Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Commun ; 11(1): 5339, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087718

RESUMEN

Propionic acidemia/aciduria (PA) is an ultra-rare, life-threatening, inherited metabolic disorder caused by deficiency of the mitochondrial enzyme, propionyl-CoA carboxylase (PCC) composed of six alpha (PCCA) and six beta (PCCB) subunits. We herein report an enzyme replacement approach to treat PA using a combination of two messenger RNAs (mRNAs) (dual mRNAs) encoding both human PCCA (hPCCA) and PCCB (hPCCB) encapsulated in biodegradable lipid nanoparticles (LNPs) to produce functional PCC enzyme in liver. In patient fibroblasts, dual mRNAs encoded proteins localize in mitochondria and produce higher PCC enzyme activity vs. single (PCCA or PCCB) mRNA alone. In a hypomorphic murine model of PA, dual mRNAs normalize ammonia similarly to carglumic acid, a drug approved in Europe for the treatment of hyperammonemia due to PA. Dual mRNAs additionally restore functional PCC enzyme in liver and thus reduce primary disease-associated toxins in a dose-dependent manner in long-term 3- and 6-month repeat-dose studies in PA mice. Dual mRNAs are well-tolerated in these studies with no adverse findings. These studies demonstrate the potential of mRNA technology to chronically administer multiple mRNAs to produce large complex enzymes, with applicability to other genetic disorders.


Asunto(s)
Terapia de Reemplazo Enzimático/métodos , Acidemia Propiónica/terapia , ARN Mensajero/uso terapéutico , Animales , Modelos Animales de Enfermedad , Glutamatos/uso terapéutico , Humanos , Cinética , Lípidos/química , Hígado/enzimología , Metilmalonil-CoA Descarboxilasa/química , Metilmalonil-CoA Descarboxilasa/genética , Metilmalonil-CoA Descarboxilasa/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/enzimología , Nanopartículas/administración & dosificación , Nanopartículas/química , Acidemia Propiónica/genética , Acidemia Propiónica/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , ARN Mensajero/administración & dosificación , ARN Mensajero/genética
2.
J Am Chem Soc ; 141(13): 5121-5124, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30869886

RESUMEN

Malonyl-thioesters are reactive centers of malonyl-CoA and malonyl- S-acyl carrier protein, essential to fatty acid, polyketide and various specialized metabolite biosynthesis. Enzymes that create or use malonyl-thioesters spontaneously hydrolyze or decarboxylate reactants on the crystallographic time frame preventing determination of structure-function relationships. To address this problem, we have synthesized a panel of methylmalonyl-CoA analogs with the carboxylate represented by a sulfonate or nitro and the thioester retained or represented by an ester or amide. Structures of Escherichia coli methylmalonyl-CoA decarboxylase in complex with our analogs affords insight into substrate binding and the catalytic mechanism. Counterintuitively, the negatively charged sulfonate and nitronate functional groups of our analogs bind in an active site hydrophobic pocket. Upon decarboxylation the enolate intermediate is protonated by a histidine preventing CO2-enolate recombination, yielding propionyl-CoA. Activity assays support a histidine catalytic acid and reveal the enzyme displays significant hydrolysis activity. Our structures also provide insight into this hydrolysis activity. Our analogs inhibit decarboxylation/hydrolysis activity with low micromolar Ki values. This study sets precedents for using malonyl-CoA analogs with carboxyate isosteres to study the complicated structure-function relationships of acyl-CoA carboxylases, trans-carboxytransferases, malonyltransferases and ß-ketoacylsynthases.


Asunto(s)
Ésteres/metabolismo , Metilmalonil-CoA Descarboxilasa/química , Nitrocompuestos/química , Compuestos de Sulfhidrilo/metabolismo , Ácidos Sulfónicos/química , Ésteres/química , Metilmalonil-CoA Descarboxilasa/metabolismo , Estructura Molecular , Nitrocompuestos/metabolismo , Estereoisomerismo , Compuestos de Sulfhidrilo/química , Ácidos Sulfónicos/metabolismo
3.
Mol Genet Metab ; 125(3): 266-275, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30274917

RESUMEN

Propionic acidemia (PA) is caused by mutations in the PCCA and PCCB genes, encoding α and ß subunits, respectively, of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). Up to date, >200 pathogenic mutations have been identified, mostly missense defects. Genetic analysis in PA patients referred to the laboratory for the past 15 years identified 20 novel variants in the PCCA gene and 14 in the PCCB gene. 21 missense variants were predicted as probably disease-causing by different bioinformatics algorithms. Structural analysis in the available 3D model of the PCC enzyme indicated potential instability for most of them. Functional analysis in a eukaryotic system confirmed the pathogenic effect for the missense variants and for one amino acid deletion, as they all exhibited reduced or null PCC activity and protein levels compared to wild-type constructs. PCCB variants p.E168del, p.Q58P and p.I460T resulted in medium-high protein levels and no activity. Variants p.R230C and p.C712S in PCCA, and p.G188A, p.R272W and p.H534R in PCCB retained both partial PCC activity and medium-high protein levels. Available patients-derived fibroblasts carriers of some of these mutations were grown at 28 °C or 37 °C and a slight increase in PCC activity or protein could be detected in some cases at the folding-permissive conditions. Examination of available clinical data showed correlation of the results of the functional analysis with disease severity for most mutations, with some notable exceptions, confirming the notion that the final phenotypic outcome in PA is not easily predicted.


Asunto(s)
Predisposición Genética a la Enfermedad , Metilmalonil-CoA Descarboxilasa/genética , Acidemia Propiónica/genética , Relación Estructura-Actividad , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Metilmalonil-CoA Descarboxilasa/química , Mitocondrias/enzimología , Mitocondrias/genética , Mutación Missense/genética , Tamizaje Neonatal , Acidemia Propiónica/patología , Conformación Proteica , Pliegue de Proteína , Adulto Joven
4.
Mol Cell Biol ; 38(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29378828

RESUMEN

Propionic acidemia is caused by a deficiency of the enzyme propionyl coenzyme A carboxylase (PCC) located in the mitochondrial matrix. Cell-penetrating peptides, including transactivator of transcription (TAT), offer a potential to deliver a cargo into the mitochondrion. Here, we investigated the delivery of an α6ß6 PCC enzyme into mitochondria using the HIV TAT peptide at several levels: into isolated mitochondria, in patient fibroblast cells, and in a mouse model. Results from Western blots and enzyme activity assays confirmed the import of TAT-PCC into mitochondria, as well as into patient fibroblasts, where the colocalization of imported TAT-PCC and mitochondria was also confirmed by confocal fluorescence microscopy. Furthermore, a single-dose intraperitoneal injection into PCC-deficient mice decreased the propionylcarnitine/acetylcarnitine (C3/C2) ratio toward the normal level. These results show that a cell-penetrating peptide can deliver active multimeric enzyme into mitochondria in vitro, in situ, and in vivo and push the size limit of intracellular delivery achieved so far. Our results are promising for other mitochondrion-specific deficiencies.


Asunto(s)
Metilmalonil-CoA Descarboxilasa/administración & dosificación , Metilmalonil-CoA Descarboxilasa/uso terapéutico , Nanoconjugados/administración & dosificación , Nanoconjugados/uso terapéutico , Acidemia Propiónica/tratamiento farmacológico , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Animales , Carnitina/análogos & derivados , Carnitina/metabolismo , Péptidos de Penetración Celular/química , Células Cultivadas , Humanos , Metilmalonil-CoA Descarboxilasa/química , Metilmalonil-CoA Descarboxilasa/farmacocinética , Ratones , Mitocondrias/metabolismo , Nanoconjugados/química , Acidemia Propiónica/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapéutico
5.
Clin Genet ; 90(3): 252-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26830710

RESUMEN

Specific mitochondrial enzymatic deficiencies in the catabolism of branched-chain amino acids cause methylmalonic aciduria (MMA), propionic acidemia (PA) and maple syrup urine disease (MSUD). Disease-causing mutations were identified in nine unrelated branched-chain organic acidurias (BCOA) patients. We detected eight previously described mutations: p.Asn219Tyr, p.Arg369His p.Val553Glyfs*17 in MUT, p.Thr198Serfs*6 in MMAA, p.Ile144_Leu181del in PCCB, p.Gly288Valfs*11, p.Tyr438Asn in BCKDHA and p.Ala137Val in BCKDHB gene. Interestingly, we identified seven novel genetic variants: p.Leu549Pro, p.Glu564*, p.Leu641Pro in MUT, p.Tyr206Cys in PCCB, p.His194Arg, p.Val298Met in BCKDHA and p.Glu286_Met290del in BCKDHB gene. In silico and/or eukaryotic expression studies confirmed pathogenic effect of all novel genetic variants. Aberrant enzymes p.Leu549Pro MUT, p.Leu641Pro MUT and p.Tyr206Cys PCCB did not show residual activity in activity assays. In addition, activity of MUT enzymes was not rescued in the presence of vitamin B12 precursor in vitro which was in accordance with non-responsiveness or partial responsiveness of patients to vitamin B12 therapy. Our study brings the first molecular genetic data and detailed phenotypic characteristics for MMA, PA and MSUD patients for Serbia and the whole South-Eastern European region. Therefore, our study contributes to the better understanding of molecular landscape of BCOA in Europe and to general knowledge on genotype-phenotype correlation for these rare diseases.


Asunto(s)
3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Enfermedad de la Orina de Jarabe de Arce/genética , Metilmalonil-CoA Descarboxilasa/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Acidemia Propiónica/genética , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/química , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Aminoácidos de Cadena Ramificada/genética , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Enfermedad de la Orina de Jarabe de Arce/fisiopatología , Metilmalonil-CoA Descarboxilasa/química , Proteínas de Transporte de Membrana Mitocondrial/química , Mutación , Fenotipo , Acidemia Propiónica/fisiopatología , Conformación Proteica
6.
Clin Chim Acta ; 453: 13-20, 2016 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-26620954

RESUMEN

BACKGROUND: Propionyl-CoA carboxylase (PCC) is a mitochondrial enzyme involved in the catabolism of several essential amino acids and odd chain fatty acids. Previous PCC assays have involved either a radiometric assay or have required mitochondria isolation and/or enzyme purification. METHODS: We developed an enzymatic method to analyze PCC activity in phytohemagglutinin (PHA) stimulated lymphocytes that involves high performance liquid chromatography. RESULTS: The method shows good linearity and sensitivity. PCC activity was unaffected even when lymphocytes were isolated and PHA stimulated after a whole blood sample had been stored at 4°C for 5days. This indicates that this method is suitable for analyzing samples from distant medical centers. The PCC activity of patients with propionic acidemia was found to be much lower than that of normal individuals and carriers. However, this PCC assay is significantly affected by the red blood cell contamination. In conclusion, this is a reliable method for performing PCC assays and only requires 0.5 to 1.0ml of whole blood from newborns. CONCLUSIONS: The PCC assay established in this study is useful for the confirmation of PA in individuals, and prenatal diagnosis and genetic counseling for the affected families.


Asunto(s)
Pruebas de Enzimas/métodos , Linfocitos/efectos de los fármacos , Linfocitos/enzimología , Metilmalonil-CoA Descarboxilasa/metabolismo , Fitohemaglutininas/farmacología , Adolescente , Niño , Cromatografía Líquida de Alta Presión , Estabilidad de Enzimas , Femenino , Humanos , Concentración de Iones de Hidrógeno , Límite de Detección , Modelos Lineales , Masculino , Metilmalonil-CoA Descarboxilasa/química
7.
Cell Mol Life Sci ; 70(5): 863-91, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22869039

RESUMEN

Biotin-dependent carboxylases include acetyl-CoA carboxylase (ACC), propionyl-CoA carboxylase (PCC), 3-methylcrotonyl-CoA carboxylase (MCC), geranyl-CoA carboxylase, pyruvate carboxylase (PC), and urea carboxylase (UC). They contain biotin carboxylase (BC), carboxyltransferase (CT), and biotin-carboxyl carrier protein components. These enzymes are widely distributed in nature and have important functions in fatty acid metabolism, amino acid metabolism, carbohydrate metabolism, polyketide biosynthesis, urea utilization, and other cellular processes. ACCs are also attractive targets for drug discovery against type 2 diabetes, obesity, cancer, microbial infections, and other diseases, and the plastid ACC of grasses is the target of action of three classes of commercial herbicides. Deficiencies in the activities of PCC, MCC, or PC are linked to serious diseases in humans. Our understanding of these enzymes has been greatly enhanced over the past few years by the crystal structures of the holoenzymes of PCC, MCC, PC, and UC. The structures reveal unanticipated features in the architectures of the holoenzymes, including the presence of previously unrecognized domains, and provide a molecular basis for understanding their catalytic mechanism as well as the large collection of disease-causing mutations in PCC, MCC, and PC. This review will summarize the recent advances in our knowledge on the structure and function of these important metabolic enzymes.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Biotina/metabolismo , Ligasas de Carbono-Carbono/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Metilmalonil-CoA Descarboxilasa/metabolismo , Piruvato Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/química , Animales , Ligasas de Carbono-Carbono/química , Ligasas de Carbono-Nitrógeno/química , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/metabolismo , Humanos , Metilmalonil-CoA Descarboxilasa/química , Modelos Moleculares , Conformación Proteica , Piruvato Carboxilasa/química
8.
Acta Biochim Biophys Sin (Shanghai) ; 44(8): 692-702, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22710261

RESUMEN

Leptospira interrogans is the causative agent of leptospirosis. The in vitro growth of L. interrogans requires CO(2) and a partial 3-hydroxypropionate pathway involving two acyl-CoA carboxylases was suggested by genomic analysis to assimilate CO(2). Either set of the candidate genes heterologously co-expressed in Escherichia coli was able to demonstrate both acetyl-CoA carboxylase (ACC) and propionyl-CoA carboxylase (PCC) activities. The tri-subunit holoenzyme (LA_2736-LA_2735 and LA_3803), although failed to be purified, was designated ACC based on its substrate preference toward acetyl-CoA. The partially purified bi-subunit holoenzyme (LA_2432-LA_2433) has a considerably higher activity against propionyl-CoA as the substrate than that of acetyl-CoA, and thus, designated PCC. Native polyacrylamide gel electrophoresis indicated that this PCC has a molecular mass of around 669 kDa, suggesting an α(4)ß(4) quaternary structure and both structural homology modeling and site-directed mutagenesis analysis of its carboxyltransferase subunit (LA_2433) indicated that the A431 residue located at the bottom of the putative substrate binding pocket may play an important role in substrate specificity determination. Both transcriptomic and proteomic data indicated that enzymes involved in the suggested partial 3-hydroxypropionate pathway were expressed in vivo in addition to ACC/PCC and the homologous genes in genomes of other Leptospira species were re-annotated accordingly. However, as the in vitro detected specific activity of ACC in the crude cell extract was too low to account for the growth of the bacterium in Ellinghausen-McCullough-Johnson-Harris minimal medium, further systematic analysis is required to unveil the mechanism of gluconeogenesis via anaplerotic CO(2) assimilation in Leptospira species.


Asunto(s)
Ligasas de Carbono-Carbono/química , Gluconeogénesis , Leptospira interrogans/metabolismo , Metilmalonil-CoA Descarboxilasa/química , Secuencia de Aminoácidos , Dióxido de Carbono/química , Escherichia coli/metabolismo , Cinética , Leptospirosis , Espectrometría de Masas/métodos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Proteómica/métodos , Homología de Secuencia de Aminoácido
9.
Nature ; 481(7380): 219-23, 2011 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-22158123

RESUMEN

3-Methylcrotonyl-CoA carboxylase (MCC), a member of the biotin-dependent carboxylase superfamily, is essential for the metabolism of leucine, and deficient mutations in this enzyme are linked to methylcrotonylglycinuria (MCG) and other serious diseases in humans. MCC has strong sequence conservation with propionyl-CoA carboxylase (PCC), and their holoenzymes are both 750-kilodalton (kDa) α(6)ß(6) dodecamers. Therefore the architecture of the MCC holoenzyme is expected to be highly similar to that of PCC. Here we report the crystal structures of the Pseudomonas aeruginosa MCC (PaMCC) holoenzyme, alone and in complex with coenzyme A. Surprisingly, the structures show that the architecture and overall shape of PaMCC are markedly different when compared to PCC. The α-subunits show trimeric association in the PaMCC holoenzyme, whereas they have no contacts with each other in PCC. Moreover, the positions of the two domains in the ß-subunit of PaMCC are swapped relative to those in PCC. This structural information establishes a foundation for understanding the disease-causing mutations of MCC and provides new insights into the catalytic mechanism and evolution of biotin-dependent carboxylases. The large structural differences between MCC and PCC also have general implications for the relationship between sequence conservation and structural similarity.


Asunto(s)
Ligasas de Carbono-Carbono/química , Pseudomonas aeruginosa/enzimología , Sitios de Unión , Biocatálisis , Ligasas de Carbono-Carbono/genética , Ligasas de Carbono-Carbono/metabolismo , Ligasas de Carbono-Carbono/ultraestructura , Coenzima A/química , Coenzima A/metabolismo , Cristalografía por Rayos X , Enfermedad/genética , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Metilmalonil-CoA Descarboxilasa/química , Modelos Moleculares , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
10.
Nature ; 466(7309): 1001-5, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20725044

RESUMEN

Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an alpha(6)beta(6) dodecamer, with a molecular mass of 750 kDa. The alpha-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the beta-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-A resolution of a bacterial PCC alpha(6)beta(6) holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-A resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the alpha-subunits are arranged as monomers in the holoenzyme, decorating a central beta(6) hexamer. A hitherto unrecognized domain in the alpha-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the beta-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 A, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the beta-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).


Asunto(s)
Microscopía por Crioelectrón , Holoenzimas/química , Holoenzimas/ultraestructura , Metilmalonil-CoA Descarboxilasa/química , Metilmalonil-CoA Descarboxilasa/ultraestructura , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/ultraestructura , Biocatálisis , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/ultraestructura , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , Dominio Catalítico , Cristalografía por Rayos X , Acido Graso Sintasa Tipo II , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Metilmalonil-CoA Descarboxilasa/genética , Metilmalonil-CoA Descarboxilasa/metabolismo , Modelos Moleculares , Mutación/genética , Acidemia Propiónica/enzimología , Acidemia Propiónica/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Rhodobacteraceae/enzimología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA