Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Stem Cell Res ; 77: 103411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582058

RESUMEN

RYR1 variants are a common cause of congenital myopathies, including multi-minicore disease (MmD) and central core disease (CCD). Here, we generated iPSC lines from two CCD patients with dominant RYR1 missense variants that affect the transmembrane (pore) and SPRY3 protein domains (p.His4813Tyr and p.Asn1346Lys, respectively). Both lines had typical iPSC morphology, expressed canonical pluripotency markers, exhibited trilineage differentiation potential, and had normal karyotypes. Together with existing RYR1 iPSC lines, these represent important tools to study and develop treatments for RYR1-related myopathies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Mutación Missense , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miopatía del Núcleo Central/genética , Miopatía del Núcleo Central/patología , Miopatía del Núcleo Central/metabolismo , Adulto , Línea Celular , Masculino , Diferenciación Celular , Femenino
2.
Stem Cell Res ; 73: 103258, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38029555

RESUMEN

Central core disease (CCD) is a congenital disorder that results in hypotonia, delayed motor development, and areas of reduced oxidative activity in the muscle fibre. Two induced pluripotent stem cell (iPSC) lines were generated from the lymphoblastoid cells of a 33-year-old male with CCD, caused by a previously unreported dominant c.14145_14156delCTACTGGGACA (p.Asn4715_Asp4718del) deletion in the RYR1 gene. Both lines demonstrated typical morphology, pluripotency, trilineage differentiation, and had a normal karyotype. As the first published iPSC model of CCD caused by an RYR1 variant these lines are a potential resource for further investigation of RYR1-related myopathies in a human context.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miopatía del Núcleo Central , Masculino , Humanos , Adulto , Miopatía del Núcleo Central/genética , Miopatía del Núcleo Central/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Mutación
3.
Acta Neuropathol Commun ; 8(1): 192, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176865

RESUMEN

Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in reduced amount, but the direct functional whole organism consequences of exclusive reduction in RyR1 amount have never been studied. We have developed and characterized a mouse model with inducible muscle specific RYR1 deletion. Tamoxifen-induced recombination in the RYR1 gene at adult age resulted in a progressive reduction in the protein amount reaching a stable level of 50% of the initial amount, and was associated with a progressive muscle weakness and atrophy. Measurement of calcium fluxes in isolated muscle fibers demonstrated a reduction in the amplitude of RyR1-related calcium release mirroring the reduction in the protein amount. Alterations in the muscle structure were observed, with fibers atrophy, abnormal mitochondria distribution and membrane remodeling. An increase in the expression level of many proteins was observed, as well as an inhibition of the autophagy process. This model demonstrates that RyR1 reduction is sufficient to recapitulate most features of Central Core Disease, and accordingly similar alterations were observed in muscle biopsies from Dusty Core Disease patients (a subtype of Central Core Disease), pointing to common pathophysiological mechanisms related to RyR1 reduction.


Asunto(s)
Debilidad Muscular/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Miopatía del Núcleo Central/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Ratones , Ratones Transgénicos , Mitocondrias Musculares/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Miopatía del Núcleo Central/metabolismo , Miopatía del Núcleo Central/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
4.
Biomed Res Int ; 2019: 7638946, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31165076

RESUMEN

The skeletal muscle ryanodine receptor (RyR1), i.e., the Ca2+ channel of the sarco/endoplasmic reticulum (S/ER), and the voltage-dependent calcium channel Cav1.1 are the principal channels involved in excitation-contraction coupling in skeletal muscle. RYR1 gene variants are linked to distinct skeletal muscle disorders, including malignant hyperthermia susceptibility and central core disease (CCD), mainly with autosomal dominant inheritance, and autosomal recessive myopathies with a broad phenotypic and histopathological spectrum. The age at onset of RYR1-related myopathies varies from infancy to adulthood. We report the identification of four RYR1 variants in two Italian families: one with myopathy and variants c.4003C>T (p.R1335C) and c.7035C>A (p.S2345R), and another with CCD and variants c.9293G>T (p.S3098I) and c.14771_14772insTAGACAGGGTGTTGCTCTGTTGCCCTTCTT (p.F4924_V4925insRQGVALLPFF). We demonstrate that, in patient-specific lymphoblastoid cells, the c.4003C>T (p.R1335C) variant is not expressed and the in-frame 30-nucleotide insertion variant is expressed at a low level. Moreover, Ca2+ release in response to the RyR1 agonist 4-chloro-m-cresol and to thapsigargin showed that the c.7035C>A (p.S2345R) variant causes depletion of S/ER Ca2+ stores and that the compound heterozygosity for variant c.9293G>T (p.S3098I) and the 30-nucleotide insertion increases RyR1-dependent Ca2+ release without affecting ER Ca2+ stores. In conclusion, we detected and functionally characterized disease-causing variants of the RyR1 channel in patient-specific lymphoblastoid cells. This paper is dedicated to the memory and contribution of Luigi Del Vecchio.


Asunto(s)
Familia , Regulación de la Expresión Génica , Variación Genética , Hipertermia Maligna , Músculo Esquelético , Miopatía del Núcleo Central , Canal Liberador de Calcio Receptor de Rianodina , Adulto , Preescolar , Femenino , Humanos , Italia , Masculino , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Hipertermia Maligna/patología , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miopatía del Núcleo Central/genética , Miopatía del Núcleo Central/metabolismo , Miopatía del Núcleo Central/patología , Canal Liberador de Calcio Receptor de Rianodina/biosíntesis , Canal Liberador de Calcio Receptor de Rianodina/genética
5.
Hum Mol Genet ; 28(18): 2987-2999, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31044239

RESUMEN

Recessive ryanodine receptor 1 (RYR1) mutations cause congenital myopathies including multiminicore disease (MmD), congenital fiber-type disproportion and centronuclear myopathy. We created a mouse model knocked-in for the Q1970fsX16+A4329D RYR1 mutations, which are isogenic with those identified in a severely affected child with MmD. During the first 20 weeks after birth the body weight and the spontaneous running distance of the mutant mice were 20% and 50% lower compared to wild-type littermates. Skeletal muscles from mutant mice contained 'cores' characterized by severe myofibrillar disorganization associated with misplacement of mitochondria. Furthermore, their muscles developed less force and had smaller electrically evoked calcium transients. Mutant RyR1 channels incorporated into lipid bilayers were less sensitive to calcium and caffeine, but no change in single-channel conductance was observed. Our results demonstrate that the phenotype of the RyR1Q1970fsX16+A4329D compound heterozygous mice recapitulates the clinical picture of multiminicore patients and provide evidence of the molecular mechanisms responsible for skeletal muscle defects.


Asunto(s)
Calcio/metabolismo , Fuerza Muscular/genética , Músculo Esquelético/metabolismo , Mutación , Miopatía del Núcleo Central/etiología , Miopatía del Núcleo Central/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Alelos , Animales , Señalización del Calcio , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Heterocigoto , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Músculo Esquelético/fisiopatología , Músculo Esquelético/ultraestructura , Miopatía del Núcleo Central/fisiopatología , Fenotipo
6.
Biochem J ; 474(16): 2749-2761, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687594

RESUMEN

Mutations in the skeletal muscle ryanodine receptor (RyR1) cause malignant hyperthermia (MH) and central core disease (CCD), whereas mutations in the cardiac ryanodine receptor (RyR2) lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most disease-associated RyR1 and RyR2 mutations are located in the N-terminal, central, and C-terminal regions of the corresponding ryanodine receptor (RyR) isoform. An increasing body of evidence demonstrates that CPVT-associated RyR2 mutations enhance the propensity for spontaneous Ca2+ release during store Ca2+ overload, a process known as store overload-induced Ca2+ release (SOICR). Considering the similar locations of disease-associated RyR1 and RyR2 mutations in the RyR structure, we hypothesize that like CPVT-associated RyR2 mutations, MH/CCD-associated RyR1 mutations also enhance SOICR. To test this hypothesis, we determined the impact on SOICR of 12 MH/CCD-associated RyR1 mutations E2347-del, R2163H, G2434R, R2435L, R2435H, and R2454H located in the central region, and Y4796C, T4826I, L4838V, A4940T, G4943V, and P4973L located in the C-terminal region of the channel. We found that all these RyR1 mutations reduced the threshold for SOICR. Dantrolene, an acute treatment for MH, suppressed SOICR in HEK293 cells expressing the RyR1 mutants R164C, Y523S, R2136H, R2435H, and Y4796C. Interestingly, carvedilol, a commonly used ß-blocker that suppresses RyR2-mediated SOICR, also inhibits SOICR in these RyR1 mutant HEK293 cells. Therefore, these results indicate that a reduced SOICR threshold is a common defect of MH/CCD-associated RyR1 mutations, and that carvedilol, like dantrolene, can suppress RyR1-mediated SOICR. Clinical studies of the effectiveness of carvedilol as a long-term treatment for MH/CCD or other RyR1-associated disorders may be warranted.


Asunto(s)
Señalización del Calcio , Hipertermia Maligna/genética , Modelos Moleculares , Miopatía del Núcleo Central/genética , Mutación Puntual , Canal Liberador de Calcio Receptor de Rianodina/genética , Antagonistas Adrenérgicos beta/farmacología , Sustitución de Aminoácidos , Animales , Señalización del Calcio/efectos de los fármacos , Carbazoles/farmacología , Carvedilol , Dantroleno/farmacología , Transferencia Resonante de Energía de Fluorescencia , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Hipertermia Maligna/tratamiento farmacológico , Hipertermia Maligna/metabolismo , Microscopía Fluorescente , Relajantes Musculares Centrales/farmacología , Mutagénesis Sitio-Dirigida , Miopatía del Núcleo Central/metabolismo , Propanolaminas/farmacología , Conformación Proteica , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Análisis de la Célula Individual
7.
J Neuromuscul Dis ; 4(2): 147-158, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28527222

RESUMEN

BACKGROUND: Central core disease and malignant hyperthermia are human disorders of skeletal muscle resulting from aberrant Ca2+ handling. Most malignant hyperthermia and central core disease cases are associated with amino acid changes in the type 1 ryanodine receptor (RyR1), the skeletal muscle Ca2+-release channel. Malignant hyperthermia exhibits a gain-of-function phenotype, and central core disease results from loss of channel function. For a variant to be classified as pathogenic, functional studies must demonstrate a correlation with the pathophysiology of malignant hyperthermia or central core disease. OBJECTIVE: We assessed the pathogenicity of four C-terminal variants of the ryanodine receptor using functional analysis. The variants were identified in families affected by either malignant hyperthermia or central core disease. METHODS: Four variants were introduced separately into human cDNA encoding the skeletal muscle ryanodine receptor. Following transient expression in HEK-293T cells, functional studies were carried out using calcium release assays in response to an agonist. Two previously characterized variants and wild-type skeletal muscle ryanodine receptor were used as controls. RESULTS: The p.Met4640Ile variant associated with central core disease showed no difference in calcium release compared to wild-type. The p.Val4849Ile variant associated with malignant hyperthermia was more sensitive to agonist than wild-type but did not reach statistical significance and two variants (p.Phe4857Ser and p.Asp4918Asn) associated with central core disease were completely inactive. CONCLUSIONS: The p.Val4849Ile variant should be considered a risk factor for malignant hyperthermia, while the p.Phe4857Ser and p.Asp4918Asn variants should be classified as pathogenic for central core disease.


Asunto(s)
Variación Genética , Hipertermia Maligna/genética , Miopatía del Núcleo Central/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Adulto , Anciano , Calcio/metabolismo , Familia , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Masculino , Hipertermia Maligna/metabolismo , Hipertermia Maligna/terapia , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Miopatía del Núcleo Central/metabolismo , Miopatía del Núcleo Central/terapia , Linaje
9.
Hum Mutat ; 37(11): 1231-1241, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27586648

RESUMEN

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in some muscle diseases, including malignant hyperthermia (MH) and central core disease (CCD). Over 200 mutations associated with these diseases have been identified, and most mutations accelerate Ca2+ -induced Ca2+ release (CICR), resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, it remains largely unknown how specific mutations cause different phenotypes. In this study, we investigated the CICR activity of 14 mutations at 10 different positions in the central region of RYR1 (10 MH and four MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging, the mutant channels exhibited an enhanced sensitivity to caffeine, a reduced endoplasmic reticulum Ca2+ content, and an increased resting cytoplasmic Ca2+ level. The three parameters for CICR (Ca2+ sensitivity for activation, Ca2+ sensitivity for inactivation, and attainable maximum activity, i.e., gain) were obtained by [3 H]ryanodine binding and fitting analysis. The mutant channels showed increased gain and Ca2+ sensitivity for activation in a site-specific manner. Genotype-phenotype correlations were explained well by the near-atomic structure of RYR1. Our data suggest that divergent CICR activity may cause various disease phenotypes by specific mutations.


Asunto(s)
Calcio/metabolismo , Hipertermia Maligna/genética , Mutación , Miopatía del Núcleo Central/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Endoplásmico/metabolismo , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Hipertermia Maligna/metabolismo , Modelos Moleculares , Miopatía del Núcleo Central/metabolismo , Estructura Secundaria de Proteína , Canal Liberador de Calcio Receptor de Rianodina/química , Retículo Sarcoplasmático/metabolismo
10.
PLoS One ; 10(6): e0130606, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26115329

RESUMEN

The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in several diseases, including malignant hyperthermia (MH) and central core disease (CCD). Most MH and CCD mutations cause accelerated Ca2+ release, resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, how specific mutations affect the channel to produce different phenotypes is not well understood. In this study, we have investigated 11 mutations at 7 different positions in the amino (N)-terminal region of RyR1 (9 MH and 2 MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging at room temperature (~25 °C), cells expressing mutant channels exhibited alterations in Ca2+ homeostasis, i.e., an enhanced sensitivity to caffeine, a depletion of Ca2+ in the ER and an increase in resting cytoplasmic Ca2+. RyR1 channel activity was quantitatively evaluated by [3H]ryanodine binding and three parameters (sensitivity to activating Ca2+, sensitivity to inactivating Ca2+ and attainable maximum activity, i.e., gain) were obtained by fitting analysis. The mutations increased the gain and the sensitivity to activating Ca2+ in a site-specific manner. The gain was consistently higher in both MH and MH/CCD mutations. Sensitivity to activating Ca2+ was markedly enhanced in MH/CCD mutations. The channel activity estimated from the three parameters provides a reasonable explanation to the pathological phenotype assessed by Ca2+ homeostasis. These properties were also observed at higher temperatures (~37 °C). Our data suggest that divergent activity profiles may cause varied disease phenotypes by specific mutations. This approach should be useful for diagnosis and treatment of diseases with mutations in RyR1.


Asunto(s)
Calcio/metabolismo , Citoplasma/metabolismo , Hipertermia Maligna/metabolismo , Miopatía del Núcleo Central/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Línea Celular , Humanos , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética
11.
Neuromuscul Disord ; 25(7): 567-76, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25958340

RESUMEN

Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic myopathy triggered by exposure to volatile anesthetics and/or depolarizing muscle relaxants. Susceptibility to MH is primarily associated with dominant mutations in the ryanodine receptor type 1 gene (RYR1). Recent genetic studies have shown that RYR1 variants are the most common cause of dominant and recessive congenital myopathies - central core and multi-minicore disease, congenital fiber type disproportion, and centronuclear myopathy. However, the MH status of many patients, especially with recessive RYR1-related myopathies, remains uncertain. We report the occurrence of a triplet of RYR1 variants, c.4711A>G (p.Ile1571Val), c.10097G>A (p.Arg3366His), c.11798A>G (p.Tyr3933Cys), found in cis in four unrelated families, one from Belgium, one from The Netherlands and two from Canada. Phenotype-genotype correlation analysis indicates that the presence of the triplet allele alone confers susceptibility to MH, and that the presence of this allele in a compound heterozygous state with the MH-associated RYR1 variant c.14545G>A (p.Val4849Ile) results in the MH susceptibility phenotype and a congenital myopathy with cores and rods. Our study underlines the notion that assigning pathogenicity to individual RYR1 variants or combination of variants, and counseling in RYR1-related myopathies may require integration of clinical, histopathological, in vitro contracture testing, MRI and genetic findings.


Asunto(s)
Predisposición Genética a la Enfermedad , Heterocigoto , Hipertermia Maligna/genética , Miopatía del Núcleo Central/genética , Fenotipo , Canal Liberador de Calcio Receptor de Rianodina/genética , Adulto , Niño , Preescolar , Familia , Femenino , Estudios de Asociación Genética , Variación Genética , Humanos , Pierna/patología , Masculino , Hipertermia Maligna/metabolismo , Hipertermia Maligna/patología , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miopatía del Núcleo Central/metabolismo , Miopatía del Núcleo Central/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Población Blanca/genética
12.
Eur J Pediatr ; 173(12): 1691-4, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24706162

RESUMEN

UNLABELLED: We describe a 5-year-old girl with marked hypotonia, poor feeding and reduced facial expression since birth. Congenital myopathy was suspected; muscle biopsy showed unspecific type 1 fibre predominance. The possibility of a ryanodine receptor 1 gene (RYR1)-associated myopathy was considered, but not further investigated. At the age of 2 years, she presented with exophthalmos. Brain MRI revealed optic pathway glioma. On clinical examination, she had six café-au-lait spots, thus fulfilling the diagnostic criteria for neurofibromatosis type 1 (NF1). The hypotonia was then attributed to NF1. At the age of 3 years, she developed scoliosis and had an unusually severe motor delay for NF1, as she was not able to walk independently. Dual pathology was suspected, and muscle MRI showed the typical pattern for RYR1-related myopathy. This was genetically confirmed with the discovery of two heterozygous mutations. CONCLUSION: NF1 is one of the most frequent genetic diseases in children. RYR1-related myopathy is one of the most frequent causes of congenital myopathy. The combination of these two pathologies has not yet been described. In cases of unusual presentations or clinical course, the possibility of genetic "double trouble" should be considered.


Asunto(s)
Anomalías Múltiples , ADN/genética , Genes de Neurofibromatosis 1 , Mutación Missense , Miopatía del Núcleo Central/genética , Neurofibromatosis 1/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Biopsia , Preescolar , Análisis Mutacional de ADN , Diagnóstico Diferencial , Femenino , Humanos , Imagen por Resonancia Magnética , Miopatía del Núcleo Central/diagnóstico , Miopatía del Núcleo Central/metabolismo , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/metabolismo , Fenotipo , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
13.
Hum Mol Genet ; 23(4): 980-91, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24105469

RESUMEN

Core myopathies (CM), the main non-dystrophic myopathies in childhood, remain genetically unexplained in many cases. Heart disease is not considered part of the typical CM spectrum. No congenital heart defect has been reported, and childhood-onset cardiomyopathy has been documented in only two CM families with homozygous mutations of the TTN gene. TTN encodes titin, a giant protein of striated muscles. Recently, heterozygous TTN truncating mutations have also been reported as a major cause of dominant dilated cardiomyopathy. However, relatively few TTN mutations and phenotypes are known, and titin pathophysiological role in cardiac and skeletal muscle conditions is incompletely understood. We analyzed a series of 23 families with congenital CM and primary heart disease using TTN M-line-targeted sequencing followed in selected patients by whole-exome sequencing and functional studies. We identified seven novel homozygous or compound heterozygous TTN mutations (five in the M-line, five truncating) in 17% patients. Heterozygous parents were healthy. Phenotype analysis identified four novel titinopathies, including cardiac septal defects, left ventricular non-compaction, Emery-Dreifuss muscular dystrophy or arthrogryposis. Additionally, in vitro studies documented the first-reported absence of a functional titin kinase domain in humans, leading to a severe antenatal phenotype. We establish that CM are associated with a large range of heart conditions of which TTN mutations are a major cause, thereby expanding the TTN mutational and phenotypic spectrum. Additionally, our results suggest titin kinase implication in cardiac morphogenesis and demonstrate that heterozygous TTN truncating mutations may not manifest unless associated with a second mutation, reassessing the paradigm of their dominant expression.


Asunto(s)
Codón sin Sentido , Conectina/genética , Cardiopatías/genética , Miopatía del Núcleo Central/genética , Adolescente , Conectina/metabolismo , Consanguinidad , Femenino , Genes Recesivos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Cardiopatías/metabolismo , Cardiopatías/patología , Heterocigoto , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miopatía del Núcleo Central/metabolismo , Miopatía del Núcleo Central/patología , Linaje , Fenotipo , Adulto Joven
14.
PLoS One ; 8(1): e54042, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23308296

RESUMEN

The large and rapidly increasing number of potentially pathological mutants in the type 1 ryanodine receptor (RyR1) prompts the need to characterize their effects on voltage-activated sarcoplasmic reticulum (SR) Ca(2+) release in skeletal muscle. Here we evaluated the function of the R4892W and G4896V RyR1 mutants, both associated with central core disease (CCD) in humans, in myotubes and in adult muscle fibers. For both mutants expressed in RyR1-null (dyspedic) myotubes, voltage-gated Ca(2+) release was absent following homotypic expression and only partially restored following heterotypic expression with wild-type (WT) RyR1. In muscle fibers from adult WT mice, both mutants were expressed in restricted regions of the fibers with a pattern consistent with triadic localization. Voltage-clamp-activated confocal Ca(2+) signals showed that fiber regions endowed with G4896V-RyR1s exhibited an ∼30% reduction in the peak rate of SR Ca(2+) release, with no significant change in SR Ca(2+) content. Immunostaining revealed no associated change in the expression of either α1S subunit (Cav1.1) of the dihydropyridine receptor (DHPR) or type 1 sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA1), indicating that the reduced Ca(2+) release resulted from defective RyR1 function. Interestingly, in spite of robust localized junctional expression, the R4892W mutant did not affect SR Ca(2+) release in adult muscle fibers, consistent with a low functional penetrance of this particular CCD-associated mutant.


Asunto(s)
Calcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Expresión Génica , Prueba de Complementación Genética , Humanos , Activación del Canal Iónico , Masculino , Potenciales de la Membrana/fisiología , Ratones , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Miopatía del Núcleo Central/metabolismo , Miopatía del Núcleo Central/fisiopatología , Técnicas de Placa-Clamp , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
15.
J Physiol ; 589(Pt 19): 4649-69, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21825032

RESUMEN

Central core disease (CCD) is a congenital human myopathy associated with mutations in the gene encoding the skeletal muscle ryanodine receptor (RyR1), resulting in skeletal muscle weakness and lower limb deformities. The muscle weakness can be at least partially explained by a reduced magnitude of voltage-gated Ca(2+) release (VGCR). To date, only a few studies have focused on identifying potential therapeutic agents for CCD. Therefore, in this work we investigated the potential use of the calcitonin gene related peptide (CGRP) to restore VGCR in myotubes expressing CCD RyR1 mutants. We also examined the influence of CCD mutants on Ca(2+)-dependent processes involved in myogenesis (myoblast fusion and sarcoendoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2) gene expression). C2C12 cells were transfected with cDNAs encoding either wild-type RyR1 or CCD mutants, and then exposed to CGRP (100 nm, 1-4 h). Expression of the I4897T mutant significantly inhibited SERCA2 gene expression and myoblast fusion, whereas the Y523S mutant exerted the opposite effect. Interestingly, both mutants clearly inhibited VGCR (50%), due to a reduction in SR Ca(2+) content. However, no major changes due to CGRP or CCD mutants were observed in I(CaL). Our data suggest that the Y523S mutant results in store depletion via decompensated SR Ca(2+) leak, while the I4897T mutant inhibits SERCA2 gene expression. Remarkably, in both cases CGRP restored VGCR, likely to have been by enhancing phospholamban (PLB) phosphorylation, SERCA activity and SR Ca(2+) content. Taken together, our data show that in the C2C12 model system, changes in excitation-contraction coupling induced by the expression of RyR1 channels bearing CCD mutations Y523S or I4897T can be reversed by CGRP.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/genética , Calcio/metabolismo , Acoplamiento Excitación-Contracción/genética , Fibras Musculares Esqueléticas/fisiología , Miopatía del Núcleo Central/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Canales de Calcio Tipo L/metabolismo , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Contracción Muscular/genética , Contracción Muscular/fisiología , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Mutación , Mioblastos/metabolismo , Mioblastos/fisiología , Miopatía del Núcleo Central/metabolismo , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
16.
Curr Drug Targets ; 12(5): 709-23, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21291389

RESUMEN

The ryanodine receptor (RyR) calcium release channel is an essential intracellular ion channel that is central to Ca(2+) signaling and contraction in the heart and skeletal muscle. The rapid release of Ca(2+) from the internal sarcoplasmic reticulum Ca(2+) stores through the RyR during excitation-contraction coupling is facilitated by the unique arrangement of the surface and sarcoplasmic reticulum membrane systems. Debilitating and sometimes fatal skeletal and cardiomyopathies result from changes in RyR activity that disrupt normal Ca(2+) signaling. Such changes can be caused by point mutations in many different regions of the RyR protein or acquired as a result of stress associated with exercise, heart failure, age or drugs. In general, both inherited and acquired changes include an increase in RyR channel activity. Because of its central function, the RyR is a potential therapeutic target for the inherited disorders and many of the acquired disorders. The RyR is currently used as a therapeutic target in malignant hyperthermia where dantrolene is effective and to relieve ventricular arrhythmia, with the use of JTV519 and flecainide. These drugs show that the RyR is a valid therapeutic target, but have side effects that prevent their chronic use. Thus there is an urgent need for the development of skeletal and cardiac specific drugs to treat these diverse muscle disorders. In this review, we discuss the mutations that cause skeletal myopathies and cardiac arrhythmias and how these mutations pinpoint residues within the RyR protein that are functionally significant and might be developed as targets for therapeutic drugs.


Asunto(s)
Calcio/metabolismo , Cardiopatías/metabolismo , Hipertermia Maligna/metabolismo , Terapia Molecular Dirigida , Miopatía del Núcleo Central/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Señalización del Calcio , Modelos Animales de Enfermedad , Cardiopatías/tratamiento farmacológico , Cardiopatías/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Humanos , Hipertermia Maligna/tratamiento farmacológico , Hipertermia Maligna/genética , Mutación , Miopatía del Núcleo Central/tratamiento farmacológico , Miopatía del Núcleo Central/genética
17.
Hum Mol Genet ; 20(3): 589-600, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21088110

RESUMEN

Prolonged depolarization of skeletal muscle cells induces entry of extracellular calcium into muscle cells, an event referred to as excitation-coupled calcium entry. Skeletal muscle excitation-coupled calcium entry relies on the interaction between the 1,4-dihydropyridine receptor on the sarcolemma and the ryanodine receptor on the sarcoplasmic reticulum membrane. In this study, we directly measured excitation-coupled calcium entry by total internal reflection fluorescence microscopy in human skeletal muscle myotubes harbouring mutations in the RYR1 gene linked to malignant hyperthermia (MH) and central core disease (CCD). We found that excitation-coupled calcium entry is strongly enhanced in cells from patients with CCD compared with individuals with MH and controls. Furthermore, excitation-coupled calcium entry induces generation of reactive nitrogen species and enhances nuclear localization of NFATc1, which in turn may be responsible for the increased IL-6 released by myotubes from patients with CCD.


Asunto(s)
Calcio/metabolismo , Interleucina-6/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miopatía del Núcleo Central/metabolismo , Factores de Transcripción NFATC/metabolismo , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Hipertermia Maligna/genética , Microscopía Fluorescente , Músculo Esquelético/metabolismo , Mutación , Miopatía del Núcleo Central/genética , Reacción en Cadena de la Polimerasa , Especies de Nitrógeno Reactivo/biosíntesis , Especies de Nitrógeno Reactivo/metabolismo
18.
Neuropathol Appl Neurobiol ; 37(3): 271-84, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21062345

RESUMEN

AIMS: To report the clinical, pathological and genetic findings in a group of patients with a previously not described phenotype of congenital myopathy due to recessive mutations in the gene encoding the type 1 muscle ryanodine receptor channel (RYR1). METHODS: Seven unrelated patients shared a predominant axial and proximal weakness of varying severity, with onset during the neonatal period, associated with bilateral ptosis and ophthalmoparesis, and unusual muscle biopsy features at light and electron microscopic levels. RESULTS: Muscle biopsy histochemistry revealed a peculiar morphological pattern characterized by numerous internalized myonuclei in up to 51% of fibres and large areas of myofibrillar disorganization with undefined borders. Ultrastructurally, such areas frequently occupied the whole myofibre cross section and extended to a moderate number of sarcomeres in length. Molecular genetic investigations identified recessive mutations in the ryanodine receptor (RYR1) gene in six compound heterozygous patients and one homozygous patient. Nine mutations are novel and four have already been reported either as pathogenic recessive mutations or as changes affecting a residue associated with dominant malignant hyperthermia susceptibility. Only two mutations were located in the C-terminal transmembrane domain whereas the others were distributed throughout the cytoplasmic region of RyR1. CONCLUSION: Our data enlarge the spectrum of RYR1 mutations and highlight their clinical and morphological heterogeneity. A congenital myopathy featuring ptosis and external ophthalmoplegia, concomitant with the novel histopathological phenotype showing fibres with large, poorly delimited areas of myofibrillar disorganization and internal nuclei, is highly suggestive of an RYR1-related congenital myopathy.


Asunto(s)
Mutación , Miofibrillas/ultraestructura , Miopatía del Núcleo Central/genética , Miopatía del Núcleo Central/metabolismo , Miopatía del Núcleo Central/patología , Canal Liberador de Calcio Receptor de Rianodina/genética , Adolescente , Adulto , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Niño , Femenino , Genes Recesivos , Humanos , Inmunohistoquímica , Masculino , Microscopía Electrónica de Transmisión , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Adulto Joven
19.
Neuromuscul Disord ; 19(5): 344-7, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19303294

RESUMEN

Mutations in the skeletal muscle ryanodine receptor (RYR1) gene have been associated with a wide range of phenotypes including the malignant hyperthermia (MH) susceptibility trait, Central Core Disease (CCD) and other congenital myopathies characterized by early onset and predominant proximal weakness. We report a patient presenting at 77 years with a predominant axial myopathy associated with prominent involvement of spine extensors, confirmed on MRI and muscle biopsy, compatible with a core myopathy. RYR1 mutational analysis revealed a novel heterozygous missense mutation (c.119G>T; p.Gly40Val) affecting the RYR1 N-terminus, previously predominantly associated with MH susceptibility. This case expands the spectrum of RYR1-related phenotypes and suggests that MH-related RYR1 mutations may give rise to overt neuromuscular symptoms later in life, with clinical features not typically found in CCD due to C-terminal hotspot mutations. Late-onset congenital myopathies may be under-recognised and diagnosis requires a high degree of clinical suspicion.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Músculo Esquelético/metabolismo , Mutación/genética , Miopatía del Núcleo Central/genética , Miopatía del Núcleo Central/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Factores de Edad , Edad de Inicio , Anciano , Señalización del Calcio/genética , Análisis Mutacional de ADN , Progresión de la Enfermedad , Genes Dominantes/genética , Marcadores Genéticos , Genotipo , Heterocigoto , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miopatía del Núcleo Central/patología
20.
Cell Motil Cytoskeleton ; 66(4): 179-92, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19206168

RESUMEN

Central core disease (CCD), congenital fibre type disproportion (CFTD), and nemaline myopathy (NM) are earlyonset clinically heterogeneous congenital myopathies, characterized by generalized muscle weakness and hypotonia. All three diseases are associated with alpha-skeletal muscle actin mutations. We biochemically characterized the CCD and CFTD causing actin mutants and show that all mutants fold correctly and are stable. Expression studies in fibroblasts, myoblasts, and myotubes show that these mutants incorporate in filamentous structures. However they do not intercalate between the nascent z-lines in differentiating muscle cell cultures. We also show that the distribution of mitochondria and of the ryanodine receptors, and calcium release properties from ryanodine receptors, are unchanged in myotubes expressing the CCD causing mutants. CFTD causing mutants induce partly similar phenotypes as NM associated ones, such as rods and thickened actin fibers in cell culture. Our results suggest that molecular mechanisms behind CFTD and NM may be partly related.


Asunto(s)
Actinas/genética , Miopatías Estructurales Congénitas/genética , Miopatía del Núcleo Central/genética , Actinas/deficiencia , Actinas/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Fibroblastos/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Modelos Moleculares , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Mioblastos/metabolismo , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/metabolismo , Miopatías Estructurales Congénitas/metabolismo , Miopatía del Núcleo Central/metabolismo , Células 3T3 NIH , Conformación Proteica , Pliegue de Proteína , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA