Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.054
Filtrar
1.
J Nat Prod ; 87(7): 1888-1892, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38967603

RESUMEN

Cavoxin (1) was isolated as the main phytotoxin produced by Phoma cava Schulzer, a toxigenic fungus isolated from Castanea spp. Its structure was determined by 1D NMR and MS in 1985 along with that of the corresponding chroman-4-one cavoxone (2), an artifact formed by acid treatment of 1. Since that time cavoxin was shown to be phytotoxic, antifungal, antifeedant, herbicidal, and antirust with potential application in agriculture and medicine. During a study aimed at improving cavoxin's production by P. cava, single crystals for X-ray diffractometric analysis were obtained. The X-ray crystallography characterization confirmed only in part the structure proposed for cavoxin (1), revealing a different substitution pattern on the aromatic ring, as depicted in the revised structure 3.


Asunto(s)
Micotoxinas , Cristalografía por Rayos X/métodos , Estructura Molecular , Micotoxinas/química , Micotoxinas/farmacología , Ascomicetos/química , Cromanos/química , Cromanos/farmacología
2.
Talanta ; 278: 126508, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002255

RESUMEN

The demand for plant-based protein sources in the food industry has significantly increased in recent years, leading to the introduction of legume-based products as meat substitutes. However, concerns regarding food quality have emerged, particularly related to the presence of mycotoxins. This study addresses the need for the sensitive detection of phomopsins (PHOs), a class of peptide-based toxins. A selective extraction method using molecularly imprinted polymer (MIP) coupled with ultra-high performance liquid chromatography and tandem mass spectrometry (UHPLC-MS/MS) was focused on the most toxic Phomopsin A (PHO-A). A rapid ultrasonochemical synthesis of MIP (5 min) was proposed and its performance was optimized in response to various factors, including the choice of dummy template and the selection of the monomer. The methacrylic acid-vinyl pyridine (MAA-VP) MIP exhibited high selectivity and affinity for PHO-A. The method was tested in lupin samples and the validation, according to SANTE/11312/2021 international guidelines, gave excellent recovery (80-90 %), low matrix effects, and high accuracy and precision. Real samples analysis confirmed the presence of PHO-A in artificially fungal inoculated lupins, with levels ranging from 0.377 to 0.576 mg kg-1. In order to identify further PHOs, a semi-untargeted approach using multiple reaction monitoring-information dependent acquisition-enhanced product ion (MRM-IDA-EPI) was developed. PHO-B, PHO-D, PHO-E and PHO-P, rarely previously reported in lupin matrix, were tentatively identified. This study accounts for the effectiveness of MIP-based extraction coupled with UHPLC-triple quadrupole with linear ionic trap-MS/MS (UHPLC-QqQ-LIT-MS/MS) for quantification of PHO-A and putative detection of other PHOs, offering a promising method for investigating this class of toxins in food.


Asunto(s)
Lupinus , Polímeros Impresos Molecularmente , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Polímeros Impresos Molecularmente/química , Lupinus/química , Contaminación de Alimentos/análisis , Micotoxinas/análisis , Micotoxinas/química , Impresión Molecular , Oligopéptidos
3.
J Agric Food Chem ; 72(32): 17890-17902, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39083645

RESUMEN

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc TR4) is the most destructive soil-borne fungal disease. Until now, there has been a lack of effective measures to control the disease. It is urgent to explore biocontrol agents to control Foc TR4 and the secretion of mycotoxin. In this study, fluvirucin B6 was screened from Streptomyces solisilvae using an activity-guided method. Fluvirucin B6 exhibited strong antifungal activity against Foc TR4 (0.084 mM of EC50 value) and significantly inhibited mycelial growth and spore germination. Further studies demonstrated that fluvirucin B6 could cause the functional loss of mitochondria, the disorder of metabolism of Foc TR4 cells, and the decrease of enzyme activities in the tricarboxylic acid cycle and electron transport chain, ultimately inhibiting mycotoxin metabolism. In a pot experiment, the application of fluvirucin B6 significantly decreased the incidence of banana Fusarium wilt and the amount of Foc TR4 and controlled fungal toxins in the soil. Additionally, fluvirucin B6 could positively regulate the changes in the structure of the banana rhizosphere microbial community, significantly enriching beneficial microbes associated with disease resistance. In summary, this study identifies fluvirucin B6, which plays versatile roles in managing fungal diseases and mycotoxins.


Asunto(s)
Fungicidas Industriales , Fusarium , Musa , Micotoxinas , Enfermedades de las Plantas , Microbiología del Suelo , Streptomyces , Fusarium/metabolismo , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Musa/microbiología , Streptomyces/metabolismo , Micotoxinas/metabolismo , Micotoxinas/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Microbiota/efectos de los fármacos
4.
Sensors (Basel) ; 24(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38894248

RESUMEN

Red ginseng is widely used in food and pharmaceuticals due to its significant nutritional value. However, during the processing and storage of red ginseng, it is susceptible to grow mold and produce mycotoxins, generating security issues. This study proposes a novel approach using hyperspectral imaging technology and a 1D-convolutional neural network-residual-bidirectional-long short-term memory attention mechanism (1DCNN-ResBiLSTM-Attention) for pixel-level mycotoxin recognition in red ginseng. The "Red Ginseng-Mycotoxin" (R-M) dataset is established, and optimal parameters for 1D-CNN, residual bidirectional long short-term memory (ResBiLSTM), and 1DCNN-ResBiLSTM-Attention models are determined. The models achieved testing accuracies of 98.75%, 99.03%, and 99.17%, respectively. To simulate real detection scenarios with potential interfering impurities during the sampling process, a "Red Ginseng-Mycotoxin-Interfering Impurities" (R-M-I) dataset was created. The testing accuracy of the 1DCNN-ResBiLSTM-Attention model reached 96.39%, and it successfully predicted pixel-wise classification for other unknown samples. This study introduces a novel method for real-time mycotoxin monitoring in traditional Chinese medicine, with important implications for the on-site quality control of herbal materials.


Asunto(s)
Micotoxinas , Redes Neurales de la Computación , Panax , Panax/química , Micotoxinas/análisis , Micotoxinas/química , Imágenes Hiperespectrales/métodos
5.
Toxins (Basel) ; 16(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38922175

RESUMEN

The aim of this study was to evaluate the effectiveness of nine different biological compounds to reduce mycotoxins concentrations. The hypothesis of this study was that a static in vitro gastrointestinal tract model, as an initial screening tool, can be used to simulate the efficacy of Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus yeast cell walls and their polysaccharides, red and white clay minerals, and walnuts nutshells claiming to detoxify AFB1, ZEA, DON, and T-2 toxin mycotoxins. Mycotoxin concentrations were analyzed using high-performance liquid chromatography (HPLC) with fluorescent (FLD) and ultraviolet detectors (UV). The greatest effects on reducing mycotoxin concentrations were determined as follows: for AFB1, inserted G. fermentans cell wall polysaccharides and walnut nutshells; for ZEA, inserted R. rubra and G. fermentans cell walls and red clay minerals; for DON, R. rubra cell wall polysaccharides and red clay minerals; and for T-2 toxin, R. rubra cell walls, K. marxianus, and G. fermentans cell wall polysaccharides and walnut nutshells. The present study indicated that selected mycotoxin-detoxifying biological compounds can be used to decrease mycotoxin concentrations.


Asunto(s)
Arcilla , Juglans , Micotoxinas , Rhodotorula , Juglans/química , Rhodotorula/metabolismo , Micotoxinas/análisis , Micotoxinas/química , Arcilla/química , Geotrichum/efectos de los fármacos , Geotrichum/metabolismo , Nueces/química , Silicatos de Aluminio/química , Minerales
6.
Food Chem ; 456: 139886, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38870804

RESUMEN

Deoxynivalenol (DON) is the most abundant mycotoxin in cereal crops and derived foods and is of great concern in agriculture. Bioremediation strategies have long been sought to minimize the impact of mycotoxin contamination, but few direct and effective enzyme-catalyzed detoxification methods are currently available. In this study, we established a multi-enzymatic cascade reaction and successfully achieved detoxification at double sites: glutathionylation for the C-12,13 epoxide group and epimerization for the C-3 hydroxyl group. This yielded novel derivatives of DON, 3-epi-DON-13-glutathione (3-epi-DON-13-GSH) as well as its by-product, 3-keto-DON-13-GSH, for which precise structures were validated via liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Both cell viability and DNA synthesis assays demonstrated dramatically decreased cytotoxicity of the double-site modified product 3-epi-DON-13-GSH. These findings provide a promising and urgently needed novel method for addressing the problem of DON contamination in agricultural and industrial settings.


Asunto(s)
Tricotecenos , Tricotecenos/química , Tricotecenos/metabolismo , Contaminación de Alimentos/análisis , Humanos , Fusarium/metabolismo , Fusarium/química , Inactivación Metabólica , Micotoxinas/química , Micotoxinas/metabolismo , Supervivencia Celular/efectos de los fármacos , Glutatión/química , Glutatión/metabolismo , Biodegradación Ambiental , Espectrometría de Masas en Tándem
7.
Food Chem ; 456: 140004, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38870813

RESUMEN

Natural toxins, such as mycotoxins and cyanotoxins, can contaminate food and feed, leading to toxicity in humans and animals. This study focused on using nine magnetic nanostructured agents to remove the main types of toxins. Initially, the efficacy of these materials was evaluated in water solutions, revealing that composites with sizes below 3 mm, containing magnetite, activated carbon, esterified pectin, and sodium alginate, removed up to 90% of mycotoxins and cyanotoxins with an adsorption of 873 ng/g. The application of the nanostructures was then assessed in beer, milk, Distillers Dried Grains with Solubles and water contaminated with cyanobacteria. The presence of matrix slightly decreases the adsorption capacity for some toxins. The maximum toxin removal capacity was calculated with cyanotoxins, composites achieved a removal of up to 0.12 mg/g, while nanocomposites (15 µm) reached 36.6 mg/g. Therefore, these findings point out the potential for using nanotechnology in addressing natural toxins contamination.


Asunto(s)
Contaminación de Alimentos , Micotoxinas , Nanoestructuras , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Micotoxinas/química , Micotoxinas/análisis , Adsorción , Nanoestructuras/química , Animales , Cadena Alimentaria , Cerveza/análisis , Leche/química , Toxinas Bacterianas/química , Cianobacterias/química , Microcistinas/química , Microcistinas/análisis
8.
Food Chem ; 456: 140082, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38878532

RESUMEN

Establishing a moderate elimination strategy for mycotoxins with the maintained food nutrition is significant to food safety. Herein, the Au-NPs decorated defective Bi2WO6 (Au-BWO-OV) with modulated ROS generation was successfully synthesized, integrating the merits of defect-engineering and Au-NPs induced LSPR-effect. The Au-BWO-OV exhibited modified photoelectrochemical property and O2-adsorption capacity, supporting the selective generation of •O2- and 1O2 with moderate oxidizing ability. As a result, >90% of AFB1 and ZEN were eliminated within 100 and 50 min, along with the maintained nutrition in vegetable oil. Moreover, the reasonable degradation mechanism triggered by •O2- and 1O2 was proposed based on the trapping experiments, DFT calculations and LC-MS analysis for intermediate products, including the steps of hydrolysis, oxidative dissociation, cis-trans isomerization, and dehydroxylation. This work not only paved the way for balancing the contradiction between detoxification and nutrient retention, but also casted new insights into the ROS-mediated degradation mechanism.


Asunto(s)
Micotoxinas , Aceites de Plantas , Oxígeno Singlete , Superóxidos , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Micotoxinas/química , Micotoxinas/metabolismo , Aceites de Plantas/química , Aceites de Plantas/metabolismo , Superóxidos/química , Superóxidos/metabolismo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Oro/química , Oxidación-Reducción
9.
Food Chem ; 456: 140040, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38878539

RESUMEN

The development of new sensors for on-site food toxin monitoring that combine extraction, analytes distinction and detection is important in resource-limited environments. Surface-enhanced Raman scattering (SERS)-based signal readout features fast response and high sensitivity, making it a powerful method for detecting mycotoxins. In this work, a SERS-based assay for the detection of multiple mycotoxins is presented that combines extraction and subsequent detection, achieving an analytically relevant detection limit (∼ 1 ng/mL), which is also tested in corn samples. This sensor consists of a magnetic-core and mycotoxin-absorbing polydopamine-shell, with SERS-active Au nanoparticles on the outer surface. The assay can concentrate multiple mycotoxins, which are identified through multiclass partite least squares analysis based on their SERS spectra. We developed a strategy for the analysis of multiple mycotoxins with minimal sample pretreatment, enabling in situ analytical extraction and subsequent detection, displaying the potential to rapidly identify lethal mycotoxin contamination on site.


Asunto(s)
Contaminación de Alimentos , Oro , Nanopartículas del Metal , Micotoxinas , Espectrometría Raman , Zea mays , Micotoxinas/análisis , Micotoxinas/química , Espectrometría Raman/métodos , Espectrometría Raman/instrumentación , Contaminación de Alimentos/análisis , Oro/química , Nanopartículas del Metal/química , Zea mays/química , Zea mays/microbiología , Límite de Detección
10.
Int J Biol Macromol ; 271(Pt 2): 132234, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763239

RESUMEN

Lignin, a renewable natural antioxidant and bacteriostat, holds promise as a versatile, cost-effective feed additive. However, traditional industrial lignin faces limitations, including low reactivity, poor uniformity, and unstable properties, necessitating chemical modification. Complex modification methods pose economic and toxicity challenges, so this study adopted a relatively simple alkali-catalyzed phenolization approach, using phenol, catechol, and pyrogallol to modify kraft lignin, and characterized the resulting products using various techniques. Subsequently, their antioxidant, antibacterial, adsorption properties for heavy metal ions and mycotoxins, growth-promoting properties, and antiviral abilities were assessed. The phenolation process led to lignin depolymerization and a notable increase in phenolic hydroxyl content, particularly in pyrogallol-phenolated lignin (Py-L), rising from 3.08 to 4.68 mmol/g. These modified lignins exhibited enhanced antioxidant activity, with over 99 % inhibition against E. coli and S. aureus, and remarkable adsorption capacities for heavy metal ions and mycotoxins. Importantly, Py-L improved the growth performance of mice and reduced influenza mortality. Furthermore, density functional theory calculations elucidated the mechanism behind the enhanced antioxidant properties. This study presents a promising avenue for developing versatile feed additives to address challenges related to animal feed antioxidant supplementation, bacterial control, and growth promotion.


Asunto(s)
Alimentación Animal , Antioxidantes , Lignina , Lignina/química , Antioxidantes/química , Antioxidantes/farmacología , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fenoles/química , Fenoles/farmacología , Staphylococcus aureus/efectos de los fármacos , Adsorción , Pirogalol/química , Pirogalol/farmacología , Metales Pesados/química , Micotoxinas/química , Micotoxinas/farmacología
11.
Food Chem ; 454: 139715, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795619

RESUMEN

Starches-rich and protein-rich cereal samples commonly need tedious sample preparation steps before instrumental analysis. This study developed a miniaturized centrifugal integrated cold-induced phase separation (CIPS) method for convenient sample preparation. A small-sized centrifuge tube (2 mL) and a low-temperature centrifuge, both of which are easily accessible, make up the basic components of the system. Unlike conventional sample preparation methods that need a step-by-step extraction, enrichment, purification, and centrifugation, this centrifugal integrated CIPS method can be performed by a one-step combination protocol under a low-temperature centrifuge. As a proof-of-concept study, satisfactory recoveries and enrichment factors were demonstrated for the extraction of fumonisins and ochratoxins from cereals. A sensitive and selective quantification method was yielded by combining LC-HRMS using tSIM acquisition mode, with good linearity (R2 > 0.998), accuracy (82.9-106.5%), and precision (<13.4%). This strategy is convenient, low-cost, repeatable, and easy to semi-automate, further expanding the extraction potential for other acidic mycotoxins.


Asunto(s)
Grano Comestible , Contaminación de Alimentos , Fumonisinas , Grano Comestible/química , Contaminación de Alimentos/análisis , Fumonisinas/análisis , Fumonisinas/aislamiento & purificación , Centrifugación , Prueba de Estudio Conceptual , Micotoxinas/aislamiento & purificación , Micotoxinas/análisis , Micotoxinas/química , Cromatografía Líquida de Alta Presión , Separación de Fases
12.
Compr Rev Food Sci Food Saf ; 23(3): e13369, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767851

RESUMEN

Mycotoxins, highly toxic and carcinogenic secondary metabolites produced by certain fungi, pose significant health risks as they contaminate food and feed products globally. Current mycotoxin detection methods have limitations in real-time detection capabilities. Aptasensors, incorporating aptamers as specific recognition elements, are crucial for mycotoxin detection due to their remarkable sensitivity and selectivity in identifying target mycotoxins. The sensitivity of aptasensors can be improved by using upconversion nanoparticles (UCNPs). UCNPs consist of lanthanide ions in ceramic host, and their ladder-like energy levels at f-orbitals have unique photophysical properties, including converting low-energy photons to high-energy emissions by a series of complex processes and offering sharp, low-noise, and sensitive near-infrared to visible detection strategy to enhance the efficacy of aptasensors for novel mycotoxin detection. This article aims to review recent reports on the scope of the potential of UCNPs in mycotoxin detection, focusing on their integration with aptasensors to give readers clear insight. We briefly describe the upconversion photoluminescence (UCPL) mechanism and relevant energy transfer processes influencing UCNP design and optimization. Furthermore, recent studies and advancements in UCNP-based aptasensors will be reviewed. We then discuss the potential impact of UCNP-modified aptasensors on food safety and present an outlook on future directions and challenges in this field. This review article comprehensively explains the current state-of-the-art UCNP-based aptasensors for mycotoxin detection. It provides insights into potential applications by addressing technical and practical challenges for practical implementation.


Asunto(s)
Contaminación de Alimentos , Inocuidad de los Alimentos , Micotoxinas , Nanopartículas , Micotoxinas/análisis , Micotoxinas/química , Nanopartículas/química , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos/métodos , Aptámeros de Nucleótidos/química , Calidad de los Alimentos , Técnicas Biosensibles/métodos
13.
Artículo en Inglés | MEDLINE | ID: mdl-38662872

RESUMEN

Maize is an important crop for the Republic of Moldova and one of the crops most contaminated with mycotoxins. Maize grain obtained from plants cultivated on Moldavian cornfields in 2021 and 2022 were tested for mycotoxigenic risk using qPCR with primers to several fungal genome sequences engaged in mycotoxin synthesis and ELISA test to screen total aflatoxins, fumonisin B1, zearalenone, deoxynivalenol and T-2 toxin. Except for T-2 toxin, the mycotoxin concentrations were under the limits of detection and did not exceed maximum admissible levels for unprocessed grain. Concentrations of T-2 toxin in grain samples did not correlate significantly with the quantity of toxigenic F. sporotrichioides. All of the analysed grain samples were contaminated with at least one toxigenic fungus, and 20% of the samples were infected with seven different species of toxigenic fungi. Accumulation of fungi in maize kernels was affected significantly by the season, and generally a decrease was observed in fungal frequency and quantity under drought conditions. However, several toxigenic Aspergillus and Fusarium fungi that are able to produce aflatoxins and fumonisins under improper storage conditions were found in the kernels during the whole period of monitoring.


Asunto(s)
Contaminación de Alimentos , Hongos , Micotoxinas , Zea mays , Zea mays/química , Zea mays/microbiología , Micotoxinas/análisis , Micotoxinas/química , Contaminación de Alimentos/análisis , Hongos/aislamiento & purificación , Moldavia
14.
Toxins (Basel) ; 16(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38668610

RESUMEN

Ribosome-inactivating proteins (RIPs) are a group of proteins with rRNA N-glycosylase activity that irreversibly inhibit protein synthesis and consequently cause cell death. Recently, an RIP called ledodin has been found in shiitake; it is cytotoxic, strongly inhibits protein synthesis, and shows rRNA N-glycosylase activity. In this work, we isolated and characterized a 50 kDa cytotoxic protein from shiitake that we named edodin. Edodin inhibits protein synthesis in a mammalian cell-free system, but not in insect-, yeast-, and bacteria-derived systems. It exhibits rRNA N-glycosylase and DNA-nicking activities, which relate it to plant RIPs. It was also shown to be toxic to HeLa and COLO 320 cells. Its structure is not related to other RIPs found in plants, bacteria, or fungi, but, instead, it presents the characteristic structure of the fold type I of pyridoxal phosphate-dependent enzymes. Homologous sequences have been found in other fungi of the class Agaricomycetes; thus, edodin could be a new type of toxin present in many fungi, some of them edible, which makes them of great interest in health, both for their involvement in food safety and for their potential biomedical and biotechnological applications.


Asunto(s)
Ribosomas , Hongos Shiitake , Humanos , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Hongos Shiitake/química , Células HeLa , Animales , Micotoxinas/toxicidad , Micotoxinas/química , Proteínas Inactivadoras de Ribosomas/química , Proteínas Inactivadoras de Ribosomas/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/toxicidad , Proteínas Fúngicas/farmacología , Proteínas Fúngicas/metabolismo , Línea Celular Tumoral
15.
Vopr Pitan ; 93(1): 103-111, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38555614

RESUMEN

Tomatoes and tomato products are widely produced and consumed throughout the world. Alternaria spp. are the main cause of alternariosis (black mold disease) on fresh tomatoes, both in the field and after harvesting. Alternaria toxins are widespread contaminants of tomato products. The aim of the present study was to evaluate the contamination of tomato processing products from the domestic market with Alternaria toxins, as well as to assess their intake by humans through the consumption of tomato juices. Material and methods. The content of Alternaria toxins (alternatiol, alternariol monomethyl ether, altenuene, tentoxin, tenuazonic acid) was determined in 64 samples of tomato products (paste, ketchup, juice) by high-performance liquid chromatography coupled to tandem mass-spectrometric detection (HPLC-MS/MS). Results. The priority Alternaria toxins for tomato paste, ketchup and juice were tenuazonic acid (61% of 64 samples, in amounts from 20.0 to 1065.5 µg/kg), altenuene (52%, 8.9-200.1 µg/kg) and alternariol (27%, 12.2-561.6 µg/kg). Samples of tomato paste turned out to be the most contaminated with Alternaria toxins while tomato juice samples were the least contaminated. At the same time, several toxins were found in 91% of tomato paste samples, 35% of ketchups, and 23% of tomato juices. Conclusion. To the best of our knowledge, the present study is the first survey devoted to Alternaria toxins contamination of tomato paste, ketchup and tomato juice sold on the Russian market. The high frequency of their contamination with tenuazonic acid, altenuene and, to a lesser extent, alternariol has been established, which indicates a potential risk to human health when tomato processing products are consumed. This indicates the need for a hygienic assessment of contamination the above products with tenuazonic acid, altenuene and alternariol. When calculating the potential intake of Alternaria toxins for different age population groups, it was shown that high levels of alternariol (up to 56.77 ng/kg body weight per day) could be obtained under daily consumption of tomato juice by adults and children under three years of age, as well as tenuazonic acid when consuming tomato juice contaminated at the 95th percentile level as part of the diet in organized groups for orphans and children without parental care.


Asunto(s)
Lactonas , Micotoxinas , Solanum lycopersicum , Niño , Humanos , Preescolar , Ácido Tenuazónico/análisis , Micotoxinas/análisis , Micotoxinas/química , Alternaria , Espectrometría de Masas en Tándem/métodos , Contaminación de Alimentos/análisis
16.
Food Chem Toxicol ; 186: 114556, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432441

RESUMEN

Mycotoxins can be found in food and feed storage as well as in several kinds of foodstuff and are capable of harming mammals and some of them even in small doses. This study investigated on the undifferentiated neuronal cell line SH-SY5Y the effects of two mycotoxins: patulin (PAT) and citrinin (CTN), which are predominantly produced by fungi species Penicillium and Aspergillus. Here, the individual and combined cytotoxicity of PAT and CTN was investigated using the cytotoxic assay MTT. Our findings indicate that after 24 h of treatment, the IC50 value for PAT is 2.01 µM, which decreases at 1.5 µM after 48 h. In contrast, CTN did not attain an IC50 value at the tested concentration. Therefore, we found PAT to be the more toxic compared to CTN. However, the combined treatment suggests an additive toxic effect. With 2,7-dichlorodihydrofluorescin diacetate (DCFH-DA) DCFH-DA assay, ROS generation was demonstrated after CTN treatment, but PAT showed only small changes. The mixture presented a very constant behavior over time. Finally, the median-effect/combination index (CI-) isobologram equation demonstrated an additive effect after 24 h, but an antagonistic effect after 48 h for the interaction of the two mycotoxins.


Asunto(s)
Citrinina , Fluoresceínas , Neuroblastoma , Patulina , Animales , Humanos , Línea Celular , Citrinina/toxicidad , Mamíferos , Patulina/toxicidad , Patulina/metabolismo , Micotoxinas/química , Micotoxinas/metabolismo
17.
J Sci Food Agric ; 104(9): 5495-5503, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38363077

RESUMEN

BACKGROUND: Maize is frequently contaminated with deoxynivalenol (DON) and fumonisins B1 (FB1) and B2 (FB2). In the European Union, these mycotoxins are regulated in maize and maize-derived products. To comply with these regulations, industries require a fast, economic, safe, non-destructive and environmentally friendly analysis method. RESULTS: In the present study, near-infrared hyperspectral imaging (NIR-HSI) was used to develop regression and classification models for DON, FB1 and FB2 in maize kernels. The best regression models presented the following root mean square error of cross validation and ratio of performance to deviation values: 0.848 mg kg-1 and 2.344 (DON), 3.714 mg kg-1 and 2.018 (FB1) and 2.104 mg kg-1 and 2.301 (FB2). Regarding classification, European Union legal limits for DON and FB1 + FB2 were selected as thresholds to classify maize kernels as acceptable or not. The sensitivity and specificity were 0.778 and 1 for the best DON classification model and 0.607 and 0.938 for the best FB1 + FB2 classification model. CONCLUSION: NIR-HSI can help reduce DON and fumonisins contamination in the maize food and feed chain. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Contaminación de Alimentos , Fumonisinas , Semillas , Espectroscopía Infrarroja Corta , Tricotecenos , Zea mays , Zea mays/química , Zea mays/microbiología , Fumonisinas/análisis , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Tricotecenos/análisis , Espectroscopía Infrarroja Corta/métodos , Semillas/química , Semillas/microbiología , Imágenes Hiperespectrales/métodos , Micotoxinas/análisis , Micotoxinas/química
18.
Food Chem Toxicol ; 186: 114516, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382872

RESUMEN

Zearalenone (ZEA), one of the usual mycotoxins, has been recognized in many areas and crops, posing a significant threat to the living organisms even to human beings. However, the mechanisms of locomotive defects remain unknown. Herein, zebrafish larvae was employed to investigate ZEA effects on developmental indexes, muscle and neural toxicity, apoptosis, transcriptome and motor behaviors of zebrafish larvae. Zebrafish larvae exposed to ZEA (0, 0.5, 1, 2 and 4 µM) showed no change in survival rate, but the malformation rate of zebrafish larvae increased dramatically manifesting with severe body bending and accomplished with adverse effects on hatching rate and body length. Moreover, the larvae manifested with defective muscle and abnormal neural development, resulting in decreased swimming ability, which probably due to the abnormal overactivation of apoptosis. And this was confirmed by enriched caspase 8-mediated apoptosis signaling pathway in the following transcriptome analysis. Meanwhile, there was a recovery in swimming behaviors in the larvae co-exposed in ZEA and caspase 8 inhibitor. These findings provide an important evidence for risk assessment and potential treatment target of ZEA exposure.


Asunto(s)
Discinesias , Zearalenona , Animales , Humanos , Apoptosis , Caspasa 8/genética , Caspasa 8/metabolismo , Larva , Músculos/metabolismo , Zearalenona/toxicidad , Zearalenona/metabolismo , Pez Cebra , Micotoxinas/química , Micotoxinas/metabolismo
19.
Org Lett ; 26(3): 597-601, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38198624

RESUMEN

Fusaramin (1) was isolated as a mitochondrial inhibitor. However, the fungal producer stops producing 1, which necessitates us to supply 1 by total synthesis. We proposed the complete stereochemical structure based on the biosynthetic pathway of sambutoxin. We have established concise and robust total synthesis of 1, enabling us to determine the complete stereochemical structure and to elucidate the structure-activity relationship, and uncover the hidden antiplant pathogenic fungal activity.


Asunto(s)
Antiinfecciosos , Hongos , Antiinfecciosos/química , Relación Estructura-Actividad , Micotoxinas/química
20.
Molecules ; 28(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836726

RESUMEN

Mycotoxins and pesticides are the most concerning chemical contaminants that can affect the quality of Pu-erh tea during its production and storage. This study presents a method that can simultaneously determine 31 pesticide residues and six mycotoxins in Pu-erh tea within 11 min using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) after QuEChERS extraction. The lower limit of quantification (LOQ) for all analytes ranged between 0.06 and 50 ppb. Recoveries for each pesticide and mycotoxin ranged between 62.0 and 130.3%, with intra- and inter-day precisions lower than 15%. Good linear relationships were obtained, with correlation coefficients of r2 > 0.991 for all analytes. The established method was applied to 31 Pu-erh tea samples, including raw and ripened Pu-erh tea with different storage times. As a result, pesticide residues were not detected in any of the collected samples, and the mycotoxins detected in the samples were well below the official maximum residue limits (MRLs). Notably, the levels of aflatoxin B1 (AFB1), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) were lower than 1 ppb in the samples stored for more than 30 years.


Asunto(s)
Micotoxinas , Residuos de Plaguicidas , Cromatografía Líquida de Alta Presión/métodos , Micotoxinas/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Residuos de Plaguicidas/análisis , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA