Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Curr Biol ; 34(15): R722-R723, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106826

RESUMEN

Camouflage is vital for the survival of many prey species1,2, including ground-nesting birds3,4,5,6. Egg camouflage via background matching and disruptive coloration (high contrast markings that break up the body outline) is often behaviourally mediated by selecting substrates that enhance egg camouflage1,2,3,4,5,6. However, the mechanisms controlling this behaviour in birds have remained unknown. Several, not mutually exclusive, mechanisms have been suggested to control background choice for egg camouflage7. These include where individual background preferences are genetically linked to egg coloration, enabled through learning egg appearances from previous breeding attempts, or modified by imprinting on visual backgrounds during early life7, Here, using predator vision models, we compared the camouflage of Japanese quail (Coturnix japonica) eggs among females who were allowed to choose one of four coloured substrates on which to lay3. Birds were divided into experienced females who had been given the opportunity to observe the appearance of their eggs, versus naïve females breeding for the first time. Our experiment revealed that breeding experience leads to improved background choices made for egg background matching. However, substrate choice for disruptive coloration appeared genetically determined, as both bird groups chose backgrounds that enhanced egg disruptiveness regardless of experience. These mechanisms underpin behaviours that are likely essential for birds and other animals to optimise camouflage and avoid predation6.


Asunto(s)
Coturnix , Animales , Femenino , Coturnix/fisiología , Óvulo/fisiología , Comportamiento de Nidificación , Pigmentación , Conducta de Elección/fisiología , Color , Mimetismo Biológico , Aprendizaje/fisiología
2.
Front Immunol ; 15: 1414450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165361

RESUMEN

Background: In the ongoing battle against breast cancer, a leading cause of cancer-related mortality among women globally, the urgent need for innovative prognostic markers and therapeutic targets is undeniable. This study pioneers an advanced methodology by integrating machine learning techniques to unveil a vascular mimicry signature, offering predictive insights into breast cancer outcomes. Vascular mimicry refers to the phenomenon where cancer cells mimic blood vessel formation absent of endothelial cells, a trait associated with heightened tumor aggression and diminished response to conventional treatments. Methods: The study's comprehensive analysis spanned data from over 6,000 breast cancer patients across 12 distinct datasets, incorporating both proprietary clinical data and single-cell data from 7 patients, accounting for a total of 43,095 cells. By employing an integrative strategy that utilized 10 machine learning algorithms across 108 unique combinations, the research scrutinized 100 existing breast cancer signatures. Empirical validation was sought through immunohistochemistry assays, alongside explorations into potential immunotherapeutic and chemotherapeutic avenues. Results: The investigation successfully identified six genes related to vascular mimicry from multi-center cohorts, laying the groundwork for a novel predictive model. This model outstripped the prognostic accuracy of traditional clinical and molecular indicators in forecasting recurrence and mortality risks. High-risk individuals identified by our model faced worse outcomes. Further validation through IHC assays in 30 patients underscored the model's extensive applicability. Notably, the model unveiled varying therapeutic responses; low-risk patients might achieve greater benefits from immunotherapy, whereas high-risk patients demonstrated a particular sensitivity to certain chemotherapies, such as ispinesib. Conclusions: This model marks a significant step forward in the precise evaluation of breast cancer prognosis and therapeutic responses across different patient groups. It heralds the possibility of refining patient outcomes through tailored treatment strategies, accentuating the potential of machine learning in revolutionizing cancer prognosis and management.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Automático , Humanos , Femenino , Neoplasias de la Mama/patología , Pronóstico , Biomarcadores de Tumor , Mimetismo Biológico , Neovascularización Patológica
3.
Am Nat ; 204(3): 304-313, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39179230

RESUMEN

AbstractIntraspecific variation in camouflage is common in animals. Sexual dimorphism in camouflage is less common and, where observed, attributed to trade-offs between natural selection for predator avoidance and sexual selection for conspicuous mating signals. Here we report on variation in putatively cryptic ventral hindwing patterns in the American snout butterfly, Libytheana carinenta. We use field surveys and crowdsourced data to characterize three morphs. One is found in both sexes, one is male specific, and one is female specific. The sex-specific morphs constitute a sexually dimorphic set whose frequencies change together in time. Field surveys indicate that butterflies in southern Arizona transition from midsummer dominance of the sexually monomorphic pattern to early-fall dominance of the sexually dimorphic set. Crowdsourced data indicate that the sexually dimorphic set dominates in early spring, transitioning later into a mixture of morphs dominated by the monomorphic pattern, with the dimorphic set rising in frequency again in late fall. We discuss this unique pattern of camouflage variation with respect to contemporary theory on animal coloration.


Asunto(s)
Mariposas Diurnas , Pigmentación , Estaciones del Año , Alas de Animales , Animales , Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/fisiología , Alas de Animales/anatomía & histología , Masculino , Femenino , Arizona , Caracteres Sexuales , Mimetismo Biológico
4.
Proc Biol Sci ; 291(2028): 20240865, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39137890

RESUMEN

Many animals rely on visual camouflage to avoid detection and increase their chances of survival. Edge disruption is commonly seen in the natural world, with animals evolving high-contrast markings that are incongruent with their real body outline in order to avoid recognition. While many studies have investigated how camouflage properties influence viewer performance and eye movement in predation search tasks, researchers in the field have yet to consider how camouflage may directly modulate visual attention and object processing. To examine how disruptive coloration modulates attention, we use a visual object recognition model to quantify object saliency. We determine if object saliency is predictive of human behavioural performance and subjective certainty, as well as neural signatures of attention and decision-making. We show that increasing edge disruption not only reduces detection and identification performance but is also associated with a dampening of neurophysiological signatures of attentional filtering. Increased self-reported certainty regarding decisions corresponds with neurophysiological signatures of evidence accumulation and decision-making. In summary, we have demonstrated a potential mechanism by which edge disruption increases the evolutionary fitness of animals by reducing the brain's ability to distinguish signal from noise, and hence to detect and identify the camouflaged animal.


Asunto(s)
Atención , Toma de Decisiones , Animales , Humanos , Percepción Visual , Mimetismo Biológico , Masculino
5.
Invertebr Syst ; 382024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39208206

RESUMEN

The Australian plant bug tribe Austromirini consists of ant-mimetic taxa which are poorly known, with no information of their phylogenetic relationships and ant-mimetic traits. In this study, we examined nearly 1000 ingroup specimens and developed a comprehensive morphological dataset comprising 37 characters, which was analysed both weighted and unweighted, using 'Tree analysis using New Technology' (TNT ) software. A single minimal length phylogenetic tree was found, comprising a monophyletic group of ant-mimetic taxa, that included Myrmecoroides rufescens , Myrmecoridea sp., Kirkaldyella spp. and eight species of a new genus, Carenotus gen. nov. The myrmecomorphic traits of Carenotus and allied ant-mimetic taxa are documented and analysed phylogenetically, in conjunction with genitalic characters. Carenotus is defined by the myrmecomorphic colour patterning of the abdominal venter, whereas the ingroup species relationships are supported by genitalic characters alone. Carenotus is described as new with eight included species as follows: C. arltunga sp. nov., C. louthensis sp. nov., C. luritja sp. nov., C. pullabooka sp. nov., C. scaevolaphilus sp. nov., C. schwartzi sp. nov., C. tanami sp. nov. and C. yuendumu sp. nov. Host plant associations are also documented, ranging from host plant specificity and genus-group preferences to host plant generalism. The distribution of Carenotus species is documented with reference to phytogeographic subregions, with all species being semi-arid and arid dwelling. The male and female genitalia of Kirkaldyella pilosa and K. rugosa are described and illustrated, for comparative and phylogenetic purposes. This research expands our knowledge on the plant bug tribe Austromirini and has broader implications for myrmecomorphic research in the suborder Heteroptera. ZooBank: urn:lsid:zoobank.org:pub:2FF9BE23-38A6-42B4-8488-74F216D8237F.


Asunto(s)
Hormigas , Heterópteros , Filogenia , Especificidad de la Especie , Animales , Heterópteros/anatomía & histología , Australia , Femenino , Masculino , Mimetismo Biológico , Distribución Animal
6.
Curr Biol ; 34(14): 3258-3264.e5, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38959882

RESUMEN

Many animals avoid detection or recognition using camouflage tailored to the visual features of their environment.1,2,3 The appearance of those features, however, can be affected by fluctuations in local lighting conditions, making them appear different over time.4,5 Despite dynamic lighting being common in many terrestrial and aquatic environments, it is unknown whether dynamic lighting influences the camouflage patterns that animals adopt. Here, we test whether a common form of underwater dynamic lighting, consisting of moving light bands that can create local fluctuations in the intensity of light ("water caustics"), affects the camouflage of cuttlefish (Sepia officinalis). Owing to specialized pigment cells (chromatophores) in the skin,6 these cephalopod mollusks can dynamically adjust their body patterns in response to features of their visual scene.7,8,9 Although cuttlefish resting on plain or patterned backgrounds usually expressed uniform or disruptive body patterns, respectively,10,11,12 exposure to these backgrounds in dynamic lighting induced stronger disruptive patterns regardless of the background type. Dynamic lighting increased the maximum contrast levels within scenes, and these maximum contrast levels were associated with the degree of cuttlefish disruptive camouflage. This adoption of disruptive camouflage in dynamically lit scenes may be adaptive, reducing the likelihood of detection, or alternatively, it could represent a constraint on visual processing.


Asunto(s)
Mimetismo Biológico , Iluminación , Sepia , Animales , Sepia/fisiología , Luz , Cromatóforos/fisiología
7.
Proc Biol Sci ; 291(2027): 20240627, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39045691

RESUMEN

The extent to which evolution is repeatable has been a debated topic among evolutionary biologists. Although rewinding the tape of life perhaps would not lead to the same outcome every time, repeated evolution of analogous genes for similar functions has been extensively reported. Wing phenotypes of butterflies and moths have provided a wealth of examples of gene re-use, with certain 'hotspot loci' controlling wing patterns across diverse taxa. Here, we present an example of convergent evolution in the molecular genetic basis of Batesian wing mimicry in two Hypolimnas butterfly species. We show that mimicry is controlled by variation near cortex/ivory/mir-193, a known butterfly hotspot locus. By dissecting the genetic architecture of mimicry in Hypolimnas misippus and Hypolimnas bolina, we present evidence that distinct non-coding regions control the development of white pattern elements in the forewing and hindwing of the two species, suggesting independent evolution, and that no structural variation is found at the locus. Finally, we also show that orange coloration in H. bolina is associated with optix, a well-known patterning gene. Overall, our study once again implicates variation near the hotspot loci cortex/ivory/mir-193 and optix in butterfly wing mimicry and thereby highlights the repeatability of adaptive evolution.


Asunto(s)
Mimetismo Biológico , Mariposas Diurnas , Alas de Animales , Mariposas Diurnas/genética , Mariposas Diurnas/fisiología , Animales , Alas de Animales/anatomía & histología , Pigmentación/genética , MicroARNs/genética , Evolución Biológica , Fenotipo
8.
Sci Rep ; 14(1): 17123, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075131

RESUMEN

Nudibranch mollusks, which are well-known for their vivid warning coloration and effective defenses, are mimicked by diverse invertebrates to deter predation through both Müllerian and Batesian strategies. Despite extensive documentation across different taxa, mimickers have not been detected among annelids, including polychaetes, until now. This study described a new genus and species of polychaete living on Dendronephthya octocorals in Vietnam and Japan. Belonging to Syllidae, it exhibits unique morphological adaptations such as a low number of body segments, simple chaetae concealed within the parapodia and large and fusiform antennae and cirri. Moreover, these appendages are vividly colored, featuring an internal dark red area with numerous terminal white spots and bright yellow tips, effectively contributing to mimicking the appearance of a nudibranch. This discovery not only documents the first known instance of such mimicry among annelids, but also expands our understanding of evolutionary adaptation and ecological strategies in marine invertebrates.


Asunto(s)
Poliquetos , Animales , Poliquetos/clasificación , Poliquetos/anatomía & histología , Poliquetos/fisiología , Vietnam , Mimetismo Biológico/fisiología , Japón , Evolución Biológica
9.
Proc Biol Sci ; 291(2027): 20240953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39013421

RESUMEN

The selective factors that shape phenotypic diversity in prey communities with aposematic animals are diverse and coincide with similar diversity in the strength of underlying secondary defences. However, quantitative assessments of colour pattern variation and the strength of chemical defences in assemblages of aposematic species are lacking. We quantified colour pattern diversity using quantitative colour pattern analysis (QCPA) in 13 dorid nudibranch species (Infraorder: Doridoidei) that varied in the strength of their chemical defences. We accounted for the physiological properties of a potential predator's visual system (a triggerfish, Rhinecanthus aculeatus) and modelled the appearance of nudibranchs from multiple viewing distances (2 and 10 cm). We identified distinct colour pattern properties associated with the presence and strength of chemical defences. Specifically, increases in chemical defences indicated increases in colour pattern boldness (i.e. visual contrast elicited via either or potentially coinciding chromatic, achromatic and/or spatial contrast). Colour patterns were also less variable among species with chemical defences when compared to undefended species. Our results indicate correlations between secondary defences and diverse, bold colouration while showing that chemical defences coincide with decreased colour pattern variability among species. Our study suggests that complex spatiochromatic properties of colour patterns perceived by potential predators can be used to make inferences on the presence and strength of chemical defences.


Asunto(s)
Color , Gastrópodos , Conducta Predatoria , Animales , Gastrópodos/fisiología , Pigmentación , Mimetismo Biológico
10.
Mol Ecol ; 33(14): e17438, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923007

RESUMEN

A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which species share a conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which mimicry is produced in poison frogs. We assembled a 6.02-Gbp genome with a contig N50 of 310 Kbp, a scaffold N50 of 390 Kbp and 85% of expected tetrapod genes. We leveraged this genome to conduct gene expression analyses throughout development of four colour morphs of Ranitomeya imitator and two colour morphs from both R. fantastica and R. variabilis which R. imitator mimics. We identified a large number of pigmentation and patterning genes differentially expressed throughout development, many of them related to melanophores/melanin, iridophore development and guanine synthesis. We also identify the pteridine synthesis pathway (including genes such as qdpr and xdh) as a key driver of the variation in colour between morphs of these species, and identify several plausible candidates for colouration in vertebrates (e.g. cd36, ep-cadherin and perlwapin). Finally, we hypothesise that keratin genes (e.g. krt8) are important for producing different structural colours within these frogs.


Asunto(s)
Mimetismo Biológico , Fenotipo , Pigmentación , Animales , Mimetismo Biológico/genética , Pigmentación/genética , Genómica , Ranidae/genética , Ranidae/crecimiento & desarrollo , Genoma/genética , Evolución Biológica , Selección Genética , Anuros/genética , Anuros/crecimiento & desarrollo
11.
Sci Adv ; 10(24): eadl2286, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38865449

RESUMEN

Müllerian mimicry was proposed to be an example of a coevolved mutualism promoted by population isolation in glacial refugia. This, however, has not been well supported in butterfly models. Here, we use genomic data to test this theory while examining the population genetics behind mimetic diversification in a pair of co-mimetic bumble bees, Bombus breviceps Smith and Bombus trifasciatus Smith. In both lineages, populations were structured by geography but not as much by color pattern, suggesting sharing of color alleles across regions of restricted gene flow and formation of mimicry complexes in the absence of genetic differentiation. Demographic analyses showed mismatches between historical effective population size changes and glacial cycles, and niche modeling revealed only mild habitat retraction during glaciation. Moreover, mimetic subpopulations of the same color form in the two lineages only in some cases exhibit similar population history and genetic divergence. Therefore, the current study supports a more complex history in this comimicry than a simple refugium-coevolution model.


Asunto(s)
Mimetismo Biológico , Animales , Abejas/genética , Abejas/fisiología , Mimetismo Biológico/genética , Refugio de Fauna , Evolución Biológica , Flujo Génico , Genética de Población , Filogenia , Ecosistema , Coevolución Biológica , Variación Genética
12.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38874406

RESUMEN

Aposematic organisms rely on their conspicuous appearance to signal that they are defended and unpalatable. Such phenotypes are strongly tied to survival and reproduction. Aposematic colors and patterns are highly variable; however, the genetic, biochemical, and physiological mechanisms producing this conspicuous coloration remain largely unidentified. Here, we identify genes potentially affecting color variation in two color morphs of Ranitomeya imitator: the orange-banded Sauce and the redheaded Varadero morphs. We examine gene expression in black and orange skin patches from the Sauce morph and black and red skin patches from the Varadero morph. We identified genes differentially expressed between skin patches, including those that are involved in melanin synthesis (e.g. mlana, pmel, tyrp1), iridophore development (e.g. paics, ppat, ak1), pteridine synthesis (e.g. gch1, pax3-a, xdh), and carotenoid metabolism (e.g. dgat2, rbp1, scarb2). In addition, using weighted correlation network analysis, we identified the top 50 genes with high connectivity from the most significant network associated with gene expression differences between color morphs. Of these 50 genes, 13 were known to be related to color production (gch1, gmps, gpr143, impdh1, mc1r, pax3-a, pax7, ppat, rab27a, rlbp1, tfec, trpm1, xdh).


Asunto(s)
Pigmentación , Ranas Venenosas , Animales , Mimetismo Biológico/genética , Melaninas/biosíntesis , Pigmentación/genética , Ranas Venenosas/genética
13.
Behav Processes ; 220: 105071, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908610

RESUMEN

Prey-predator interactions have resulted in the evolution of many anti-predatory traits. One of them is the ability for prey to listen to predators and avoid them. Although prey anti-predatory behavioural responses to predator auditory cues are well described in a wide range of taxa, studies on whether butterflies change their behaviours in response to their predatory calls are lacking. Heliconius butterflies are unpalatable and form Müllerian mimicry rings as morphological defence strategies against their avian predators. Like many other butterflies in the Nymphalidae family, some Heliconius butterflies possess auditory organs, which are hypothesized to assist with predator detection. Here we test whether Heliconius melpomene change their behaviour in response to their predatory bird calls by observing the behaviour of male and female H. m. plessini exposed to calls of Heliconius avian predators: rufous-tailed jacamar, migratory Eastern kingbird, and resident tropical kingbird. We also exposed them to the calls of the toco toucan, a frugivorous bird as a control bird call, and an amplified greenhouse background noise as a noise control. We found that individuals changed their behaviour in response to jacamar calls only. Males increased their walking and fluttering behaviour, while females did not change their behaviour during the playback of the jacamar call. Intersexual behaviours like courtship, copulation, and abdomen lifting did not change in response to bird calls. Our findings suggest that despite having primary predatory defences like toxicity and being in a mimicry ring, H. m. plessini butterflies changed their behaviour in response to predator calls. Furthermore, this response was predator specific, as H. m. plesseni did not respond to either the Eastern kingbird or the tropical kingbird calls. This suggests that Heliconius butterflies may be able to differentiate predatory calls, and potentially the birds associated with those calls.


Asunto(s)
Mariposas Diurnas , Conducta Predatoria , Animales , Mariposas Diurnas/fisiología , Conducta Predatoria/fisiología , Masculino , Femenino , Vocalización Animal/fisiología , Aves/fisiología , Mimetismo Biológico/fisiología , Conducta Animal/fisiología
14.
Am Nat ; 204(1): 96-104, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857342

RESUMEN

AbstractMany Neotropical beetles present coloration patterns mimicking red-eyed flies, which are presumably evasive mimicry models. However, the role of predators in selecting for evasive mimics in nature remains untested. In a field experiment, we used nontoxic plasticine replicas of a specialized fly-mimicking beetle species, which we placed on the host plants of the beetles. We show that replicas painted with reddish patches simulating the eyes of flesh flies experienced a much lower predation rate than control replicas. We found that beak marks were the most frequent signs of attack on plasticine replicas, underlining the potential selective pressure exerted by birds. Replicas that matched the size of the beetles suffered higher predation than smaller or larger replicas. The predation rate was also higher for beetle replicas exposed during the warm and wet season, when adult beetles occur. Our results support predator-mediated selection of mimic beetles, highlighting that reddish spots resembling flies' eyes comprise an important trait in reducing attack by avian predators.


Asunto(s)
Mimetismo Biológico , Escarabajos , Conducta Predatoria , Animales , Escarabajos/fisiología , Aves/fisiología , Dípteros/fisiología , Pigmentación
15.
Science ; 384(6699): 1030-1036, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38815013

RESUMEN

Coevolution between interacting species is thought to increase biodiversity, but evidence linking microevolutionary processes to macroevolutionary patterns is scarce. We leveraged two decades of behavioral research coupled with historical DNA analysis to reveal that coevolution with hosts underpins speciation in brood-parasitic bronze-cuckoos. At a macroevolutionary scale, we show that highly virulent brood-parasitic taxa have higher speciation rates and are more likely to speciate in sympatry than less-virulent and nonparasitic relatives. We reveal the microevolutionary process underlying speciation: Hosts reject cuckoo nestlings, which selects for mimetic cuckoo nestling morphology. Where cuckoos exploit multiple hosts, selection for mimicry drives genetic and phenotypic divergence corresponding to host preference, even in sympatry. Our work elucidates perhaps the most common, but poorly characterized, evolutionary process driving biological diversification.


Asunto(s)
Coevolución Biológica , Mimetismo Biológico , Aves , Especiación Genética , Comportamiento de Nidificación , Simpatría , Animales , Biodiversidad
16.
Ann Bot ; 134(2): 325-336, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38720433

RESUMEN

BACKGROUND AND AIMS: There are intrinsic conflicts between signalling to mutualists and concealing (camouflaging) from antagonists. Like animals, plants also use camouflage as a defence against herbivores. However, this can potentially reduce their attractiveness to pollinators. METHODS: Using Fritillaria delavayi, an alpine camouflaged plant with inter-population floral colour divergence, we tested the influence of floral trait differences on reproduction. We conducted pollination experiments, measured floral morphological characteristics, estimated floral colours perceived by pollinators, analysed floral scent and investigated reproductive success in five populations. KEY RESULTS: We found that the reproduction of F. delavayi depends on pollinators. Under natural conditions, a flower-camouflaged population had 100 % fruit set and similar seed set to three out of four yellow-flowered populations. Bumblebees are important pollinators in the visually conspicuous yellow-flowered populations, whereas flies are the only pollinator in the flower-camouflaged population, visiting flowers more frequently than bumblebees. The camouflaged flowers cannot be discriminated from the rock background as perceived by pollinators, but may be located by flies through olfactory cues. CONCLUSIONS: Collectively, our results demonstrate that the flower-camouflaged population has different reproductive traits from the visually conspicuous yellow-flowered populations. A pollinator shift from bumblebees to flies, combined with high visitation frequency, compensates for the attractiveness disadvantage in camouflaged plants.


Asunto(s)
Flores , Fritillaria , Polinización , Reproducción , Polinización/fisiología , Animales , Flores/fisiología , Flores/anatomía & histología , Reproducción/fisiología , Abejas/fisiología , Fritillaria/fisiología , Dípteros/fisiología , Color , Frutas/fisiología , Mimetismo Biológico/fisiología , Pigmentación/fisiología
17.
PeerJ ; 12: e17359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803583

RESUMEN

Unionoid freshwater mussels (Bivalvia: Unionidae) are free-living apart from a brief, obligately parasitic, larval stage that infects fish hosts, and gravid female mussels have evolved a spectrum of strategies to infect fish hosts with their larvae. In many North American species, this involves displaying a mantle lure: a pigmented fleshy extension that acts as an aggressive mimic of a host fish prey, thereby eliciting a feeding response that results in host infection. The mantle lure of Lampsilis fasciola is of particular interest because it is apparently polymorphic, with two distinct primary lure phenotypes. One, described as "darter-like", has "eyespots", a mottled body coloration, prominent marginal extensions, and a distinct "tail". The other, described as "worm-like", lacks those features and has an orange and black coloration. We investigated this phenomenon using genomics, captive rearing, biogeographic, and behavioral analyses. Within-brood lure variation and within-population phylogenomic (ddRAD-seq) analyses of individuals bearing different lures confirmed that this phenomenon is a true polymorphism. The relative abundance of the two morphs appears stable over ecological timeframes: the ratio of the two lure phenotypes in a River Raisin (MI) population in 2017 was consistent with that of museum samples collected at the same site six decades earlier. Within the River Raisin, four main "darter-like" lure motifs visually approximated four co-occurring darter species (Etheostoma blennioides, E. exile, E. microperca, and Percina maculata), and the "worm-like" lure resembled a widespread common leech, Macrobdella decora. Darters and leeches are typical prey of Micropterus dolomieui (smallmouth bass), the primary fish host of L. fasciola. In situ field recordings of the L. fasciola "darter" and "leech" lure display behaviors, and the lure display of co-occurring congener L. cardium, were captured. Despite having putative models in distinct phyla, both L. fasciola lure morphs have largely similar display behaviors that differ significantly from that of sympatric L. cardium individuals. Some minor differences in the behavior between the two L. fasciola morphs were observed, but we found no clear evidence for a behavioral component of the polymorphism given the criteria measured. Discovery of discrete within-brood inheritance of the lure polymorphism implies potential control by a single genetic locus and identifies L. fasciola as a promising study system to identify regulatory genes controlling a key adaptive trait of freshwater mussels.


Asunto(s)
Mimetismo Biológico , Animales , Femenino , Unionidae/genética , Unionidae/parasitología , Agua Dulce , Polimorfismo Genético , Fenotipo , Interacciones Huésped-Parásitos/genética , Filogenia , Pigmentación/genética
18.
Zoolog Sci ; 41(3): 275-280, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38809866

RESUMEN

Aposematic coloration plays a crucial role in animal defense, and it is shaped by a complex interplay of factors such as physiological limitations and sexual and natural selection. Warty newts within the genus Paramesotriton exhibit significant variation in ventral coloration. In this study, we quantified the percentage of red ventral area to investigate aposematic ventral coloration in Paramesotriton deloustali and P. guangxiensis across eight populations in northern Vietnam. To assess the interaction between predators and the aposematic signals, we conducted experiments employing three types of clay replicas of newts: dorsal, red ventral, and black ventral models. Our findings revealed a significant variation in the red ventral area among different populations. Additionally, a significant correlation was detected between the red ventral area of the newt and the annual temperature range. In clay model experiments, a significant difference in predator attack rates was observed between dorsal and ventral clay models. Interestingly, there was no significant difference in attack rates between red and black ventral types. Our study suggested that the variation in the red ventral area of warty newts is probably influenced by multiple factors, including genetic constraints, sex, ambient environment, and diet. Furthermore, our results supported the effectiveness of displaying aposematic coloration as an antipredator defense mechanism in warty newts. However, variations in body size and the pressure of mammal predation might not play a significant role in determining aposematic coloration.


Asunto(s)
Pigmentación , Animales , Pigmentación/fisiología , Masculino , Femenino , Conducta Predatoria/fisiología , Mimetismo Biológico/fisiología , Vietnam
19.
Biol Lett ; 20(5): 20230610, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38747686

RESUMEN

Echolocating bats and their eared insect prey are in an acoustic evolutionary war. Moths produce anti-bat sounds that startle bat predators, signal noxiousness, mimic unpalatable models and jam bat sonar. Tiger beetles (Cicindelidae) also purportedly produce ultrasound in response to bat attacks. Here we tested 19 tiger beetle species from seven genera and showed that they produce anti-bat signals to playback of authentic bat echolocation. The dominant frequency of beetle sounds substantially overlaps the sonar calls of sympatric bats. As tiger beetles are known to produce defensive chemicals such as benzaldehyde and hydrogen cyanide, we hypothesized that tiger beetle sounds are acoustically advertising their unpalatability. We presented captive big brown bats (Eptesicus fuscus) with seven different tiger beetle species and found that 90 out of 94 beetles were completely consumed, indicating that these tiger beetle species are not aposematically signalling. Instead, we show that the primary temporal and spectral characteristics of beetle warning sounds overlap with sympatric unpalatable tiger moth (Arctinae) sounds and that tiger beetles are probably Batesian mimics of noxious moth models. We predict that many insect taxa produce anti-bat sounds and that the acoustic mimicry rings of the night sky are hyperdiverse.


Asunto(s)
Quirópteros , Escarabajos , Ecolocación , Mariposas Nocturnas , Animales , Mariposas Nocturnas/fisiología , Quirópteros/fisiología , Escarabajos/fisiología , Conducta Predatoria , Mimetismo Biológico
20.
Trends Genet ; 40(7): 613-620, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38644132

RESUMEN

Camouflage is a classic example of a trait wherein animals respond to natural selection to avoid predation or attract prey. This unique phenomenon has attracted significant recent attention and the rapid development of integrative research methods is facilitating advances in our understanding of the in-depth genetic mechanisms of camouflage. In this review article, we revisit camouflage definitions and strategies and then we examine the underlying mechanisms of the two most common forms of camouflage, crypsis and masquerade, that have recently been elucidated using multiple approaches. We also discuss unresolved questions related to camouflage. Ultimately, we highlight the implications of camouflage for informing various key issues in ecology and evolution.


Asunto(s)
Evolución Biológica , Mimetismo Biológico , Selección Genética , Animales , Mimetismo Biológico/genética , Selección Genética/genética , Conducta Predatoria , Fenotipo , Pigmentación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA