Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.530
Filtrar
1.
J Mol Neurosci ; 74(2): 55, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776015

RESUMEN

The dysregulation of lipid metabolism has been strongly associated with Alzheimer's disease (AD) and has intricate connections with various aspects of disease progression, such as amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. Here, a comprehensive bioinformatic assessment was conducted on lipid metabolism genes in the brains and peripheral blood of AD-derived transcriptome datasets, characterizing the correlation between differentially expressed genes (DEGs) of lipid metabolism and disease pathologies, as well as immune cell preferences. Through the application of weighted gene co-expression network analysis (WGCNA), modules eigengenes related to lipid metabolism were pinpointed, and the examination of their molecular functions within biological processes, molecular pathways, and their associations with pathological phenotypes and molecular networks has been characterized. Analysis of biological networks indicates notable discrepancies in the expression patterns of the DEGs between neuronal and immune cells, as well as variations in cell type enrichments within both brain tissue and peripheral blood. Additionally, drugs targeting the DEGs from central and peripheral and a diagnostic model for hub genes from the blood were retrieved and assessed, some of which were shown to be useful for therapeutic and diagnostic. These results revealed the distinctive pattern of transcriptionally abnormal lipid metabolism in central, peripheral, and immune cell activation, providing valuable insight into lipid metabolism for diagnosing and guiding more effective treatment for AD.


Asunto(s)
Enfermedad de Alzheimer , Metabolismo de los Lípidos , Transcriptoma , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Encéfalo/metabolismo , Redes Reguladoras de Genes
2.
JCI Insight ; 9(9)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38716728

RESUMEN

The importance of the proper localization of most receptors at the cell surface is often underestimated, although this feature is essential for optimal receptor response. Endospanin 1 (Endo1) (also known as OBRGRP or LEPROT) is a protein generated from the same gene as the human leptin receptor and regulates the trafficking of proteins to the surface, including the leptin receptor. The systemic role of Endo1 on whole-body metabolism has not been studied so far. Here, we report that general Endo1-KO mice fed a high-fat diet develop metabolically healthy obesity with lipid repartitioning in organs and preferential accumulation of fat in adipose tissue, limited systematic inflammation, and better controlled glucose homeostasis. Mechanistically, Endo1 interacts with the lipid translocase CD36, thus regulating its surface abundance and lipid uptake in adipocytes. In humans, the level of Endo1 transcripts is increased in the adipose tissue of patients with obesity, but low levels rather correlate with a profile of metabolically healthy obesity. We suggest here that Endo1, most likely by controlling CD36 cell surface abundance and lipid uptake in adipocytes, dissociates obesity from diabetes and that its absence participates in metabolically healthy obesity.


Asunto(s)
Tejido Adiposo , Antígenos CD36 , Dieta Alta en Grasa , Ratones Noqueados , Obesidad , Animales , Femenino , Humanos , Masculino , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Antígenos CD36/metabolismo , Antígenos CD36/genética , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Metabolismo de los Lípidos/genética , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/genética
3.
Sci Rep ; 14(1): 10924, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740866

RESUMEN

Bovine intramuscular fat (IMF), commonly referred to as marbling, is regulated by lipid metabolism, which includes adipogenesis, lipogenesis, glycerolipid synthesis, and lipolysis. In recent years, breeding researchers have identified single nucleotide polymorphisms (SNPs) as useful marker-assisted selection tools for improving marbling scores in national breeding programs. These included causal SNPs that induce phenotypic variation. MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that bind to multiple non-coding regions. They are involved in post-transcriptional regulation. Multiple miRNAs may regulate a given target. Previously, three SNPs in the GPAM 3' UTR and four miRNAs were identified through in silico assays. The aim of this study is to verify the binding ability of the four miRNAs to the SNPs within the 3'UTR of GPAM, and to identify the regulatory function of miR-375 in the expression of genes related to lipid metabolism in mammalian adipocytes. It was verified that the four miRNAs bind to the GPAM 3'UTR, and identified that the miR-375 sequence is highly conserved. Furthermore, it was founded that miR-375 upregulated the GPAM gene, C/EBPα, PPARγ and lipid metabolism-related genes and promoted lipid droplet accumulation in 3T3-L1 cells. In conclusion, these results suggest that miR-375 is a multifunctional regulator of multiple lipid metabolism-related genes and may aid in obesity research as a biomarker.


Asunto(s)
Regiones no Traducidas 3' , Células 3T3-L1 , Metabolismo de los Lípidos , MicroARNs , Polimorfismo de Nucleótido Simple , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Metabolismo de los Lípidos/genética , Bovinos , Regulación de la Expresión Génica , Adipocitos/metabolismo , Adipogénesis/genética
4.
Front Endocrinol (Lausanne) ; 15: 1383772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715799

RESUMEN

Background: ASCVD is the primary cause of mortality in individuals with T2DM. A potential link between ASCVD and T2DM has been suggested, prompting further investigation. Methods: We utilized linear and multivariate logistic regression, Wilcoxon test, and Spearman's correlation toanalyzethe interrelation between ASCVD and T2DM in NHANES data from 2001-2018.The Gene Expression Omnibus (GEO) database and Weighted Gene Co-expression Network Analysis (WGCNA) wereconducted to identify co-expression networks between ASCVD and T2DM. Hub genes were identified using LASSO regression analysis and further validated in two additional cohorts. Bioinformatics methods were employed for gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, along with the prediction of candidate small molecules. Results: Our analysis of the NHANES dataset indicated a significant impact of blood glucose on lipid levels within diabetic cohort, suggesting that abnormal lipid metabolism is a critical factor in ASCVD development. Cross-phenotyping analysis revealed two pivotal genes, ABCC5 and WDR7, associated with both T2DM and ASCVD. Enrichment analyses demonstrated the intertwining of lipid metabolism in both conditions, encompassing adipocytokine signaling pathway, fatty acid degradation and metabolism, and the regulation of adipocyte lipolysis. Immune infiltration analysis underscored the involvement of immune processes in both diseases. Notably, RITA, ON-01910, doxercalciferol, and topiramate emerged as potential therapeutic agents for both T2DM and ASCVD, indicating their possible clinical significance. Conclusion: Our findings pinpoint ABCC5 and WDR7 as new target genes between T2DM and ASCVD, with RITA, ON-01910, doxercalciferol, and topiramate highlighted as promising therapeutic agents.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/epidemiología , Masculino , Persona de Mediana Edad , Factores de Riesgo de Enfermedad Cardiaca , Metabolismo de los Lípidos/genética , Expresión Génica
5.
Clin Transl Med ; 14(5): e1679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706045

RESUMEN

Metabolic abnormalities represent one of the pathological features of chronic obstructive pulmonary disease (COPD). Glutamic pyruvate transaminase 2 (GPT2) is involved in glutamate metabolism and lipid synthesis pathways, whilst the exact roles of GPT2 in the occurrence and development of COPD remains uncertain. This study aims at investigating how GPT2 and the associated genes modulate smoking-induced airway epithelial metabolism and damage by reprogramming lipid synthesis. The circulating or human airway epithelial metabolomic and lipidomic profiles of COPD patients or cell-lines explored with smoking were assessed to elucidate the pivotal roles of GPT2 in reprogramming processes. We found that GPT2 regulate the reprogramming of lipid metabolisms caused by smoking, especially phosphatidylcholine (PC) and triacylglycerol (TAG), along with changes in the expression of lipid metabolism-associated genes. GPT2 modulated cell sensitivities and survival in response to smoking by enhancing mitochondrial functions and maintaining lipid and energy homeostasis. Our findings provide evidence for the involvement of GPT2 in the reprogramming of airway epithelial lipids following smoking, as well as the molecular mechanisms underlying GPT2-mediated regulation, which may offer an alternative of therapeutic strategies for chronic lung diseases.


Asunto(s)
Lipidómica , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Lipidómica/métodos , Fumar/efectos adversos , Fumar/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Femenino , Metabolómica/métodos , Persona de Mediana Edad
6.
BMC Cancer ; 24(1): 571, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720279

RESUMEN

BACKGROUND: Glycometabolism and lipid metabolism are critical in cancer metabolic reprogramming. The primary aim of this study was to develop a prognostic model incorporating glycometabolism and lipid metabolism-related genes (GLRGs) for accurate prognosis assessment in patients with endometrial carcinoma (EC). METHODS: Data on gene expression and clinical details were obtained from publicly accessible databases. GLRGs were obtained from the Genecards database. Through nonnegative matrix factorization (NMF) clustering, molecular groupings with various GLRG expression patterns were identified. LASSO Cox regression analysis was employed to create a prognostic model. Use rich algorithms such as GSEA, GSVA, xCELL ssGSEA, EPIC,CIBERSORT, MCPcounter, ESTIMATE, TIMER, TIDE, and Oncoppredict to analyze functional pathway characteristics of the forecast signal, immune status, anti-tumor therapy, etc. The expression was assessed using Western blot and quantitative real-time PCR techniques. A total of 113 algorithm combinations were combined to screen out the most significant GLRGs in the signature for in vitro experimental verification, such as colony formation, EdU cell proliferation, wound healing, apoptosis, and Transwell assays. RESULTS: A total of 714 GLRGs were found, and 227 of them were identified as prognostic-related genes. And ten GLRGs (AUP1, ESR1, ERLIN2, ASS1, OGDH, BCKDHB, SLC16A1, HK2, LPCAT1 and PGR-AS1) were identified to construct the prognostic model of patients with EC. Based on GLRGs, the risk model's prognosis and independent prognostic value were established. The signature of GLRGs exhibited a robust correlation with the infiltration of immune cells and the sensitivity to drugs. In cytological experiments, we selected HK2 as candidate gene to verify its value in the occurrence and development of EC. Western blot and qRT-PCR revealed that HK2 was substantially expressed in EC cells. According to in vitro experiments, HK2 knockdown can increase EC cell apoptosis while suppressing EC cell migration, invasion, and proliferation. CONCLUSION: The GLRGs signature constructed in this study demonstrated significant prognostic value for patients with endometrial carcinoma, thereby providing valuable guidance for treatment decisions.


Asunto(s)
Neoplasias Endometriales , Metabolismo de los Lípidos , Humanos , Femenino , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Pronóstico , Metabolismo de los Lípidos/genética , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular/genética , Apoptosis/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica
7.
Lipids Health Dis ; 23(1): 137, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720280

RESUMEN

BACKGROUND: Evidence suggests that hepatocyte mitochondrial dysfunction leads to abnormal lipid metabolism, redox imbalance, and programmed cell death, driving the onset and progression of non-alcoholic steatohepatitis (NASH). Identifying hub mitochondrial genes linked to NASH may unveil potential therapeutic targets. METHODS: Mitochondrial hub genes implicated in NASH were identified via analysis using 134 algorithms. RESULTS: The Random Forest algorithm (RF), the most effective among the 134 algorithms, identified three genes: Aldo-keto reductase family 1 member B10 (AKR1B10), thymidylate synthase (TYMS), and triggering receptor expressed in myeloid cell 2 (TREM2). They were upregulated and positively associated with genes promoting inflammation, genes involved in lipid synthesis, fibrosis, and nonalcoholic steatohepatitis activity scores in patients with NASH. Moreover, using these three genes, patients with NASH were accurately categorized into cluster 1, exhibiting heightened disease severity, and cluster 2, distinguished by milder disease activity. CONCLUSION: These three genes are pivotal mitochondrial genes implicated in NASH progression.


Asunto(s)
Algoritmos , Aprendizaje Automático , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Metabolismo de los Lípidos/genética , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Genes Mitocondriales
8.
Cells ; 13(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786053

RESUMEN

Peroxisome proliferator-activated receptor alpha (PPARA) is a ligand-activated transcription factor that is a key mediator of lipid metabolism and metabolic stress in the liver. Accumulating evidence shows that PPARA regulates the expression of various protein coding and non-coding genes that modulate metabolic stress in the liver. CBFA2/RUNX1 partner transcriptional co-repressor 3 (CBFA2T3) is a DNA-binding transcription factor that belongs to the myeloid translocation gene family. Many studies have shown that CBFA2T3 is associated with acute myeloid leukemia. Especially, CBFA2T3-GLIS2 fusion is a chimeric oncogene associated with a poor survival rate in pediatric acute megakaryocytic leukemia. A previous study identified that PPARA activation promoted Cbfa2t3 induction in liver and that Cbfa2t3 may have a modulatory role in metabolic stress. However, the effect of CBFA2T3 gene expression on metabolic stress is not understood. In this study, the PPARA ligand WY14643 activated Cbfa2t3 expression in mouse liver. Glucose tolerance test and insulin tolerance test data showed that insulin resistance is increased in Cbfa2t3-/- mice compared to Cbfa2t3+/+ mice. Hepatic CBFA2T3 modulates heat shock protein family A member 1b and carbonic anhydrase 5a expression. Histology analysis revealed lipid droplet and lipid accumulation in the liver of fasting Cbfa2t3-/- mice but not Cbfa2t3+/+ mice. The expression of lipid accumulation-related genes, such as Cd36, Cidea, and Fabp1, was increased in the liver of fasting Cbfa2t3-/- mice. Especially, basal expression levels of Cidea mRNA were elevated in the liver of Cbfa2t3-/- mice compared to Cbfa2t3+/+ mice. Much higher induction of Cidea mRNA was seen in the liver of Cbfa2t3-/- mice after WY14643 administration. These results indicate that hepatic CBFA2T3 is a PPARA-sensitive gene that may modulate metabolic stress in mouse liver.


Asunto(s)
Ayuno , Metabolismo de los Lípidos , Hígado , PPAR alfa , Animales , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Ratones , PPAR alfa/metabolismo , PPAR alfa/genética , Masculino , Ratones Endogámicos C57BL , Resistencia a la Insulina , Ratones Noqueados , Pirimidinas/farmacología
9.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731931

RESUMEN

The hepatic deletion of Rbpjκ (RbpjF/F::AlbCre) in the mouse leads to exhibition of the Alagille syndrome phenotype during early postnatal liver development with hyperlipidemia and cholestasis due to attenuated disruption of NOTCH signaling. Given the roles of NRF2 signaling in the regulation of lipid metabolism and bile ductal formation, it was anticipated that these symptoms could be alleviated by enhancing NRF2 signaling in the RbpjF/F::AlbCre mouse by hepatic deletion of Keap1 in compound Keap1F/F::RbpjF/F::AlbCre mice. Unexpectedly, these mice developed higher hepatic and plasma cholesterol levels with more severe cholestatic liver damage during the pre-weaning period than in the RbpjF/F::AlbCre mice. In addition, hypercholesterolemia and hepatic damage were sustained throughout the growth period unlike in the RbpjF/F::AlbCre mouse. These enhanced abnormalities in lipid metabolism appear to be due to NRF2-dependent changes in gene expression related to cholesterol synthetic and subsequent bile acid production pathways. Notably, the hepatic expression of Cyp1A7 and Abcb11 genes involved in bile acid homeostasis was significantly reduced in Keap1F/F::RbpjF/F::AlbCre compared to RbpjF/F::AlbCre mice. The accumulation of liver cholesterol and the weakened capacity for bile excretion during the 3 pre-weaning weeks in the Keap1F/F::RbpjF/F::AlbCre mice may aggravate hepatocellular damage level caused by both excessive cholesterol and residual bile acid toxicity in hepatocytes. These results indicate that a tuned balance of NOTCH and NRF2 signaling is of biological importance for early liver development after birth.


Asunto(s)
Hepatomegalia , Hipercolesterolemia , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas , Proteína 1 Asociada A ECH Tipo Kelch , Hígado , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Ratones , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patología , Hígado/metabolismo , Hígado/patología , Hepatomegalia/genética , Hepatomegalia/metabolismo , Hepatomegalia/patología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Metabolismo de los Lípidos/genética , Eliminación de Gen , Transducción de Señal , Colesterol/metabolismo , Ratones Noqueados , Masculino , Ácidos y Sales Biliares/metabolismo
10.
Commun Biol ; 7(1): 532, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710927

RESUMEN

Golgin tethers are known to mediate vesicular transport in the secretory pathway, whereas it is relatively unknown whether they may mediate cellular stress response within the cell. Here, we describe a cellular stress response during heat shock stress via SUMOylation of a Golgin tether, Golgin45. We found that Golgin45 is a SUMOylated Golgin via SUMO1 under steady state condition. Upon heat shock stress, the Golgin enters the nucleus by interacting with Importin-ß2 and gets further modified by SUMO3. Importantly, SUMOylated Golgin45 appears to interact with PML and SUMO-deficient Golgin45 mutant functions as a dominant negative for PML-NB formation during heat shock stress, suppressing transcription of lipid metabolism genes. These results indicate that Golgin45 may play a role in heat stress response by transcriptional regulation of lipid metabolism genes in SUMOylation-dependent fashion.


Asunto(s)
Respuesta al Choque Térmico , Metabolismo de los Lípidos , Sumoilación , Ubiquitinas , Humanos , Metabolismo de los Lípidos/genética , Respuesta al Choque Térmico/genética , Regulación de la Expresión Génica , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Células HeLa , Proteína SUMO-1/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Células HEK293 , Transcripción Genética , beta Carioferinas/metabolismo , beta Carioferinas/genética
11.
Physiol Res ; 73(2): 189-203, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38710051

RESUMEN

This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.


Asunto(s)
Neuroacantocitosis , Proteínas de Transporte Vesicular , Humanos , Animales , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Neuroacantocitosis/metabolismo , Neuroacantocitosis/genética , Neuroacantocitosis/fisiopatología , Neuroacantocitosis/patología , Mutación , Metabolismo de los Lípidos/fisiología , Metabolismo de los Lípidos/genética
12.
Sci Rep ; 14(1): 10094, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698200

RESUMEN

Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. However, the genetic variants controlling these traits need to be better understood. To advance knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer region, and the last in a low signal region. Our results provided novel insights into the transcriptional regulation of IMF and BFT, unraveling putative regulatory variants.


Asunto(s)
Cromatina , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Bovinos , Cromatina/genética , Cromatina/metabolismo , Tejido Adiposo/metabolismo , Mutación , Desequilibrio de Ligamiento , Estudio de Asociación del Genoma Completo , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética
13.
PLoS One ; 19(5): e0299780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758755

RESUMEN

Microalgae's ability to mitigate flue gas is an attractive technology that can valorize gas components through biomass conversion. However, tolerance and growth must be ideal; therefore, acclimation strategies are suggested. Here, we compared the transcriptome and lipidome of Desmodesmus abundans strains acclimated to high CO2 (HCA) and low CO2 (LCA) under continuous supply of model flue gas (MFG) and incomplete culture medium (BG11-N-S). Initial growth and nitrogen consumption from MFG were superior in strain HCA, reaching maximum productivity a day before strain LCA. However, similar productivities were attained at the end of the run, probably because maximum photobioreactor capacity was reached. RNA-seq analysis during exponential growth resulted in 16,435 up-regulated and 4,219 down-regulated contigs in strain HCA compared to LCA. Most differentially expressed genes (DEGs) were related to nucleotides, amino acids, C fixation, central carbon metabolism, and proton pumps. In all pathways, a higher number of up-regulated contigs with a greater magnitude of change were observed in strain HCA. Also, cellular component GO terms of chloroplast and photosystems, N transporters, and secondary metabolic pathways of interest, such as starch and triacylglycerols (TG), exhibited this pattern. RT-qPCR confirmed N transporters expression. Lipidome analysis showed increased glycerophospholipids in strain HCA, while LCA exhibited glycerolipids. Cell structure and biomass composition also revealed strains differences. HCA possessed a thicker cell wall and presented a higher content of pigments, while LCA accumulated starch and lipids, validating transcriptome and lipidome data. Overall, results showed significant differences between strains, where characteristic features of adaptation and tolerance to high CO2 might be related to the capacity to maintain a higher flux of internal C, regulate intracellular acidification, active N transporters, and synthesis of essential macromolecules for photosynthetic growth.


Asunto(s)
Aclimatación , Dióxido de Carbono , Lipidómica , Transcriptoma , Dióxido de Carbono/metabolismo , Aclimatación/genética , Lipidómica/métodos , Microalgas/genética , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Fotosíntesis/genética , Metabolismo de los Lípidos/genética , Chlorophyceae/genética , Chlorophyceae/metabolismo
15.
Int J Biol Macromol ; 267(Pt 1): 131507, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604419

RESUMEN

Vascular endothelial growth factor B (VEGFB), a member of the VEGF family, exhibits limited angiogenic activity in mammals but plays an unexpected role in targeting lipids to peripheral tissues. However, its role in lipid metabolism in fish is unknown. In this study, the vegfb gene was cloned and characterized from spotted sea bass (Lateolabrax maculatus). It encodes 254 amino acids and possesses the typical characteristics of the Vegfb family, demonstrating high homology with those from other vertebrate species. The vegfb gene exhibits the highest expression levels in the liver, followed by the gills, intestine, and adipose tissues in spotted sea bass. In vivo, high-lipid diets decreased vegfb expression and increased lipid deposition in liver of fish. In vitro, palmitic acid + oleic acid treatment or vegfb knockdown significantly increased TG and TC contents, promoting lipid droplet deposition in hepatocytes. Vegfb overexpression has the opposite effects, inhibiting lipid deposition and downregulating fatty acid transport and adipogenesis genes. In contrast, the vegfb knockdown significantly upregulated the expression levels of c/ebpα, plin2, and dgat1 (P < 0.05). These results demonstrate that Vegfb may play an important role in reducing lipid deposition by regulating fatty acid transport and adipogenesis in the hepatocytes of spotted sea bass.


Asunto(s)
Lubina , Metabolismo de los Lípidos , Factor B de Crecimiento Endotelial Vascular , Animales , Lubina/genética , Lubina/metabolismo , Metabolismo de los Lípidos/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Clonación Molecular , Secuencia de Aminoácidos , Filogenia , Hígado/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Adipogénesis/genética
16.
Int J Biol Macromol ; 267(Pt 2): 131240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583827

RESUMEN

Lipids are intimately related to the unique flavor and nutritional values of goat milk. MicroRNAs (miRNA) participate in the regulation of various biological functions, including the synthesis and degradation of lipids. Several studies have shown that miR-103 is involved in the regulation of lipid metabolism, however, the molecular mechanism by which miR-103 regulates lipid metabolism in goat mammary gland is poorly understood. In this study, miR-103 was knocked out in goat mammary epithelial cells (GMECs) by CRISPR/Cas9, and the accumulation of lipid droplets, triglycerides, and cholesterol in the cells was suppressed subsequently. Overexpression or knockdown of miR-103-5p and miR-103-3p in GMECs revealed that it was miR-103-5p that promoted lipid accumulation but not miR-103-3p. In addition, Pantothenate Kinase 3 (PANK3), the host gene of miR-103, and Phospholipid Scramblase 4 (PLSCR4) were identified as the target genes of miR-103-5p by dual fluorescein and miRNA pulldown. Furthermore, we identified that cellular lipid levels were negatively regulated by PANK3 and PLSCR4. Lastly, in miR-103 knockout GMECs, the knockdown of PANK and PLSCR4 rescued the lipid accumulation. These findings suggest that miR-103-5p promotes lipid accumulation by targeting PLSCR4 and the host gene PANK3 in GMECs, providing new insights for the regulation of goat milk lipids via miRNAs.


Asunto(s)
Células Epiteliales , Cabras , Metabolismo de los Lípidos , Glándulas Mamarias Animales , MicroARNs , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , MicroARNs/genética , MicroARNs/metabolismo , Cabras/genética , Metabolismo de los Lípidos/genética , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Femenino , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/deficiencia , Regulación hacia Arriba/genética , Gotas Lipídicas/metabolismo , Regulación de la Expresión Génica , Triglicéridos/metabolismo
17.
Aging (Albany NY) ; 16(8): 7043-7059, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38637111

RESUMEN

Osteoarthritis (OA) is a prevalent degenerative condition commonly observed in the elderly, leading to consequential disability. Despite notable advancements made in clinical strategies for OA, its pathogenesis remains uncertain. The intricate association between OA and metabolic processes has yet to receive comprehensive exploration. In our investigation, we leveraged public databases and applied machine learning algorithms, including WGCNA, LASSO, RF, immune infiltration analysis, and pathway enrichment analysis, to scrutinize the role of lipid metabolism-associated genes (LAGs) in the OA. Our findings identified three distinct biomarkers, and evaluated their expression to assess their diagnostic value in the OA patients. The exploration of immune infiltration in these patients revealed an intricate relationship between immune cells and the identified biomarkers. In addition, in vitro experiments, including qRT-PCR, Western blot, chondrocyte lipid droplets detection and mitochondrial fatty acid oxidation measurement, further verified abnormal expressions of selected LAGs in OA cartilage and confirmed the correlation between lipid metabolism and OA.


Asunto(s)
Biomarcadores , Metabolismo de los Lípidos , Aprendizaje Automático , Osteoartritis , Humanos , Metabolismo de los Lípidos/genética , Osteoartritis/genética , Osteoartritis/inmunología , Osteoartritis/metabolismo , Biomarcadores/metabolismo , Algoritmos , Condrocitos/metabolismo , Condrocitos/inmunología
18.
Nat Aging ; 4(5): 709-726, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609525

RESUMEN

Understanding the molecular mechanisms of aging is crucial for enhancing healthy longevity. We conducted untargeted lipidomics across 13 biological samples from mice at various life stages (2, 12, 19 and 24 months) to explore the potential link between aging and lipid metabolism, considering sex (male or female) and microbiome (specific pathogen-free or germ-free) dependencies. By analyzing 2,704 molecules from 109 lipid subclasses, we characterized common and tissue-specific lipidome alterations associated with aging. For example, the levels of bis(monoacylglycero)phosphate containing polyunsaturated fatty acids increased in various organs during aging, whereas the levels of other phospholipids containing saturated and monounsaturated fatty acids decreased. In addition, we discovered age-dependent sulfonolipid accumulation, absent in germ-free mice, correlating with Alistipes abundance determined by 16S ribosomal RNA gene amplicon sequencing. In the male kidney, glycolipids such as galactosylceramides, galabiosylceramides (Gal2Cer), trihexosylceramides (Hex3Cer), and mono- and digalactosyldiacylglycerols were detected, with two lipid classes-Gal2Cer and Hex3Cer-being significantly enriched in aged mice. Integrated analysis of the kidney transcriptome revealed uridine diphosphate galactosyltransferase 8A (UGT8a), alkylglycerone phosphate synthase and fatty acyl-coenzyme A reductase 1 as potential enzymes responsible for the male-specific glycolipid biosynthesis in vivo, which would be relevant to sex dependency in kidney diseases. Inhibiting UGT8 reduced the levels of these glycolipids and the expression of inflammatory cytokines in the kidney. Our study provides a valuable resource for clarifying potential links between lipid metabolism and aging.


Asunto(s)
Envejecimiento , Lipidómica , Microbiota , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Metabolismo de los Lípidos/genética , Masculino , Femenino , Microbiota/fisiología , Factores Sexuales , Bacterias/metabolismo , Riñón/metabolismo , Transcriptoma , Glucolípidos/metabolismo , Balactosiltransferasa de Gangliósidos/genética , Balactosiltransferasa de Gangliósidos/metabolismo
19.
Biochem Biophys Res Commun ; 712-713: 149922, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38626531

RESUMEN

We previously reported that solute carrier family 22 member 18 (Slc22a18) regulates lipid accumulation in 3T3-L1 adipocytes. Here, we provide additional evidence derived from experiments with adenoviral vector expression and genetic manipulation of mice. In primary cultured rat hepatocytes, adenoviral overexpression of mouse Slc22a18 increased triglyceride accumulation and triglyceride synthetic activity, which was decreased in an adenoviral knockdown experiment. Adenoviral overexpression of mouse Slc22a18 in vivo caused massive fatty liver in mice, even under normal dietary conditions. Conversely, adenoviral knockdown of mouse Slc22a18 reduced hepatic lipid accumulation induced by a high-glucose and high-sucrose diet. We created Slc22a18 knockout mice, which grew normally and showed no obvious spontaneous phenotypes. However, compared with control littermates, the knockout mice exhibited decreased hepatic triglyceride content under refeeding conditions, significantly reduced epididymal fat mass, and tended to have lower liver weight in conjunction with leptin deficiency. Finally, we created transgenic mice overexpressing rat Slc22a18 in an adipose-specific manner, which had increased body weight and epididymal fat mass primarily because of increased adipocyte cell volume. In these transgenic mice, a positive correlation was observed between adiposity and the expression levels of the rat Slc22a18 transgene. Taken together, these results indicate that Slc22a18 has positive effects on lipid accumulation in vivo.


Asunto(s)
Proteínas de Transporte de Catión Orgánico , Animales , Ratones , Ratas , Masculino , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Ratones Noqueados , Hepatocitos/metabolismo , Triglicéridos/metabolismo , Ratones Transgénicos , Metabolismo de los Lípidos/genética , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Ratones Endogámicos C57BL , Hígado/metabolismo , Adiposidad/genética , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Células Cultivadas , Ratas Sprague-Dawley
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167189, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648899

RESUMEN

OBJECTIVES: Gamete and embryo-foetal origins of adult diseases hypothesis proposes that adulthood chronic disorders are associated with adverse foetal and early life traits. Our study aimed to characterise developmental changes and underlying mechanisms of metabolic disorders in offspring of pre-eclampsia (PE) programmed pregnancy. METHODS: Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME) induced pre-eclampsia-like C57BL/6J mouse model was used. Lipid profiling, histological morphology, indirect calorimetry, mRNA sequencing, and pyrosequencing were performed on PE offspring of both young and elderly ages. RESULTS: PE offspring exhibited increased postnatal weight gain, hepatic lipid accumulation, enlarged adipocytes, and impaired energy balance that continued to adulthood. Integrated RNA sequencing of foetal and 52-week-old livers revealed that the differentially expressed genes were mainly enriched in lipid metabolism, including glycerol-3-phosphate acyl-transferase 3 (Gpat3), a key enzyme for de novo synthesis of triglycerides (TG), and carnitine palmitoyltransferase-1a (Cpt1a), a key transmembrane enzyme that mediates fatty acid degradation. Pyrosequencing of livers from PE offspring identified hypomethylated and hypermethylated regions in Gpat3 and Cpt1a promoters, which were associated with upregulated and downregulated expressions of Gpat3 and Cpt1a, respectively. These epigenetic alterations are persistent and consistent from the foetal stage to adulthood in PE offspring. CONCLUSION: These findings suggest a methylation-mediated epigenetic mechanism for PE-induced intergenerational lipid accumulation, impaired energy balance and obesity in offspring, and indicate the potential benefits of early interventions in offspring exposed to maternal PE to reduce their susceptibility to metabolic disorder in their later life.


Asunto(s)
Metilación de ADN , Desarrollo Fetal , Ratones Endogámicos C57BL , Preeclampsia , Animales , Embarazo , Femenino , Ratones , Desarrollo Fetal/genética , Preeclampsia/genética , Preeclampsia/metabolismo , Preeclampsia/patología , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/patología , Masculino , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/patología , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA