Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-31812672

RESUMEN

Insects are reported to have water midgut countercurrents fluxes powering enzyme recovery before excretion, usually known as enzyme recycling. Up to now there is a single, and very incomplete, attempt to relate transporters and channels with countercurrent fluxes. In this work, M. domestica midgut water fluxes were inferred from the concentration of ingested and non absorbable dye along the midgut, which anterior midgut was divided in two sections (A1, A2), the middle in one (M) and the posterior midgut in four (P1, P2, P3, and P4), which led to the finding of additional sites of secretion and absorption. Water is secreted in A1 and A2 and absorbed at the middle midgut (M), whereas in posterior midgut, water is absorbed at P2 and secreted in the other sections, mainly at P4. Thus, a countercurrent flux is formed from P4 to P2. To disclose the involvement of the known water transporters Na+:K+:2Cl- (NKCC) and K+:Cl- (KCC), as well as the water channels aquaporins in water fluxes, their expression was evaluated by RNA-seq analyses from triplicate samples of seven sections along the midgut. MdNKCC1 was expressed in A1, MdNKCC2 was expressed in M1 and P2 and MdKCC in middle and in the most posterior region, thus apparently involved in secretion, absorption and both, respectively. MdNKCC2, MdKCC and aquaporins MdDRIP1 and 2 were confirmed as being apical by proteomics of purified microvillar membranes. The role of NKCC and KCC on midgut water fluxes was tested observing the effect of the inhibitor furosemide. The change of trypsin distribution along the posterior midgut and the increase of trypsin excretion in the presence of furosemide lend support to the proposal that countercurrent fluxes power enzyme recycling and that the fluxes are caused by NKCC and KCC transporters helped by aquaporins.


Asunto(s)
Moscas Domésticas/metabolismo , Proteínas de Insectos/metabolismo , Animales , Transporte Biológico , Tracto Gastrointestinal/metabolismo , Moscas Domésticas/enzimología , Moscas Domésticas/genética , Moscas Domésticas/crecimiento & desarrollo , Proteínas de Insectos/genética , Filogenia , Proteoma/metabolismo , RNA-Seq , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 4 de la Familia de Transportadores de Soluto 12/genética , Miembro 4 de la Familia de Transportadores de Soluto 12/metabolismo , Agua/metabolismo
2.
Sci Rep ; 9(1): 6356, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015511

RESUMEN

Plasmodium falciparum malaria causes half a million deaths per year, with up to 9% of this mortality caused by cerebral malaria (CM). One of the major processes contributing to the development of CM is an excess of host inflammatory cytokines. Recently K+ signaling has emerged as an important mediator of the inflammatory response to infection; we therefore investigated whether mice carrying an ENU induced activation of the electroneutral K+ channel KCC1 had an altered response to Plasmodium berghei. Here we show that Kcc1M935K/M935K mice are protected from the development of experimental cerebral malaria, and that this protection is associated with an increased CD4+ and TNFa response. This is the first description of a K+ channel affecting the development of experimental cerebral malaria.


Asunto(s)
Activación del Canal Iónico , Malaria Cerebral/metabolismo , Malaria Cerebral/prevención & control , Miembro 4 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Resistencia a la Enfermedad , Femenino , Mediadores de Inflamación/metabolismo , Malaria Cerebral/inmunología , Malaria Cerebral/parasitología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación/genética , Plasmodium berghei/fisiología , Miembro 4 de la Familia de Transportadores de Soluto 12/genética
3.
Sci Rep ; 6: 35205, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27748416

RESUMEN

Neuroregeneration and apoptosis are two important pathophysiologic changes after spinal cord injury (SCI), but their underlying mechanisms remain unclear. MicroRNAs (miRNAs) play a crucial role in the regulation of neuroregeneration and neuronal apoptosis, research areas that have been greatly expanded in recent years. Here, using miRNA arrays to profile miRNA transcriptomes, we demonstrated that miR-127-3p was significantly down-regulated after spinal cord transection (SCT). Then, bioinformatics analyses and experimental detection showed that miR-127-3p exhibited specific effects on the regulation of neurite outgrowth and the induction of neuronal apoptosis by regulating the expression of the mitochondrial membrane protein mitoNEET. Moreover, knockdown of MitoNEET leaded to neuronal loss and apoptosis in primary cultured spinal neurons. This study therefore revealed that miR-127-3p, which targets mitoNEET, plays a vital role in regulating neurite outgrowth and neuronal apoptosis after SCT. Thus, modificatioin of the mitoNEET expression, such as mitoNEET activition may provide a new strategy for the treatment of SCI in preclinical trials.


Asunto(s)
Apoptosis , MicroARNs/genética , Proteínas Mitocondriales/metabolismo , Regeneración Nerviosa , Neuritas/metabolismo , Neuronas/patología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Barrera Hematoencefálica , Biología Computacional , Regulación hacia Abajo , Potenciales Evocados Somatosensoriales , Femenino , Proteína GAP-43/metabolismo , Proyección Neuronal , Neuronas/citología , Ratas , Ratas Sprague-Dawley , Miembro 4 de la Familia de Transportadores de Soluto 12/metabolismo , Traumatismos de la Médula Espinal/genética
4.
Am J Physiol Regul Integr Comp Physiol ; 307(11): R1303-12, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25298512

RESUMEN

Regulation of plasma K(+) levels in narrow ranges is vital to vertebrate animals. Since seawater (SW) teleosts are loaded with excess K(+), they constantly excrete K(+) from the gills. However, the K(+) regulatory mechanisms in freshwater (FW)-acclimated teleosts are still unclear. We aimed to identify the possible K(+) regulatory mechanisms in the gills and kidney, the two major osmoregulatory organs, of FW-acclimated Mozambique tilapia (Oreochromis mossambicus). As a potential molecular candidate for renal K(+) handling, a putative renal outer medullary K(+) channel (ROMK) was cloned from the tilapia kidney and tentatively named "ROMKb"; another ROMK previously cloned from the tilapia gills was thus renamed "ROMKa". The fish were acclimated to control FW or to high-K(+) (H-K) FW for 1 wk, and we assessed physiological responses of tilapia to H-K treatment. As a result, urinary K(+) levels were slightly higher in H-K fish, implying a role of the kidney in K(+) excretion. However, the mRNA expression levels of both ROMKa and ROMKb were very low in the kidney, while that of K(+)/Cl(-) cotransporter 1 (KCC1) was robust. In the gills, ROMKa mRNA was markedly upregulated in H-K fish. Immunofluorescence staining showed that branchial ROMKa was expressed at the apical membrane of type I and type III ionocytes, and the ROMKa immunosignals were more intense in H-K fish than in control fish. The present study suggests that branchial ROMKa takes a central role for K(+) regulation in FW conditions and that K(+) excretion via the gills is activated irrespective of environmental salinity.


Asunto(s)
Aclimatación/fisiología , Agua Dulce , Expresión Génica/fisiología , Branquias/metabolismo , Riñón/metabolismo , Canales de Potasio de Rectificación Interna/genética , Potasio/farmacología , Tilapia/metabolismo , Animales , Branquias/citología , Riñón/citología , Concentración Osmolar , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/biosíntesis , Miembro 4 de la Familia de Transportadores de Soluto 12/metabolismo , Equilibrio Hidroelectrolítico/genética , Equilibrio Hidroelectrolítico/fisiología
5.
Cell Physiol Biochem ; 32(7): 14-31, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24429812

RESUMEN

The homologous genes encoding the electroneutral solute carrier family 12A (SLC12A) were identified more than 20 years ago, however, over the last few years, it has become clear that each of the genes within this family potentially encode for more than one cation-chloride cotransporter (CCC). Even more surprising, despite more than 30 years of functional studies and a wealth of knowledge on the activators, inhibitors, ion affinities, and kinetics of these cotransporters, we still cannot sufficiently explain why some cells express only one CCC isoform, while others express two, three, or more CCC isoforms. In 2009, Drs. Alvarez-Leefmans and Di Fulvio published an extensive in silico molecular analysis of the potential splice variants of the Na(+)-dependent cation-chloride cotransporters. In this review, we will look at the exceptionally large variety of potential splice variants within the Na(+)-independent cation-chloride cotransporter (SLC12A4-SLC12A7) genes, their initial tissue identification, and their physiological relevance.


Asunto(s)
Cloruros/metabolismo , Transporte Iónico/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Miembro 4 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo , Proteínas Portadoras/química , Cationes/metabolismo , Humanos , Cinética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Simportadores de Cloruro de Sodio-Potasio/química , Simportadores de Cloruro de Sodio-Potasio/genética , Miembro 4 de la Familia de Transportadores de Soluto 12/química , Miembro 4 de la Familia de Transportadores de Soluto 12/genética , Simportadores/química , Simportadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA