Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
Environ Sci Pollut Res Int ; 31(36): 49059-49078, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39042192

RESUMEN

The presence of metronidazole (MNZ) and acetaminophen (ACE) in aquatic environments has raised growing concerns regarding their potential impact on human health. Incorporating various patterns into a photocatalytic material is considered a critical approach to achieving enhanced photocatalytic efficiency in the photocatalysis process. In this study, WO3 nanoparticles, which were immobilized onto ferromagnetic multi-walled carbon nanotubes that were functionalized using (3-glycidyloxypropyl)trimethoxysilane (FMMWCNTs@GLYMO@WO3), exhibited remarkable efficiency in removing MNZ and ACE (93% and 97%) in only 15 min. In addition, the new visible-light FMMWCNTs@GLYMO@WO3 nanoparticles as a magnetically separable photocatalyst were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), EDS-mapping, vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS), high-performance liquid chromatography (HPLC), and total organic carbon (TOC) due to detailed studies (morphological, structural, magnetic and optical properties) of the photocatalyst. In-depth spectroscopic and microscopic characterization of the newly developed ferromagnetic FMMWCNTs@GLYMO@WO3 (III) photocatalyst revealed a spherical morphology, with nanoparticle diameters averaging between 23 and 39 nm. Compared to conventional multiwall carbon nanotube and WO3 photocatalysts, FMMWCNTs@GLYMO@WO3 (III) demonstrated superior photocatalytic activity. Remarkably, it exhibited excellent reusability, maintaining its efficiency over a minimum of five cycles in the degradation of metronidazole (MNZ) and acetaminophen (ACE).


Asunto(s)
Acetaminofén , Metronidazol , Fotólisis , Tungsteno , Acetaminofén/química , Metronidazol/química , Tungsteno/química , Catálisis , Nanotubos de Carbono/química , Contaminantes Químicos del Agua/química , Óxidos/química
2.
Microb Pathog ; 193: 106787, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992510

RESUMEN

A unique approach is imperative for the development of drugs aimed at inhibiting various stages of infection, rather than solely focusing on bacterial viability. Among the array of unconventional targets explored for formulating novel antimicrobial medications, blocking the quorum-sensing (QS) system emerges as a highly effective and promising strategy against a variety of pathogenic microbes. In this investigation, we have successfully assessed nine α-aminoamides for their anti-QS activity using Agrobacterium tumefaciensNT1 as a biosensor strain. Among these compounds, three (2, 3and, 4) have been identified as potential anti-QS candidates. Molecular docking studies have further reinforced these findings, indicating that these compounds exhibit favorable pharmacokinetic profiles. Additionally, we have assessed the ligand's stability within the protein's binding pocket using molecular dynamics (MD) simulations and MMGBSA analysis. Further, combination of antiquorum sensing properties with antibiotics viaself-assembly represents a promising approach to enhance antibacterial efficacy, overcome resistance, and mitigate the virulence of bacterial pathogens. The release study also reflects a slow and gradual release of the metronidazole at both pH 6.5 and pH 7.4, avoiding the peaks and troughs associated with more immediate release formulations.


Asunto(s)
Agrobacterium tumefaciens , Antibacterianos , Metronidazol , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Percepción de Quorum , Agrobacterium tumefaciens/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Metronidazol/farmacología , Metronidazol/química , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Geles/química , Sinergismo Farmacológico , Liberación de Fármacos
3.
Luminescence ; 39(7): e4826, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39004784

RESUMEN

Biocompatible and highly fluorescent phosphorus, nitrogen and sulfur carbon quantum dots (P,N,S-CQDs) were synthesized using a quick and ecologically friendly process inspired from plant sources. Garlic and red lentils were utilized as natural and inexpensive sources for efficient synthesis of the carbon-based quantum dots using green microwave-irradiation, which provides an ultrafast route for carbonization of the organic biomass and subsequent fabrication of P,N,S-CQDs within only 3 min. The formed P,N,S-CQDs showed excellent blue fluorescence at λem = 412 nm when excited at 325 nm with a quantum yield up to 26.4%. These fluorescent dots were used as a nano-sensor for the determination of the commonly used antibacterial and antiprotozoal drug, metronidazole (MTR). As MTR lacked native fluorescence and prior published techniques had several limitations, the proposed methodology became increasingly relevant. This approach affords sensitive detection with a wide linear range of 0.5-100.0 µM and LOD and LOQ values of 0.14 µM and 0.42 µM, respectively. As well as, it is cost-effective and ecologically benign. The MTT test was used to evaluate the in-vitro cytotoxicity of the fabricated P,N,S-CQDs. The findings supported a minimally cytotoxic impact and good biocompatibility, which provide a future perspective for the applicability of these CQDs in biomedical applications.


Asunto(s)
Carbono , Colorantes Fluorescentes , Ajo , Metronidazol , Microondas , Puntos Cuánticos , Puntos Cuánticos/química , Ajo/química , Carbono/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Metronidazol/análisis , Metronidazol/química , Metronidazol/farmacología , Humanos , Supervivencia Celular/efectos de los fármacos
4.
Int J Biol Macromol ; 273(Pt 1): 132953, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38944566

RESUMEN

This study investigates the potential applications of incorporating 2D bacterial cellulose microfibers (BCM) biochar into chitosan/polyethyleneimine beads as a semi-natural sorbent for the efficient removal of tetracycline (TET) and metronidazole (MET) antibiotics. Batch adsorption experiments and characterization techniques evaluate removal performance and synthesized adsorbent properties. The adsorbent eliminated 99.13 % and 90 % of TET and MET at a 10 mg.L-1 concentration with optimal pH values of 8 and 6, respectively, for 90 min. Under optimum conditions and a 400 mg.L-1 concentration, MET and TET have possessed the maximum adsorption capacities of 691.325 and 960.778 mg.g-1, respectively. According to the isothermal analysis, the adsorption of TET fundamentally follows the Temkin (R2 = 0.997), Redlich-Peterson (R2 = 0.996), and Langmuir (R2 = 0.996) models. In contrast, the MET adsorption can be described by the Langmuir (R2 = 0.997), and Toth (R2 = 0.991) models. The pseudo-second-order (R2 = 0.998, 0.992) and Avrami (R2 = 0.999, 0.999) kinetic models were well-fitted with the kinetic results for MET and TET respectively. Diffusion models recommend that pore, liquid-film, and intraparticle diffusion govern the rate of the adsorption process. The developed semi-natural sorbent demonstrated exceptional adsorption capacity over eleven cycles due to its porous bead structure, making it a potential candidate for wastewater remediation.


Asunto(s)
Celulosa , Carbón Orgánico , Quitosano , Metronidazol , Polietileneimina , Tetraciclina , Contaminantes Químicos del Agua , Tetraciclina/química , Tetraciclina/aislamiento & purificación , Quitosano/química , Adsorción , Carbón Orgánico/química , Celulosa/química , Metronidazol/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cinética , Polietileneimina/química , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos , Antibacterianos/química
5.
J Biol Inorg Chem ; 29(5): 511-518, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38926159

RESUMEN

Antimicrobial resistance (AMR) has been emerging as a major global health threat and calls for the development of novel drug candidates. Metal complexes have been demonstrating high efficiency as antibacterial agents that differ substantially from the established types of antibiotics in their chemical structures and their mechanism of action. One strategy to exploit this potential is the design of metal-based hybrid organometallics that consist of an established antibiotic and a metal-based warhead that contributes an additional mechanism of action different from that of the parent antibiotic. In this communication, we describe the organometallic hybrid antibiotic 2c, in which the drug metronidazole is connected to a gold(I) N-heterocyclic carbene warhead that inhibits bacterial thioredoxin reductase (TrxR). Metronidazole can be used for the treatment with the obligatory anaerobic pathogen Clostridioides difficile (C. difficile), however, resistance to the drug hampers its clinical success. The gold organometallic conjugate 2c was an efficient inhibitor of TrxR and it was inactive or showed only minor effects against eucaryotic cells and bacteria grown under aerobic conditions. In contrast, a strong antibacterial effect was observed against both metronidazole-sensitive and -resistant strains of C. difficile. This report presents a proof-of-concept that the design of metal-based hybrid antibiotics can be a viable approach to efficiently tackle AMR.


Asunto(s)
Antibacterianos , Clostridioides difficile , Farmacorresistencia Bacteriana , Oro , Metano , Metronidazol , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Clostridioides difficile/efectos de los fármacos , Metronidazol/farmacología , Metronidazol/química , Metano/análogos & derivados , Metano/química , Metano/farmacología , Oro/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Estructura Molecular , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química
6.
Chem Biodivers ; 21(8): e202400891, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825847

RESUMEN

The utilization of natural materials for the synthesis of highly fluorescent carbon quantum dots (CQDs) presents a sustainable approach to overcome the challenges associated with traditional chemical precursors. Here, we report the synthesis of novel S,N-self-doped CQDs (S,N@CQDs) derived from asparagus officinalis herb. These S,N@CQDs exhibit 16.7 % fluorescence quantum yield, demonstrating their potential in medical diagnostics. We demonstrate the efficacy of S,N@CQDs as luminescent probes for the detection of anti-pathogenic medications metronidazole (MTZ) and nitazoxanide (NTZ) over concentration ranges of 0.0-180.0 µM (with a limit of detection (LOD) of 0.064 µM) and 0.25-40.0 µM (LOD of 0.05 µM), respectively. The probes were successfully applied to determine MTZ and NTZ in medicinal samples, real samples, and spiked human plasma, with excellent recovery rates ranging from 99.82 % to 103.03 %. Additionally, S,N@CQDs demonstrate exceptional efficacy as diagnostic luminescent probes for hemoglobin (Hb) detection over a concentration range of 0-900 nM, with a minimal detectability of 9.24 nM, comparable to commercially available medical laboratory diagnostic tests. The eco-friendly synthesis and precise detection limits of S,N@CQDs meet necessary analytical requirements and hold promise for advancing diagnostic capabilities in clinical settings. This research signifies a significant step towards sustainable and efficient fluorescence-based medical diagnostics.


Asunto(s)
Asparagus , Carbono , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Humanos , Asparagus/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Metronidazol/análisis , Metronidazol/sangre , Metronidazol/química , Hemoglobinas/análisis , Límite de Detección
7.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928299

RESUMEN

Bacterial nitroreductase enzymes capable of activating imaging probes and prodrugs are valuable tools for gene-directed enzyme prodrug therapies and targeted cell ablation models. We recently engineered a nitroreductase (E. coli NfsB F70A/F108Y) for the substantially enhanced reduction of the 5-nitroimidazole PET-capable probe, SN33623, which permits the theranostic imaging of vectors labeled with oxygen-insensitive bacterial nitroreductases. This mutant enzyme also shows improved activation of the DNA-alkylation prodrugs CB1954 and metronidazole. To elucidate the mechanism behind these enhancements, we resolved the crystal structure of the mutant enzyme to 1.98 Å and compared it to the wild-type enzyme. Structural analysis revealed an expanded substrate access channel and new hydrogen bonding interactions. Additionally, computational modeling of SN33623, CB1954, and metronidazole binding in the active sites of both the mutant and wild-type enzymes revealed key differences in substrate orientations and interactions, with improvements in activity being mirrored by reduced distances between the N5-H of isoalloxazine and the substrate nitro group oxygen in the mutant models. These findings deepen our understanding of nitroreductase substrate specificity and catalytic mechanisms and have potential implications for developing more effective theranostic imaging strategies in cancer treatment.


Asunto(s)
Metronidazol , Nitroimidazoles , Nitrorreductasas , Nitrorreductasas/metabolismo , Nitrorreductasas/química , Nitrorreductasas/genética , Nitroimidazoles/química , Nitroimidazoles/metabolismo , Metronidazol/química , Metronidazol/metabolismo , Metronidazol/farmacología , Profármacos/metabolismo , Profármacos/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Tomografía de Emisión de Positrones/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Dominio Catalítico , Ingeniería de Proteínas , Modelos Moleculares , Aziridinas/química , Aziridinas/metabolismo
8.
J Environ Manage ; 362: 121347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838534

RESUMEN

The traditional homogenous and heterogenous Fenton reactions have frequently been restrained by the lower production of Fe2+ ions, which significantly obstructs the generation of hydroxyl radicals from the decomposition of H2O2. Thus, we introduce novel photo-Fenton-assisted plasmonic heterojunctions by immobilizing Fe3O4 and Bi nanoparticles onto 3D Sb2O3 via co-precipitation and solvothermal approaches. The ternary Sb2O3/Fe3O4/Bi composites offered boosted photo-Fenton behavior with a metronidazole (MNZ) oxidation efficiency of 92% within 60 min. Among all composites, the Sb2O3/Fe3O4/Bi-5% hybrid exhibited an optimum photo-Fenton MNZ reaction constant of 0.03682 min- 1, which is 5.03 and 2.39 times higher than pure Sb2O3 and Sb2O3/Fe3O4, respectively. The upgraded oxidation activity was connected to the complementary outcomes between the photo-Fenton behavior of Sb2O3/Fe3O4 and the plasmonic effect of Bi NPs. The regular assembly of Fe3O4 and Bi NPs enhances the surface area and stability of Sb2O3/Fe3O4/Bi. Moreover, the limited absorption spectra of Sb2O3 were extended into solar radiation by the Fe3+ defect of Fe3O4 NPs and the surface plasmon resonance (SPR) effect of Bi NPs. The photo-Fenton mechanism suggests that the co-existence of Fe3O4/Bi NPs acts as electron acceptor/donor, respectively, which reduces recombination losses, prolongs the lifetime of photocarriers, and produces more reactive species, stimulating the overall photo-Fenton reactions. On the other hand, the photo-Fenton activity of MNZ antibiotics was optimized under different experimental conditions, including catalyst loading, solution pH, initial MNZ concentrations, anions, and real water environments. Besides, the trapping outcomes verified the vital participation of •OH, h+, and •O2- in the MNZ destruction over Sb2O3/Fe3O4/Bi-5%. In summary, this work excites novel perspectives in developing boosted photosystems through integrating the photocatalysis power with both Fenton reactions and the SPR effects of plasmonic materials.


Asunto(s)
Peróxido de Hidrógeno , Metronidazol , Oxidación-Reducción , Metronidazol/química , Peróxido de Hidrógeno/química , Resonancia por Plasmón de Superficie , Hierro/química , Contaminantes Químicos del Agua/química , Antimonio/química , Agua/química
9.
J Environ Manage ; 364: 121431, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38875984

RESUMEN

The intimate coupling of photocatalysis and biodegradation (ICPB) technology has received much attraction because of the advantages of both photocatalytic reaction and biological treatment. In this study, ZnO-CoFe2O4@BC (ZCFC) with p-n heterojunction was prepared and used in an ICPB system to degrade metronidazole (MNZ) wastewater. The microstructure, morphology, and optical behavior of heterojunctions in ZCFC were investigated using SEM, XRD, UV-vis, FTIR, and XPS techniques. The results showed that ZCFC inherited the advantages of bamboo biochar's large pore size, and its large pore structure could provide a habitat for bacterial colonization in ICPB, thus shortening the internal mass transfer distance. The degradation of MNZ and chemical oxygen demand (COD) by the ICPB system was 86.8% and 58.5%, respectively, which was superior to single photocatalysis (72.5% for MNZ and 43.8% for COD) and single biodegradation (23.5% for MNZ and 20.1% for COD). In ICPB, photocatalysis and biodegradation showed a synergistic effect in the removal of MNZ, and the order of the major reactive oxygen species (ROS) leading to reduced toxicity of MNZ to the biofilm was •OH > h+ > O2•-. High-throughput sequencing analysis showed continuous evolution of biofilm structures in ICPB enriched a variety of functional species, among which the electroactive bacteria Alcaligenes and Brevundimonas played an important role in the degradation of MNZ. In this study, we investigated the possible mechanism of photocatalytic and microbial synergistic degradation of MNZ in the ICPB system and proposed a new technology for degrading antibiotic wastewater that combines the advantages of photocatalysis and biodegradation.


Asunto(s)
Biodegradación Ambiental , Luz , Metronidazol , Óxido de Zinc , Catálisis , Óxido de Zinc/química , Metronidazol/química , Aguas Residuales/química , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
10.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893461

RESUMEN

Metronidazole (MTZ) is the most common drug used against Trichomonas vaginalis (T. vaginalis) infections; however, treatment failures and high rates of recurrence of trichomoniasis have been reported, suggesting the presence of resistance in T. vaginalis to MTZ. Therefore, research into new therapeutic options against T. vaginalis infections has become increasingly urgent. This study investigated the trichomonacidal activity of a series of five imidazole carbamate compounds (AGR-1, AGR-2, AGR-3, AGR-4, and AGR-5) through in vitro susceptibility assays to determine the IC50 value of each compound. All five compounds demonstrated potent trichomonacidal activity, with IC50 values in the nanomolar range and AGR-2 being the most potent (IC50 400 nM). To gain insight into molecular events related to AGR-induced cell death in T. vaginalis, we analyzed the expression profiles of some metabolic genes in the trophozoites exposed to AGR compounds and MTZ. It was found that both AGR and MTZ compounds reduced the expression of the glycolytic genes (CK, PFK, TPI, and ENOL) and genes involved in metabolism (G6PD, TKT, TALDO, NADHOX, ACT, and TUB), suggesting that disturbing these key metabolic genes alters the survival of the T. vaginalis parasite and that they probably share a similar mechanism of action. Additionally, the compounds showed low cytotoxicity in the Caco-2 and HT29 cell lines, and the results of the ADMET analysis indicated that these compounds have pharmacokinetic properties similar to those of MTZ. The findings offer significant insights that can serve as a basis for future in vivo studies of the compounds as a potential new treatment against T. vaginalis.


Asunto(s)
Carbamatos , Imidazoles , Trichomonas vaginalis , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/genética , Trichomonas vaginalis/crecimiento & desarrollo , Imidazoles/farmacología , Imidazoles/química , Humanos , Carbamatos/farmacología , Carbamatos/química , Metronidazol/farmacología , Metronidazol/química , Regulación de la Expresión Génica/efectos de los fármacos , Trofozoítos/efectos de los fármacos
11.
Environ Pollut ; 356: 124321, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844043

RESUMEN

Since its application in environmental remediation, nano zero-valent iron (nZVI) has gained wide attention for its environmental friendliness, strong reducing ability, and wide range of raw materials. However, its high preparation cost and difficulty in preservation remain the bottlenecks for their application. Carbothermal reduction is a promising method for the industrial preparation of nZVI. Micronized zero-valent iron/carbon materials (Fe0/CB) were produced in one step by co-pyrolysis of carbon and iron. The performance of the Fe0/CB is comparable to that of nZVI. In addition, Fe0/CB overcomed the disadvantages of agglomeration and oxidative deactivation of nZVI. Experiments on the Fenton-like reaction of its activated PDS showed that metronidazole (MNZ) was efficiently removed through the synergistic action of radicals and non-radicals, which were mainly superoxide radicals (·O2-), monoclinic oxygen (1O2), and high-valent iron (FeIVO). Moreover, the degradation process showed better generalization, making it suitable for a wide range of applications in the degradation of antibiotics.


Asunto(s)
Carbono , Hierro , Hierro/química , Carbono/química , Oxidación-Reducción , Restauración y Remediación Ambiental/métodos , Sulfatos/química , Metronidazol/química
12.
Chem Biodivers ; 21(7): e202400105, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38700110

RESUMEN

The traditional delivery of metronidazole and theophylline presents challenges like bitter taste, variable absorption, and side effects. However, gel-based systems offer advantages including enhanced targeted drug delivery, minimized side effects, and improved patient compliance, effectively addressing these challenges. Consequently, a cost-effective synthesis of N-hydroxyalkanamide gelators with varying alkyl chain lengths was achieved in a single-step reaction procedure. These gelators formed self-assembled aggregates in DMSO/water solvent system, resulting in organo/hydrogels at a minimum gelation concentration of 1.5 % w/v. Subsequently, metronidazole and theophylline were encapsulated within the gel core and released through gel-to-sol transition triggered by pH variation at 37 °C, while maintaining the structural-activity relationship. UV-vis spectroscopy was employed to observe the drug release behavior. Furthermore, in vitro cytotoxicity assays revealed cytotoxic effects against A549 lung adenocarcinoma cells, indicating anti-proliferative activity against human lung cancer cells. Specifically, the gel containing theophylline (16HAD+Th) exhibited cytotoxicity on cancerous A549 cells with IC50 values of 19.23±0.6 µg/mL, followed by the gel containing metronidazole (16HAD+Mz) with IC50 values of 23.75±0.7 µg/mL. Moreover, the system demonstrated comparable antibacterial activity against both gram-negative (E. coli) and gram-positive bacteria (S. aureus).


Asunto(s)
Liberación de Fármacos , Hidrogeles , Metronidazol , Pruebas de Sensibilidad Microbiana , Teofilina , Teofilina/química , Teofilina/farmacología , Metronidazol/química , Metronidazol/farmacología , Humanos , Concentración de Iones de Hidrógeno , Hidrogeles/química , Hidrogeles/síntesis química , Hidrogeles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Células A549 , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Supervivencia Celular/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Dosis-Respuesta a Droga
13.
J Biomater Sci Polym Ed ; 35(11): 1726-1749, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769614

RESUMEN

Periodontitis is a common chronic inflammatory disease primarily caused by the prevalence of bacterial overgrowth resulting in the development of an inflammatory condition that destroys the tooth's supporting tissues and eventual tooth loss. Comparatively, to other treatment methods, it is difficult for topical antibacterial drugs to effectively permeate the biofilm's physical barrier, making conventional therapy for periodontitis more challenging. This novel study combines thermosensitive in situ hydrogel with microparticles (MPs) to enhance the targeted delivery of metronidazole (MET) to the periodontal pocket. Polycaprolactone (PCL) polymer was utilized to produce bacteria-sensitive MPs. Additionally, the study assessed the attributes of MPs and demonstrated an enhancement in the in vitro antibacterial efficacy of MPs towards Staphylococcus aureus (SA) and Escherichia coli (EC). Subsequently, we incorporated MET-MPs into thermosensitive in situ hydrogel formulations using chitosan. The optimized formulations exhibited stability, appropriate gelation temperature, mucoadhesive strength, and viscosity. In vitro permeation tests showed selective and prolonged drug release against SA and EC. Ex vivo experiments demonstrated no significant differences between in situ hydrogel containing pure MET and MET-MPs in biofilm quantity, bacterial counts, and metabolic activity in biofilms. According to in vitro tests and the effectiveness of the antibacterial activity, this study has exhibited a novel methodology for more efficacious therapies for periodontitis. This study aims to utilize MET in MPs to improve its effectiveness, enhance its antibacterial activity, and improve patient treatment outcomes. In further research, the efficacy of the treatment should be investigated in vivo using an appropriate animal model.


Asunto(s)
Antibacterianos , Biopelículas , Liberación de Fármacos , Escherichia coli , Hidrogeles , Metronidazol , Periodontitis , Staphylococcus aureus , Temperatura , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología , Hidrogeles/química , Metronidazol/química , Metronidazol/farmacología , Metronidazol/administración & dosificación , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Animales , Biopelículas/efectos de los fármacos , Portadores de Fármacos/química , Poliésteres/química , Quitosano/química , Microesferas
14.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791121

RESUMEN

Melanoma, arguably the deadliest form of skin cancer, is responsible for the majority of skin-cancer-related fatalities. Innovative strategies concentrate on new therapies that avoid the undesirable effects of pharmacological or medical treatment. This article discusses the chemical structures of [(MTZ)2AgNO3], [(MTZ)2Ag]2SO4, [Ag(MCZ)2NO3], [Ag(MCZ)2BF4], [Ag(MCZ)2SbF6] and [Ag(MCZ)2ClO4] (MTZ-metronidazole; MCZ-miconazole) silver(I) compounds and the possible relationship between the molecules and their cytostatic activity against melanoma cells. Molecular Hirshfeld surface analysis and computational methods were used to examine the possible association between the structure and anticancer activity of the silver(I) complexes and compare the cytotoxicity of the silver(I) complexes of metronidazole and miconazole with that of silver(I) nitrate, cisplatin, metronidazole and miconazole complexes against A375 and BJ cells. Additionally, these preliminary biological studies found the greatest IC50 values against the A375 line were demonstrated by [Ag(MCZ)2NO3] and [(MTZ)2AgNO3]. The compound [(MTZ)2AgNO3] was three-fold more toxic to the A375 cells than the reference (cisplatin) and 15 times more cytotoxic against the A375 cells than the normal BJ cells. Complexes of metronidazole with Ag(I) are considered biocompatible at a concentration below 50 µmol/L.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Melanoma , Metronidazol , Miconazol , Plata , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Miconazol/farmacología , Miconazol/química , Plata/química , Antineoplásicos/farmacología , Antineoplásicos/química , Metronidazol/química , Metronidazol/farmacología , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Supervivencia Celular/efectos de los fármacos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología
15.
J Phys Chem Lett ; 15(20): 5382-5389, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38738984

RESUMEN

Metronidazole is a prospective hyperpolarized MRI contrast agent with potential hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We demonstrate a pilot procedure for production of ∼30 mM hyperpolarized [15N3]metronidazole in aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with nitrogen-15 polarization exceeding 2.2% on all three 15N sites achieved in less than 2 min. The 15N polarization T1 of ∼12 min is reported for the 15NO2 group at the clinically relevant field of 1.4 T in the aqueous phase, demonstrating a remarkably long lifetime of the hyperpolarized state. The produced aqueous solution of [15N3]metronidazole that contained only ∼100 µM of residual Ir was deemed biocompatible via validation through the MTT colorimetric test for assessing cell metabolic activity using human embryotic kidney HEK293T cells. This low-cost and ultrafast hyperpolarization procedure represents a major advance for the production of a biocompatible HP [15N3]metronidazole (and potentially other hyperpolarized drugs) formulation for MRI sensing applications.


Asunto(s)
Metronidazol , Agua , Humanos , Metronidazol/química , Metronidazol/farmacología , Células HEK293 , Agua/química , Antibacterianos/química , Antibacterianos/farmacología , Hidrógeno/química , Isótopos de Nitrógeno/química , Imagen por Resonancia Magnética/métodos , Medios de Contraste/química
16.
J Colloid Interface Sci ; 666: 512-528, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613974

RESUMEN

Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.


Asunto(s)
Cobalto , Hidróxidos , Manganeso , Metronidazol , Cobalto/química , Metronidazol/química , Hidróxidos/química , Manganeso/química , Porosidad , Propiedades de Superficie , Sulfitos/química , Catálisis , Tamaño de la Partícula , Teoría Funcional de la Densidad , Contaminantes Químicos del Agua/química
17.
Nanotechnology ; 35(31)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38663370

RESUMEN

The overuse of antibiotics currently results in the presence of various antibiotics being detected in water bodies, which poses potential risks to human health and the environment. Therefore, it is highly significant to remove antibiotics from water. In this study, we developed novel rod-like NiCo-phyllosilicate hybrid catalysts on calcined natural zeolite (NiCo@C-zeolite) via a facile one-pot process. The presence of the zeolite served as both a silicon source and a support, maintaining a high specific surface area of the NiCo@C-zeolite. Remarkably, NiCo@C-zeolite exhibited outstanding catalytic performance in antibiotic degradation under PMS activation. Within just 5 min, the degradation rate of metronidazole (MNZ) reached 96.14%, ultimately achieving a final degradation rate of 99.28%. Furthermore, we investigated the influence of catalyst dosage, PMS dosage, MNZ concentration, initial pH value, and various inorganic anions on the degradation efficiency of MNZ. The results demonstrated that NiCo@C-zeolite displayed outstanding efficacy in degrading MNZ under diverse conditions and maintained a degradation rate of 94.86% at 60 min after three consecutive cycles of degradation. Free radical quenching experiments revealed that SO•-4played a significant role in the presence of NiCo@C-zeolite-PMS system. These findings indicate that the novel rod-like NiCo-phyllosilicate hybrid catalysts had excellent performance in antibiotic degradation.


Asunto(s)
Antibacterianos , Zeolitas , Zeolitas/química , Antibacterianos/química , Antibacterianos/síntesis química , Catálisis , Contaminantes Químicos del Agua/química , Metronidazol/química , Purificación del Agua/métodos , Silicatos/química
18.
Chemosphere ; 358: 142102, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677611

RESUMEN

A heterogeneous catalyst was prepared by anchoring spinel cobalt ferrite nanoparticles on porous activated carbon (SCF@AC). The catalyst was tested to activate hydrogen peroxide (HP) in the Fenton degradation of metronidazole (MTZ). SCF nanoparticles were produced through the co-precipitation of iron and cobalt metal salts in an alkaline condition. Elemental mapping, physico-chemical, morphological, structural, and magnetic properties of the as-fabricated catalyst were analyzed utilizing EDX mapping, FESEM-EDS, TEM, BET, XRD, and VSM techniques. The porous structure of AC enhanced the catalytic activity of SCF by a significant decrease in the agglomeration of SCF nanoparticles. The effectiveness of SCF@AC in Fenton degradation improved substantially when UV light and ultrasound (US) irradiations were induced, most likely due to the strong synergistic effect between the catalyst and these irradiation sources. The photo-Fenton system was more efficient than the Fenton, sono-, and sono-photo-Fenton processes eliminating both MTZ and TOC. It was found that AC not only dispersed SCF nanoparticles and improved the stability of the catalyst, but also provided a high adsorption capacity of MTZ, resulting in a faster degradation. After 60 min of the photo-Fenton reaction, the elimination efficiencies of MTZ (30 mg L-1) and TOC were 97 and 42.1% under optimum operational conditions (pH = 3.0, HP = 4.0 mM, SCF@AC = 0.3 g L-1, and UV = 6 W). SCF@AC showed excellent stability with low leaching of metal ions during the reaction. Radical and non-radical (O2•-, HO•, and 1O2 species), alongside adsorption and photocatalysis mechanisms, were responsible for MTZ decontamination over the SCF@AC/HP/UV system. A comprehensive study on the HP activation mechanism and MTZ degradation pathway was obtained through scavenging tests. The findings demonstrate that SCF@AC is an effective, reusable, and environmentally sustainable catalyst for advanced oxidation processes that can effectively remove organic pollutants from wastewater. This study offers valuable insights into the feasibility of employing SCF@AC catalysts in Fenton-based processes for the degradation of MTZ.


Asunto(s)
Carbón Orgánico , Cobalto , Compuestos Férricos , Peróxido de Hidrógeno , Hierro , Metronidazol , Contaminantes Químicos del Agua , Cobalto/química , Catálisis , Peróxido de Hidrógeno/química , Compuestos Férricos/química , Hierro/química , Metronidazol/química , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Adsorción , Rayos Ultravioleta
19.
Environ Res ; 252(Pt 3): 119029, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685299

RESUMEN

Antibiotics released into water sources pose significant risks to both human health and the environment. This comprehensive review meticulously examines the ecotoxicological impacts of three prevalent antibiotics-ciprofloxacin, metronidazole, and sulfamethoxazole-on the ecosystems. Within this framework, our primary focus revolves around the key remediation technologies: adsorption and advanced oxidation processes (AOPs). In this context, an array of adsorbents is explored, spanning diverse classes such as biomass-derived biosorbents, graphene-based adsorbents, MXene-based adsorbents, silica gels, carbon nanotubes, carbon-based adsorbents, metal-organic frameworks (MOFs), carbon nanofibers, biochar, metal oxides, and nanocomposites. On the flip side, the review meticulously examines the main AOPs widely employed in water treatment. This includes a thorough analysis of ozonation (O3), the photo-Fenton process, UV/hydrogen peroxide (UV/H2O2), TiO2 photocatalysis, ozone/UV (O3/UV), radiation-induced AOPs, and sonolysis. Furthermore, the review provides in-depth insights into equilibrium isotherm and kinetic models as well as prospects and challenges inherent in these cutting-edge processes. By doing so, this review aims to empower readers with a profound understanding, enabling them to determine research gaps and pioneer innovative treatment methodologies for water contaminated with antibiotics.


Asunto(s)
Antibacterianos , Ciprofloxacina , Oxidación-Reducción , Sulfametoxazol , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Sulfametoxazol/química , Adsorción , Antibacterianos/química , Purificación del Agua/métodos , Aguas Residuales/química , Ciprofloxacina/química , Metronidazol/química
20.
Chemosphere ; 356: 141770, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554866

RESUMEN

The objective of the present study was to employ a green synthesis method to produce a sustainable ZnFe12O19/BiOI nanocomposite and evaluate its efficacy in the photocatalytic degradation of metronidazole (MNZ) from aqueous media. An artificial neural network (ANN) model was developed to predict the performance of the photocatalytic degradation process using experimental data. More importantly, sensitivity analysis was conducted to explore the relationship between MNZ degradation and various experimental parameters. The elimination of MNZ was assessed under different operational parameters, including pH, contaminant concentration, nanocomposite dosage, and retention time. The outcomes exhibited high a desirability performance of the ANN model with a coefficient correlation (R2) of 0.99. Under optimized circumstances, the MNZ elimination efficiency, as well as the reduction in chemical oxygen demand (COD) and total organic carbon (TOC), reached 92.71%, 70.23%, and 55.08%, respectively. The catalyst showed the ability to be regenerated 8 times with only a slight decrease in its photocatalytic activity. Furthermore, the experimental data obtained demonstrated a good agreement with the predictions of the ANN model. As a result, this study fabricated the ZnFe12O19/BiOI nanocomposite, which gave potential implication value in the effective decontamination of pharmaceutical compounds.


Asunto(s)
Bismuto , Metronidazol , Nanocompuestos , Redes Neurales de la Computación , Contaminantes Químicos del Agua , Zinc , Nanocompuestos/química , Bismuto/química , Catálisis , Metronidazol/química , Contaminantes Químicos del Agua/química , Zinc/química , Fotólisis , Compuestos Férricos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA