in response to complex processes of the biosynthesis of secondary metabolites. Herein, we performed Weighted Gene Co-expression Network Analysis (WGCNA), a systems biology method, to identify 11 regulated modules and hub TFs related to secondary metabolites. Three specialized modules were found in the apocarotenoids pathway. Several hub TFs were identified in notable modules, including MADS, C2H2, ERF, bZIP, HD-ZIP, and zinc finger protein MYB and HB, which were potentially associated with apocarotenoid biosynthesis. Furthermore, the expression levels of six hub TFs and six co-regulated genes of apocarotenoids were validated with RT-qPCR. The results confirmed that hub TFs specially MADS, C2H2, and ERF had a high correlation (P < 0.05) and a positive effect on genes under their control in apocarotenoid biosynthesis (CCD2, GLT2, and ADH) among different C. sativus ecotypes in which the metabolite contents were assayed. Promoter analysis of the co-expressed genes of the modules involved in apocarotenoids biosynthesis pathway suggested that not only are the genes co-expressed, but also share common regulatory motifs specially related to hub TFs of each module and that they may describe their common regulation. The result can be used to engineer valuable secondary metabolites of C. sativus by manipulating the hub regulatory TFs.


Asunto(s)
Crocus , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Metabolismo Secundario , Crocus/genética , Crocus/metabolismo , Metabolismo Secundario/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Vías Biosintéticas/genética
14.
Microb Cell Fact ; 23(1): 202, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026365

RESUMEN

BACKGROUND: Microbial genome sequencing and analysis revealed the presence of abundant silent secondary metabolites biosynthetic gene clusters (BGCs) in streptomycetes. Activating these BGCs has great significance for discovering new compounds and novel biosynthetic pathways. RESULTS: In this study, we found that ovmZ and ovmW homologs, a pair of interdependent transcriptional regulators coding genes, are widespread in actinobacteria and closely associated with the biosynthesis of secondary metabolites. Through co-overexpression of native ovmZ and ovmW in Streptomyces neyagawaensis NRRL B-3092, a silent type II polyketide synthase (PKS) gene cluster was activated to produce gephyromycin A, tetrangomycin and fridamycin E with the yields of 22.3 ± 8.0 mg/L, 4.8 ± 0.5 mg/L and 20.3 ± 4.1 mg/L respectively in the recombinant strain of S.ne/pZnWn. However, expression of either ovmZ or ovmW failed to activate this gene cluster. Interestingly, overexpression of the heterologous ovmZ and ovmW pair from oviedomycin BGC of S. ansochromogenes 7100 also led to awakening of this silent angucyclinone BGC in S. neyagawaensis. CONCLUSION: A silent angucyclinone BGC was activated by overexpressing both ovmZ and ovmW in S. neyagawaensis. Due to the wide distribution of ovmZ and ovmW in the BGCs of actinobacteria, co-overexpression of ovmZ and ovmW could be a strategy for activating silent BGCs, thus stimulating the biosynthesis of secondary metabolites.


Asunto(s)
Antraquinonas , Antibacterianos , Familia de Multigenes , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos/biosíntesis , Antraquinonas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Metabolismo Secundario/genética , Anguciciclinas y Anguciclinonas
15.
PLoS One ; 19(7): e0307260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046970

RESUMEN

BACKGROUND: Bletilla striata (Thunb.) Reichb.f. (B. striata) is a traditional Chinese medicinal herb. B. striata polysaccharides (BSP), stilbenes and 2-isobutyl malic acid glucosoxy-benzyl ester compounds are the main active ingredients in B. striata. However, there is limited report on the changes of medicinal components and their biosynthesis regulation mechanisms in the tubers of B. striata at different stages. METHOD: The tubers of B. striata were collected during the flowering period, fruiting period, and harvest period to determine the total polysaccharide content using the phenol sulfuric acid method. The changes in secondary metabolites in the tubers at these stages were analyzed by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS), and transcriptomics was conducted for further exploration of their biosynthetic pathways. RESULT: The BSP content gradually increases from the flowering period to the fruiting period as the tubers develop, reaching its peak, but subsequently decreases at harvest time, which may be associated with the germination of B. striata buds in later stage. A total of 294 compounds were identified in this study. Among them, a majority of the compounds, such as 2-isobutyl malate gluconoxy-benzyl ester, exhibited high content during the fruit stage, while stilbenes like coelonin, 3'-O-methylbatatasin III, and blestriarene A accumulated during the harvesting period. The transcriptome data also revealed a substantial number of differentially expressed genes at various stages, providing a partial explanation for the complex changes in metabolites. We observed a correspondence between the expression pattern of GDP-Man biosynthesis-related enzyme genes and cumulative changes in BSP. And identified a positive correlation between 9 transcription factors and genes associated with polysaccharide biosynthesis, while 5 transcription factors were positively correlated with accumulation of 2-isobutyl malate gluconoxy-benzyl ester compounds and 5 transcription factors exhibited negative correlated with stilbene accumulation. CONCLUSION: It is imperative to determine the appropriate harvesting period based on the specific requirements of different active ingredients and the accumulation patterns of their metabolites. Considering the involvement of multiple transcription factors in the biosynthesis and accumulation of its active ingredients, a comprehensive investigation into the specific regulatory mechanisms that facilitate high-quality cultivation of B. striata is imperative.


Asunto(s)
Metabolómica , Orchidaceae , Orchidaceae/metabolismo , Orchidaceae/crecimiento & desarrollo , Orchidaceae/genética , Metabolómica/métodos , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Polisacáridos/metabolismo , Perfilación de la Expresión Génica , Metabolismo Secundario/genética , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/genética
16.
J Biotechnol ; 392: 128-138, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39004405

RESUMEN

We have created a novel synthetic biology expression system allowing easy refactoring of biosynthetic gene clusters (BGCs) as monocistronic transcriptional units. The system is based on a set of plasmids containing a strong kasOp* promoter, RBS and terminators. It allows the cloning of biosynthetic genes into transcriptional units kasOp*-gene(s)-terminator flanked by several rare restriction cloning sites that can be sequentially combined into the artificial BGC in three compatible Streptomyces integration vectors. They allow a simultaneous integration of these BGCs at three different attB sites in the Streptomyces chromosome. The system was validated with biosynthetic genes from two known BGCs for aromatic polyketides landomycin and mithramycin.


Asunto(s)
Antibacterianos , Familia de Multigenes , Streptomyces , Biología Sintética , Biología Sintética/métodos , Antibacterianos/biosíntesis , Antibacterianos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Familia de Multigenes/genética , Plásmidos/genética , Metabolismo Secundario/genética , Regiones Promotoras Genéticas/genética , Clonación Molecular/métodos
17.
World J Microbiol Biotechnol ; 40(9): 282, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39060812

RESUMEN

Nucleic acid demethylases of α-ketoglutarate-dependent dioxygenase (AlkB) family can reversibly erase methyl adducts from nucleobases, thus dynamically regulating the methylation status of DNA/RNA and playing critical roles in multiple cellular processes. But little is known about AlkB demethylases in filamentous fungi so far. The present study reports that Monascus purpureus genomes contain a total of five MpAlkB genes. The MpAlkB1 gene was disrupted and complemented through homologous recombination strategy to analyze its biological functions in M. purpureus. MpAlkB1 knockout significantly accelerated the growth of strain, increased biomass, promoted sporulation and cleistothecia development, reduced the content of Monascus pigments (Mps), and strongly inhibited citrinin biosynthesis. The downregulated expression of the global regulator gene LaeA, and genes of Mps biosynthesis gene cluster (BGC) or citrinin BGC in MpAlkB1 disruption strain supported the pleiotropic trait changes caused by MpAlkB1 deletion. These results indicate that MpAlkB1-mediated demethylation of nucleic acid plays important roles in regulating the growth and development, and secondary metabolism in Monascus spp.


Asunto(s)
Citrinina , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Monascus , Metabolismo Secundario , Monascus/genética , Monascus/metabolismo , Monascus/crecimiento & desarrollo , Monascus/enzimología , Metabolismo Secundario/genética , Citrinina/biosíntesis , Citrinina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pigmentos Biológicos/biosíntesis , Pigmentos Biológicos/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Técnicas de Inactivación de Genes , Familia de Multigenes , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , Metilación de ADN
18.
Mol Biol Rep ; 51(1): 757, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874856

RESUMEN

BACKGROUND: The Salvia rosmarinus spenn. (rosemary) is considered an economically important ornamental and medicinal plant and is widely utilized in culinary and for treating several diseases. However, the procedure behind synthesizing secondary metabolites-based bioactive compounds at the molecular level in S. rosmarinus is not explored completely. METHODS AND RESULTS: We performed transcriptomic sequencing of the pooled sample from leaf and stem tissues on the Illumina HiSeqTM X10 platform. The transcriptomics analysis led to the generation of 29,523,608 raw reads, followed by data pre-processing which generated 23,208,592 clean reads, and de novo assembly of S. rosmarinus obtained 166,849 unigenes. Among them, nearly 75.1% of unigenes i.e., 28,757 were interpreted against a non-redundant protein database. The gene ontology-based annotation classified them into 3 main categories and 55 sub-categories, and clusters of orthologous genes annotation categorized them into 23 functional categories. The Kyoto Encyclopedia of Genes and Genomes database-based pathway analysis confirmed the involvement of 13,402 unigenes in 183 biochemical pathways, among these unigenes, 1,186 are involved in the 17 secondary metabolite production pathways. Several key enzymes involved in producing aromatic amino acids and phenylpropanoids were identified from the transcriptome database. Among the identified 48 families of transcription factors from coding unigenes, bHLH, MYB, WRKYs, NAC, C2H2, C3H, and ERF are involved in flavonoids and other secondary metabolites biosynthesis. CONCLUSION: The phylogenetic analysis revealed the evolutionary relationship between the phenylpropanoid pathway genes of rosemary with other members of Lamiaceae. Our work reveals a new molecular mechanism behind the biosynthesis of phenylpropanoids and their regulation in rosemary plants.


Asunto(s)
Vías Biosintéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Salvia , Transcriptoma , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Vías Biosintéticas/genética , Salvia/genética , Salvia/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Anotación de Secuencia Molecular , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Propanoles/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundario/genética
19.
Sci Rep ; 14(1): 14905, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942826

RESUMEN

Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.


Asunto(s)
Bacterias , Familia de Multigenes , Metabolismo Secundario , Metabolismo Secundario/genética , Bacterias/genética , Bacterias/metabolismo , Archaea/genética , Archaea/metabolismo , Filogenia , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Hongos/genética , Genómica/métodos , Transferencia de Gen Horizontal
20.
BMC Genomics ; 25(1): 575, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849728

RESUMEN

BACKGROUND: Staphylococcus shinii appears as an umbrella species encompassing several strains of Staphylococcus pseudoxylosus and Staphylococcus xylosus. Given its phylogenetic closeness to S. xylosus, S. shinii can be found in similar ecological niches, including the microbiota of fermented meats where the species may contribute to colour and flavour development. In addition to these conventional functionalities, a biopreservation potential based on the production of antagonistic compounds may be available. Such potential, however, remains largely unexplored in contrast to the large body of research that is available on the biopreservative properties of lactic acid bacteria. The present study outlines the exploration of the genetic basis of competitiveness and antimicrobial activity of a fermented meat isolate, S. shinii IMDO-S216. To this end, its genome was sequenced, de novo assembled, and annotated. RESULTS: The genome contained a single circular chromosome and eight plasmid replicons. Focus of the genomic exploration was on secondary metabolite biosynthetic gene clusters coding for ribosomally synthesized and posttranslationally modified peptides. One complete cluster was coding for a bacteriocin, namely lactococcin 972; the genes coding for the pre-bacteriocin, the ATP-binding cassette transporter, and the immunity protein were also identified. Five other complete clusters were identified, possibly functioning as competitiveness factors. These clusters were found to be involved in various responses such as membrane fluidity, iron intake from the medium, a quorum sensing system, and decreased sensitivity to antimicrobial peptides and competing microorganisms. The presence of these clusters was equally studied among a selection of multiple Staphylococcus species to assess their prevalence in closely-related organisms. CONCLUSIONS: Such factors possibly translate in an improved adaptation and competitiveness of S. shinii IMDO-S216 which are, in turn, likely to improve its fitness in a fermented meat matrix.


Asunto(s)
Bacteriocinas , Genoma Bacteriano , Staphylococcus , Staphylococcus/genética , Staphylococcus/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Fermentación , Genómica/métodos , Metabolismo Secundario/genética , Carne/microbiología , Familia de Multigenes , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA