Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.657
Filtrar
1.
Physiol Rep ; 12(13): e16103, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38946587

RESUMEN

Cancer cachexia is a multifactorial syndrome associated with advanced cancer that contributes to mortality. Cachexia is characterized by loss of body weight and muscle atrophy. Increased skeletal muscle mitochondrial reactive oxygen species (ROS) is a contributing factor to loss of muscle mass in cachectic patients. Mice inoculated with Lewis lung carcinoma (LLC) cells lose weight, muscle mass, and have lower muscle sirtuin-1 (sirt1) expression. Nicotinic acid (NA) is a precursor to nicotinamide dinucleotide (NAD+) which is exhausted in cachectic muscle and is a direct activator of sirt1. Mice lost body and muscle weight and exhibited reduced skeletal muscle sirt1 expression after inoculation with LLC cells. C2C12 myotubes treated with LLC-conditioned media (LCM) had lower myotube diameter. We treated C2C12 myotubes with LCM for 24 h with or without NA for 24 h. C2C12 myotubes treated with NA maintained myotube diameter, sirt1 expression, and had lower mitochondrial superoxide. We then used a sirt1-specific small molecule activator SRT1720 to increase sirt1 activity. C2C12 myotubes treated with SRT1720 maintained myotube diameter, prevented loss of sirt1 expression, and attenuated mitochondrial superoxide production. Our data provides evidence that NA may be beneficial in combating cancer cachexia by maintaining sirt1 expression and decreasing mitochondrial superoxide production.


Asunto(s)
Caquexia , Fibras Musculares Esqueléticas , Estrés Oxidativo , Sirtuina 1 , Animales , Caquexia/etiología , Caquexia/metabolismo , Caquexia/patología , Caquexia/prevención & control , Sirtuina 1/metabolismo , Sirtuina 1/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Ratones , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/complicaciones , Masculino , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Línea Celular , Niacina/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
2.
Arch Biochem Biophys ; 758: 110083, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969196

RESUMEN

Fibromyalgia (FMS) is a persistent syndrome marked by widespread musculoskeletal pain and behavioural symptoms. Given the hypothesis linking FMS aetiology to mitochondrial dysfunction and oxidative stress, we examined the biochemical correlation among these factors by studying specific proteins associated with mitochondrial homeostasis in muscle. Additionally, this study investigated the role of Boswellia serrata gum resin extract (BS), known for its various functions, including the potent induction of antioxidant enzymes, in determining protective or reparative mechanisms in the muscle cells. Sprague-Dawley rats were injected with reserpine to induce FMS. These animals exhibited moderate changes in hind limb skeletal muscles, experiencing mobility difficulties. Additionally, there were noteworthy morphological and ultrastructural alterations, along with the expression of myogenin, mitochondrial enzymes and oxidative stress markers in the gastrocnemius muscle. Interestingly, BS demonstrated a reduction in spontaneous motor activity difficulties. Moreover, BS showed a positive impact on musculoskeletal morphostructural aspects, as well as a decrease in oxidative stress and mitochondrial alterations. In particular, BS restored the mRNA expression of citrate synthase and cytochrome-c oxidase subunit II and the activity of electron transfer chain complexes. BS also influenced mitochondrial biogenesis, upregulating PGC-1α expression and the related transcription factors (Nrf1, Tfam, Nrf2, FOXO3a, SIRT3, GCLC, NQO1, SOD2 and GPx4), oxidative stress (lipid peroxidation, GSH levels and GSH-Px activity) and mitochondrial dynamics and function (Mnf2 expression and CoQ10 levels). Overall, this study underlined the key role of the mitochondrial alteration in FMS and that BS had a very high antioxidant effect in these organelles and also in the cells.


Asunto(s)
Fibromialgia , Músculo Esquelético , Estrés Oxidativo , Ratas Sprague-Dawley , Fibromialgia/metabolismo , Fibromialgia/inducido químicamente , Fibromialgia/patología , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Ratas , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Masculino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Antioxidantes/metabolismo
3.
mBio ; 15(7): e0129224, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38860823

RESUMEN

Sepsis and chronic infections with Pseudomonas aeruginosa, a leading "ESKAPE" bacterial pathogen, are associated with increased morbidity and mortality and skeletal muscle atrophy. The actions of this pathogen on skeletal muscle remain poorly understood. In skeletal muscle, mitochondria serve as a crucial energy source, which may be perturbed by infection. Here, using the well-established backburn and infection model of murine P. aeruginosa infection, we deciphered the systemic impact of the quorum-sensing transcription factor MvfR (multiple virulence factor regulator) by interrogating, 5 days post-infection, its effect on mitochondrial-related functions in the gastrocnemius skeletal muscle and the outcome of the pharmacological inhibition of MvfR function and that of the mitochondrial-targeted peptide, Szeto-Schiller 31 (SS-31). Our findings show that the MvfR perturbs adenosine triphosphate generation, oxidative phosphorylation, and antioxidant response, elevates the production of reactive oxygen species, and promotes oxidative damage of mitochondrial DNA in the gastrocnemius muscle of infected mice. These impairments in mitochondrial-related functions were corroborated by the alteration of key mitochondrial proteins involved in electron transport, mitochondrial biogenesis, dynamics and quality control, and mitochondrial uncoupling. Pharmacological inhibition of MvfR using the potent anti-MvfR lead, D88, we developed, or the mitochondrial-targeted peptide SS-31 rescued the MvfR-mediated alterations observed in mice infected with the wild-type strain PA14. Our study provides insights into the actions of MvfR in orchestrating mitochondrial dysfunction in the skeletal murine muscle, and it presents novel therapeutic approaches for optimizing clinical outcomes in affected patients. IMPORTANCE: Skeletal muscle, pivotal for many functions in the human body, including breathing and protecting internal organs, contains abundant mitochondria essential for maintaining cellular homeostasis during infection. The effect of Pseudomonas aeruginosa (PA) infections on skeletal muscle remains poorly understood. Our study delves into the role of a central quorum-sensing transcription factor, multiple virulence factor regulator (MvfR), that controls the expression of multiple acute and chronic virulence functions that contribute to the pathogenicity of PA. The significance of our study lies in the role of MvfR in the metabolic perturbances linked to mitochondrial functions in skeletal muscle and the effectiveness of the novel MvfR inhibitor and the mitochondrial-targeted peptide SS-31 in alleviating the mitochondrial disturbances caused by PA in skeletal muscle. Inhibiting MvfR or interfering with its effects can be a potential therapeutic strategy to curb PA virulence.


Asunto(s)
Proteínas Bacterianas , Músculo Esquelético , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Animales , Ratones , Músculo Esquelético/microbiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Percepción de Quorum/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Modelos Animales de Enfermedad , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Masculino , Fosforilación Oxidativa/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Ratones Endogámicos C57BL , Oligopéptidos/farmacología , Adenosina Trifosfato/metabolismo , Antibacterianos/farmacología
4.
Exp Gerontol ; 194: 112485, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876448

RESUMEN

The natural polyphenol resveratrol (RSV) might counteract the skeletal muscle age-related loss of muscle mass and strength/function partly acting on mitochondria. This work analysed the effects of a six-week administration of RSV (50 mg/kg/day) in the oxidative Soleus (Sol) skeletal muscle of old rats (27 months old). RSV effects on key mitochondrial biogenesis proteins led to un unchanged amount of SIRT1 protein and a marked decrease (60 %) in PGC-1α protein. In addition, Peroxyredoxin 3 (PRXIII) protein decreased by 50 %, which on overall suggested the absence of induction of mitochondrial biogenesis by RSV in old Sol. A novel direct correlation between PGC-1α and PRXIII proteins was demonstrated by correlation analysis in RSV and ad-libitum (AL) rats, supporting the reciprocally coordinated expression of the proteins. RSV supplementation led to an unexpected 50 % increase in the frequency of the oxidized base OH8dG in mtDNA. Furthermore, RSV supplementation induced a 50 % increase in the DRP1 protein of mitochondrial dynamics. In both rat groups an inverse correlation between PGC-1α and the frequency of OH8dG as well as an inverse correlation between PRXIII and the frequency of OH8dG were also found, suggestive of a relationship between oxidative damage to mtDNA and mitochondrial biogenesis activity. Such results may indicate that the antioxidant activity of RSV in aged Sol impinged on the oxidative fiber-specific, ROS-mediated, retrograde communication, thereby affecting the expression of SIRT1, PGC-1α and PRXIII, reducing the compensatory responses to the age-related mitochondrial oxidative stress and decline.


Asunto(s)
Envejecimiento , Mitocondrias Musculares , Músculo Esquelético , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas Wistar , Resveratrol , Sirtuina 1 , Animales , Resveratrol/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Masculino , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuina 1/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Ratas , Estilbenos/farmacología , Antioxidantes/farmacología , Peroxirredoxinas/metabolismo , ADN Mitocondrial/metabolismo , Estrés Oxidativo/efectos de los fármacos , Dinaminas/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos
5.
FASEB J ; 38(11): e23718, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38847487

RESUMEN

Female carriers of a Duchenne muscular dystrophy (DMD) gene mutation manifest exercise intolerance and metabolic anomalies that may be exacerbated following menopause due to the loss of estrogen, a known regulator of skeletal muscle function and metabolism. Here, we studied the impact of estrogen depletion (via ovariectomy) on exercise tolerance and muscle mitochondrial metabolism in female mdx mice and the potential of estrogen replacement therapy (using estradiol) to protect against functional and metabolic perturbations. We also investigated the effect of estrogen depletion, and replacement, on the skeletal muscle proteome through an untargeted proteomic approach with TMT-labelling. Our study confirms that loss of estrogen in female mdx mice reduces exercise capacity, tricarboxylic acid cycle intermediates, and citrate synthase activity but that these deficits are offset through estrogen replacement therapy. Furthermore, ovariectomy downregulated protein expression of RNA-binding motif factor 20 (Rbm20), a critical regulator of sarcomeric and muscle homeostasis gene splicing, which impacted pathways involving ribosomal and mitochondrial translation. Estrogen replacement modulated Rbm20 protein expression and promoted metabolic processes and the upregulation of proteins involved in mitochondrial dynamics and metabolism. Our data suggest that estrogen mitigates dystrophinopathic features in female mdx mice and that estrogen replacement may be a potential therapy for post-menopausal DMD carriers.


Asunto(s)
Estrógenos , Ratones Endogámicos mdx , Músculo Esquelético , Proteínas de Unión al ARN , Animales , Femenino , Ratones , Estrógenos/metabolismo , Estrógenos/farmacología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Ratones Endogámicos C57BL , Ovariectomía , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos
6.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892242

RESUMEN

Skeletal muscle atrophy (SMA) is caused by a rise in muscle breakdown and a decline in protein synthesis, with a consequent loss of mass and function. This study characterized the effect of an amino acid mixture (AA) in models of SMA, focusing on mitochondria. C57/Bl6 mice underwent immobilization of one hindlimb (I) or cardiotoxin-induced muscle injury (C) and were compared with controls (CTRL). Mice were then administered AA in drinking water for 10 days and compared to a placebo group. With respect to CTRL, I and C reduced running time and distance, along with grip strength; however, the reduction was prevented by AA. Tibialis anterior (TA) muscles were used for histology and mitochondria isolation. I and C resulted in TA atrophy, characterized by a reduction in both wet weight and TA/body weight ratio and smaller myofibers than those of CTRL. Interestingly, these alterations were lightly observed in mice treated with AA. The mitochondrial yield from the TA of I and C mice was lower than that of CTRL but not in AA-treated mice. AA also preserved mitochondrial bioenergetics in TA muscle from I and C mice. To conclude, this study demonstrates that AA prevents loss of muscle mass and function in SMA by protecting mitochondria.


Asunto(s)
Aminoácidos , Metabolismo Energético , Ratones Endogámicos C57BL , Músculo Esquelético , Atrofia Muscular , Animales , Ratones , Metabolismo Energético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Aminoácidos/farmacología , Aminoácidos/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/patología , Atrofia Muscular/etiología , Masculino , Modelos Animales de Enfermedad , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
7.
Biochim Biophys Acta Gen Subj ; 1868(9): 130652, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38857773

RESUMEN

Mitochondria play a crucial role in maintaining Ca2+ homeostasis in cells. Due to the critical regulatory role of the products of oxidative and non-oxidative metabolism of L-arginine, it is essential to clarify their effect on Ca2+ transport in smooth muscle mitochondria. Experiments were performed on the uterine myocytes of rats and isolated mitochondria. The possibility of NO synthesis by mitochondria was demonstrated by confocal microscopy and spectrofluorimetry methods using the NO-sensitive fluorescent probe DAF-FM and Mitotracker Orange CM-H2TMRos. It was shown that 50 µM L-arginine stimulates the energy-dependent accumulation of Ca2+ in mitochondria using the fluorescent probe Fluo-4 AM. A similar effect occurred when using nitric oxide donors 100 µM SNP, SNAP, and sodium nitrite (SN) directly. The stimulating effect was eliminated in the presence of the NO scavenger C-PTIO. Nitric oxide reduces the electrical potential in mitochondria without causing them to swell. The stimulatory effect of spermine on the accumulation of Ca2+ by mitochondria is attributed to the enhancement of NO synthesis, which was demonstrated with the use of C-PTIO, NO-synthase inhibitors (100 µM NA and L-NAME), as well as by direct monitoring of NO synthesis fluorescent probe DAF-FM. A conclusion was drawn about the potential regulatory effect of the product of the oxidative metabolism of L-arginine - NO on the transport of Ca2+ in the mitochondria of the myometrium, as well as the corresponding effect of the product of non-oxidative metabolism -spermine by increasing the synthesis of NO in these subcellular structures.


Asunto(s)
Arginina , Calcio , Óxido Nítrico , Femenino , Animales , Arginina/metabolismo , Calcio/metabolismo , Ratas , Óxido Nítrico/metabolismo , Oxidación-Reducción , Miometrio/metabolismo , Miometrio/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Ratas Wistar , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Útero/metabolismo , Útero/efectos de los fármacos , Espermina/metabolismo , Espermina/farmacología , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/metabolismo , Músculo Liso/metabolismo , Músculo Liso/efectos de los fármacos , Transporte Biológico/efectos de los fármacos
9.
Am J Physiol Cell Physiol ; 326(6): C1669-C1682, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38646781

RESUMEN

We previously showed that the transaminase inhibitor, aminooxyacetic acid, reduced respiration energized at complex II (succinate dehydrogenase, SDH) in mitochondria isolated from mouse hindlimb muscle. The effect required a reduction in membrane potential with resultant accumulation of oxaloacetate (OAA), a potent inhibitor of SDH. To specifically assess the effect of the mitochondrial transaminase, glutamic oxaloacetic transaminase (GOT2) on complex II respiration, and to determine the effect in intact cells as well as isolated mitochondria, we performed respiratory and metabolic studies in wildtype (WT) and CRISPR-generated GOT2 knockdown (KD) C2C12 myocytes. Intact cell respiration by GOT2KD cells versus WT was reduced by adding carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) to lower potential. In mitochondria of C2C12 KD cells, respiration at low potential generated by 1 µM FCCP and energized at complex II by 10 mM succinate + 0.5 mM glutamate (but not by complex I substrates) was reduced versus WT mitochondria. Although we could not detect OAA, metabolite data suggested that OAA inhibition of SDH may have contributed to the FCCP effect. C2C12 mitochondria differed from skeletal muscle mitochondria in that the effect of FCCP on complex II respiration was not evident with ADP addition. We also observed that C2C12 cells, unlike skeletal muscle, expressed glutamate dehydrogenase, which competes with GOT2 for glutamate metabolism. In summary, GOT2 KD reduced C2C12 respiration in intact cells at low potential. From differential substrate effects, this occurred largely at complex II. Moreover, C2C12 versus muscle mitochondria differ in complex II sensitivity to ADP and differ markedly in expression of glutamate dehydrogenase.NEW & NOTEWORTHY Impairment of the mitochondrial transaminase, GOT2, reduces complex II (succinate dehydrogenase, SDH)-energized respiration in C2C12 myocytes. This occurs only at low inner membrane potential and is consistent with inhibition of SDH. Incidentally, we observed that C2C12 mitochondria compared with muscle tissue mitochondria differ in sensitivity of complex II respiration to ADP and in the expression of glutamate dehydrogenase.


Asunto(s)
Respiración de la Célula , Potencial de la Membrana Mitocondrial , Mitocondrias Musculares , Animales , Ratones , Aspartato Aminotransferasa Mitocondrial/metabolismo , Aspartato Aminotransferasa Mitocondrial/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular , Respiración de la Célula/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/enzimología , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Consumo de Oxígeno/efectos de los fármacos , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo
10.
Clin Nutr ; 43(6): 1250-1260, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653008

RESUMEN

BACKGROUND & AIM: Dysfunction of skeletal muscle satellite cells might impair muscle regeneration and prolong ICU-acquired weakness, a condition associated with disability and delayed death. This study aimed to elucidate the distinct metabolic effects of critical illness and ß-OH-butyrate on satellite cells isolated from these patients. METHODS: Satellite cells were extracted from vastus lateralis muscle biopsies of patients with ICU-acquired weakness (n = 10) and control group of healthy volunteers or patients undergoing elective hip replacement surgery (n = 10). The cells were exposed to standard culture media supplemented with ß-OH-butyrate to assess its influence on cell proliferation by ELISA, mitochondrial functions by extracellular flux analysis, electron transport chain complexes by high resolution respirometry, and ROS production by confocal microscopy. RESULTS: Critical illness led to a decline in maximal respiratory capacity, ATP production and glycolytic capacity and increased ROS production in ICU patients' cells. Notably, the function of complex II was impaired due to critical illness but restored to normal levels upon exposure to ß-OH-butyrate. While ß-OH-butyrate significantly reduced ROS production in both control and ICU groups, it had no significant impact on global mitochondrial functions. CONCLUSION: Critical illness induces measurable bioenergetic dysfunction of skeletal muscle satellite cells. ß-OH-butyrate displayed a potential in rectifying complex II dysfunction caused by critical illness and this warrants further exploration.


Asunto(s)
Ácido 3-Hidroxibutírico , Enfermedad Crítica , Especies Reactivas de Oxígeno , Células Satélite del Músculo Esquelético , Humanos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Especies Reactivas de Oxígeno/metabolismo , Anciano , Ácido 3-Hidroxibutírico/farmacología , Proliferación Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Adulto , Células Cultivadas , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Adenosina Trifosfato/metabolismo , Debilidad Muscular
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167157, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582266

RESUMEN

Statins are the first line of choice for the treatment for atherosclerosis, but their use can cause myotoxicity, a common side effect that may require dosage reduction or discontinuation. The exact mechanism of statin-induced myotoxicity is unknown. Previous research has demonstrated that the combination of idebenone and statin yielded superior anti-atherosclerotic outcomes. Here, we investigated the mechanism of statin-induced myotoxicity in atherosclerotic ApoE-/- mice and whether idebenone could counteract it. After administering simvastatin to ApoE-/- mice, we observed a reduction in plaque formation as well as a decrease in their exercise capacity. We observed elevated levels of lactic acid and creatine kinase, along with a reduction in the cross-sectional area of muscle fibers, an increased presence of ragged red fibers, heightened mitochondrial crista lysis, impaired mitochondrial complex activity, and decreased levels of CoQ9 and CoQ10. Two-photon fluorescence imaging revealed elevated H2O2 levels in the quadriceps, indicating increased oxidative stress. Proteomic analysis indicated that simvastatin inhibited the tricarboxylic acid cycle. Idebenone treatment not only further reduced plaque formation but also ameliorated the impaired exercise capacity caused by simvastatin. Our study represents the inaugural comprehensive investigation into the mechanisms underlying statin-induced myotoxicity. We have demonstrated that statins inhibit CoQ synthesis, impair mitochondrial complex functionality, and elevate oxidative stress, ultimately resulting in myotoxic effects. Furthermore, our research marks the pioneering identification of idebenone's capability to mitigate statin-induced myotoxicity by attenuating oxidative stress, thereby safeguarding mitochondrial complex functionality. The synergistic use of idebenone and statin not only enhances the effectiveness against atherosclerosis but also mitigates statin-induced myotoxicity.


Asunto(s)
Aterosclerosis , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Estrés Oxidativo , Simvastatina , Ubiquinona , Animales , Estrés Oxidativo/efectos de los fármacos , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ratones , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/inducido químicamente , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Simvastatina/farmacología , Miotoxicidad/tratamiento farmacológico , Miotoxicidad/patología , Miotoxicidad/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Ratones Noqueados , Ratones Endogámicos C57BL , Antioxidantes/farmacología , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología
12.
Biochem Biophys Res Commun ; 712-713: 149944, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38636302

RESUMEN

This work examined the effect of 2-aminoethoxydiphenyl borate (2-APB) on the functioning of isolated mouse skeletal muscle mitochondria and modeled its putative interaction with mitochondrial proteins. We have shown that 2-APB is able to dose-dependently suppress mitochondrial respiration in state 3 and 3UDNP driven by substrates of complex I and II. This effect of 2-APB was accompanied by a slight dose-dependent decrease in mitochondrial membrane potential and appears to be due to inhibition of complex I and complex III of the electron transport chain (ETC) with IC50 values of 200 and 120 µM, respectively. The results of molecular docking identified putative 2-APB interaction sites in these ETC complexes. 2-APB was shown to dose-dependently inhibit both mitochondrial Ca2+ uptake and Ca2+ efflux, which seems to be caused by a decrease in the membrane potential of the organelles. We have found that 2-APB has no significant effect on mitochondrial calcium retention capacity. On the other hand, 2-APB exhibited antioxidant effect by reducing mitochondrial hydrogen peroxide production but without affecting superoxide generation. It is concluded that the effect of 2-APB on mitochondrial targets should be taken into account when interpreting the results of cell and in vivo experiments.


Asunto(s)
Compuestos de Boro , Calcio , Mitocondrias Musculares , Músculo Esquelético , Animales , Compuestos de Boro/farmacología , Compuestos de Boro/química , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Calcio/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Simulación del Acoplamiento Molecular , Masculino
13.
Endocrine ; 85(1): 417-427, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38478198

RESUMEN

PURPOSE: We previously showed that offspring delivered to baboons in which levels of estradiol (E2) were suppressed during the second half of gestation exhibit insulin resistance. Mitochondria are essential for the production of ATP as the main source of energy for intracellular metabolic pathways, and skeletal muscle of type 2 diabetics exhibit mitochondrial abnormalities. Mitochondria express estrogen receptor ß and E2 enhances mitochondrial function in adults. Therefore, the current study ascertained whether exposure of the fetus to E2 is essential for mitochondrial development. METHODS: Levels of ATP synthase and citrate synthase and the morphology of mitochondria were determined in fetal skeletal muscle obtained near term from baboons untreated or treated daily with the aromatase inhibitor letrozole or letrozole plus E2. RESULTS: Specific activity and amount of ATP synthase were 2-fold lower (P < 0.05) in mitochondria from skeletal muscle of E2 suppressed letrozole-treated fetuses and restored to normal by treatment with letrozole plus E2. Immunocytochemistry showed that in contrast to the punctate formation of mitochondria in myocytes of untreated and letrozole plus E2 treated animals, mitochondria appeared to be diffuse in myocytes of estrogen-suppressed fetuses. However, citrate synthase activity and levels of proteins that control mitochondrial fission/fusion were similar in estrogen replete and suppressed animals. CONCLUSION: We suggest that estrogen is essential for fetal skeletal muscle mitochondrial development and thus glucose homeostasis in adulthood.


Asunto(s)
Estradiol , Resistencia a la Insulina , Letrozol , Músculo Esquelético , Triazoles , Animales , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Letrozol/farmacología , Femenino , Resistencia a la Insulina/fisiología , Embarazo , Estradiol/farmacología , Triazoles/farmacología , Citrato (si)-Sintasa/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Estrógenos/farmacología , Nitrilos/farmacología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Inhibidores de la Aromatasa/farmacología , Feto/efectos de los fármacos , Feto/metabolismo
14.
Acta Physiol (Oxf) ; 240(6): e14117, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38404156

RESUMEN

AIM: To investigate effects of hormone replacement therapy in postmenopausal women on factors associated with metabolic flexibility related to whole-body parameters including fat oxidation, resting energy expenditure, body composition and plasma concentrations of fatty acids, glucose, insulin, cortisol, and lipids, and for the mitochondrial level, including mitochondrial content, respiratory capacity, efficiency, and hydrogen peroxide emission. METHODS: 22 postmenopausal women were included. 11 were undergoing estradiol and progestin treatment (HT), and 11 were matched non-treated controls (CONT). Peak oxygen consumption, maximal fat oxidation, glycated hemoglobin, body composition, and resting energy expenditure were measured. Blood samples were collected at rest and during 45 min of ergometer exercise (65% VO2peak). Muscle biopsies were obtained at rest and immediately post-exercise. Mitochondrial respiratory capacity, efficiency, and hydrogen peroxide emission in permeabilized fibers and isolated mitochondria were measured, and citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activity were assessed. RESULTS: HT showed higher absolute mitochondrial respiratory capacity and post-exercise hydrogen peroxide emission in permeabilized fibers and higher CS and HAD activities. All respiration normalized to CS activity showed no significant group differences in permeabilized fibers or isolated mitochondria. There were no differences in resting energy expenditure, maximal, and resting fat oxidation or plasma markers. HT had significantly lower visceral and total fat mass compared to CONT. CONCLUSION: Use of hormone therapy is associated with higher mitochondrial content and respiratory capacity and a lower visceral and total fat mass. Resting energy expenditure and fat oxidation did not differ between HT and CONT.


Asunto(s)
Metabolismo Energético , Posmenopausia , Humanos , Femenino , Posmenopausia/metabolismo , Persona de Mediana Edad , Metabolismo Energético/efectos de los fármacos , Anciano , Consumo de Oxígeno/efectos de los fármacos , Terapia de Reemplazo de Hormonas , Terapia de Reemplazo de Estrógeno , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Estradiol/sangre , Estradiol/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos
15.
J Pharm Sci ; 113(7): 1836-1843, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38325738

RESUMEN

Numerous mitochondria are present in skeletal muscle cells. Muscle disease and aging impair mitochondrial functioning in the skeletal muscle. However, there have been few reports of therapeutic intervention via drug delivery to mitochondria owing to methodological difficulties. We surmised that mitochondrial activation is associated with improved skeletal muscle function. In this study, we attempted to activate the mitochondrial respiratory capacity in rat skeletal muscle cells (L6 cells) by delivering Coenzyme Q10 (CoQ10), a mitochondrial functional activator, to mitochondria using MITO-Porter, a nanoparticle that facilitates mitochondria-targeted drug delivery. Cellular uptake was confirmed by measuring the amount of fluorescence-modified MITO-Porter taken up by cells using flow cytometry. Intracellular dynamics of MITO-Porter was observed using confocal laser scanning microscopy. Mitochondrial function was assessed by measuring the mitochondrial oxygen consumption rate using an extracellular flux analyzer. The results indicated MITO-Porter-assisted delivery of CoQ10 to the mitochondria activated mitochondrial respiratory capacity in L6 cells. We believe that our results indicate the possibility of skeletal muscle therapy using mitochondrial drug delivery.


Asunto(s)
Mitocondrias Musculares , Músculo Esquelético , Consumo de Oxígeno , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/administración & dosificación , Ubiquinona/farmacología , Animales , Ratas , Consumo de Oxígeno/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Línea Celular , Nanopartículas , Sistemas de Liberación de Medicamentos/métodos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos
16.
Mol Med Rep ; 25(3)2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35059739

RESUMEN

Ginsenoside Rg3 (Rg3), amplified by iterative heating processing with fresh ginseng, has a broad range of pharmacological activities and improves mitochondrial biogenesis in skeletal muscle. However, thus far no study has examined how Rg3 affects myotube growth or muscle atrophy, to the best of the authors' knowledge. The present study was conducted to examine the myogenic effect of Rg3 on dexamethasone (DEX)­induced myotube atrophy and the underlying molecular mechanisms. Rg3 activated Akt/mammalian target of rapamycin signaling to prevent DEX­induced myotube atrophy thereby stimulating the expression of muscle­specific genes, including myosin heavy chain and myogenin, and suppressing muscle­specific ubiquitin ligases as demonstrated by immunoblotting and immunostaining assays. Furthermore, Rg3 efficiently prevented DEX­triggered mitochondrial dysfunction of myotubes through peroxisome proliferator­activated receptor­Î³ coactivator1α activities and its mitochondrial biogenetic transcription factors, nuclear respiratory factor­1 and mitochondrial transcription factor A. These were confirmed by immunoblotting, luciferase assays, RT­qPCR and mitochondrial analysis measuring the levels of ROS, ATP and membrane potential. By providing a mechanistic insight into the effect of Rg3 on myotube atrophy, the present study suggested that Rg3 has potential as a therapeutic or nutraceutical remedy to intervene in muscle aging or diseases including cancer cachexia.


Asunto(s)
Ginsenósidos/farmacología , Glucocorticoides/toxicidad , Mitocondrias Musculares/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Atrofia Muscular/metabolismo , Biogénesis de Organelos , Animales , Western Blotting , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dexametasona/toxicidad , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Ratones , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/genética , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Factor Nuclear 1 de Respiración/genética , Factor Nuclear 1 de Respiración/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sustancias Protectoras/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos
17.
Physiol Rep ; 9(19): e15049, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34605220

RESUMEN

OBJECTIVE: Insulin sensitivity is lower in African American (AA) versus Caucasian American (CA). We tested the hypothesis that lower insulin sensitivity in AA could be explained by mitochondrial respiratory rates, coupling efficiency, myofiber composition, or H2 O2 emission. A secondary aim was to determine whether sex affected the results. METHODS: AA and CA men and women, 19-45 years, BMI 17-43 kg m2 , were assessed for insulin sensitivity (SIClamp ) using a euglycemic clamp at 120 mU/m2 /min, muscle mitochondrial function using high-resolution respirometry, H2 O2 emission using amplex red, and % myofiber composition. RESULTS: SIClamp was greater in CA (p < 0.01) and women (p < 0.01). Proportion of type I myofibers was lower in AA (p < 0.01). Mitochondrial respiratory rates, coupling efficiency, and H2 O2 production did not differ with race. Mitochondrial function was positively associated with insulin sensitivity in women but not men. Statistical adjustment for mitochondrial function, H2 O2 production, or fiber composition did not eliminate the race difference in SIClamp . CONCLUSION: Neither mitochondrial respiratory rates, coupling efficiency, myofiber composition, nor mitochondrial reactive oxygen species production explained lower SIClamp in AA compared to CA. The source of lower insulin sensitivity in AA may be due to other aspects of skeletal muscle that have yet to be identified.


Asunto(s)
Hipoglucemiantes/farmacología , Resistencia a la Insulina/fisiología , Insulina/farmacología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adulto , Estudios Transversales , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Factores Sexuales , Adulto Joven
18.
Nutrients ; 13(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34684418

RESUMEN

Maternal high-fat (HF) diet is associated with offspring metabolic disorder. This study intended to determine whether maternal metformin (MT) administration during gestation and lactation prevents the effect of maternal HF diet on offspring's skeletal muscle (SM) development and metabolism. Pregnant Sprague-Dawley rats were divided into four groups according to maternal diet {CHOW (11.8% fat) or HF (60% fat)} and MT administration {control (CT) or MT (300 mg/kg/day)} during gestation and lactation: CH-CT, CH-MT, HF-CT, HF-MT. All offspring were weaned on CHOW diet. SM was collected at weaning and 18 weeks in offspring. Maternal metformin reduced plasma insulin, leptin, triglyceride and cholesterol levels in male and female offspring. Maternal metformin increased MyoD expression but decreased Ppargc1a, Drp1 and Mfn2 expression in SM of adult male and female offspring. Decreased MRF4 expression in SM, muscle dysfunction and mitochondrial vacuolization were observed in weaned HF-CT males, while maternal metformin normalized them. Maternal metformin increased AMPK phosphorylation and decreased 4E-BP1 phosphorylation in SM of male and female offspring. Our data demonstrate that maternal metformin during gestation and lactation can potentially overcome the negative effects of perinatal exposure to HF diet in offspring, by altering their myogenesis, mitochondrial biogenesis and dynamics through AMPK/mTOR pathways in SM.


Asunto(s)
Lactancia/efectos de los fármacos , Exposición Materna , Metformina/farmacología , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Efectos Tardíos de la Exposición Prenatal , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Peso Corporal , Dieta Alta en Grasa , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Edad Gestacional , Lactancia/metabolismo , Masculino , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Desarrollo de Músculos/genética , Fenotipo , Embarazo , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
19.
Nutrients ; 13(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34684467

RESUMEN

Mitochondrial dysfunction is widely reported in various diseases and contributes to their pathogenesis. We assessed the effect of cocoa flavanols supplementation on mitochondrial function and whole metabolism, and we explored whether the mitochondrial deacetylase sirtuin-3 (Sirt3) is involved or not. We explored the effects of 15 days of CF supplementation in wild type and Sirt3-/- mice. Whole-body metabolism was assessed by indirect calorimetry, and an oral glucose tolerance test was performed to assess glucose metabolism. Mitochondrial respiratory function was assessed in permeabilised fibres and the pyridine nucleotides content (NAD+ and NADH) were quantified. In the wild type, CF supplementation significantly modified whole-body metabolism by promoting carbohydrate use and improved glucose tolerance. CF supplementation induced a significant increase of mitochondrial mass, while significant qualitative adaptation occurred to maintain H2O2 production and cellular oxidative stress. CF supplementation induced a significant increase in NAD+ and NADH content. All the effects mentioned above were blunted in Sirt3-/- mice. Collectively, CF supplementation boosted the NAD metabolism that stimulates sirtuins metabolism and improved mitochondrial function, which likely contributed to the observed whole-body metabolism adaptation, with a greater ability to use carbohydrates, at least partially through Sirt3.


Asunto(s)
Cacao/química , Suplementos Dietéticos , Metabolismo Energético/efectos de los fármacos , Flavonoides/farmacología , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Extractos Vegetales/farmacología , Animales , Biomarcadores , Composición Corporal , Flavonoides/química , Glucosa/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Sirtuina 3/genética , Sirtuina 3/metabolismo
20.
Nutrients ; 13(10)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34684660

RESUMEN

Decreased energy expenditure and chronically positive energy balance contribute to the prevalence of obesity and associated metabolic dysfunctions, such as dyslipidemia, hepatic fat accumulation, inflammation, and muscle mitochondrial defects. We investigated the effects of Chrysanthemum morifolium Ramat flower extract (CE) on obesity-induced inflammation and muscle mitochondria changes. Sprague-Dawley rats were randomly divided into four groups and fed either a normal diet, 45% high-fat diet (HF), HF containing 0.2% CE, or 0.4% CE for 13 weeks. CE alleviated HF-increased adipose tissue mass and size, dyslipidemia, hepatic fat deposition, and systematic inflammation, and increased energy expenditure. CE significantly decreased gene expression involved in adipogenesis, pro-inflammation, and the M1 macrophage phenotype, as well as glycerol-3-phosphate dehydrogenase (GPDH) and nuclear factor-kappa B (NF-kB) activities in epididymal adipose tissue. Moreover, CE supplementation improved hepatic fat accumulation and modulated gene expression related to fat synthesis and oxidation with an increase in adenosine monophosphate-activated protein kinase (AMPK) activity in the liver. Furthermore, CE increased muscle mitochondrial size, mitochondrial DNA (mtDNA) content, and gene expression related to mitochondrial biogenesis and function, including sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and PGC-1α-target genes, along with AMPK-SIRT1 activities in the skeletal muscle. These results suggest that CE attenuates obesity-associated inflammation by modulating the muscle AMPK-SIRT1 pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Chrysanthemum/química , Flores/química , Inflamación/tratamiento farmacológico , Mitocondrias Musculares/metabolismo , Obesidad/complicaciones , Extractos Vegetales/uso terapéutico , Sirtuina 1/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/patología , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Tejido Adiposo Blanco/metabolismo , Animales , Peso Corporal/efectos de los fármacos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Dieta Alta en Grasa , Dislipidemias/complicaciones , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipertrofia , Inflamación/etiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Extractos Vegetales/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA