Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.420
Filtrar
2.
Biomed Pharmacother ; 175: 116737, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749176

RESUMEN

Antisense oligonucleotide (ASO) has emerged as a promising therapeutic approach for treating central nervous system (CNS) disorders by modulating gene expression with high selectivity and specificity. However, the poor permeability of ASO across the blood-brain barrier (BBB) diminishes its therapeutic success. Here, we designed and synthesized a series of BBB-penetrating peptides (BPP) derived from either the receptor-binding domain of apolipoprotein E (ApoE) or a transferrin receptor-binding peptide (THR). The BPPs were conjugated to phosphorodiamidate morpholino oligomers (PMO) that are chemically analogous to the 2'-O-(2-methoxyethyl) (MOE)-modified ASO approved by the FDA for treating spinal muscular atrophy (SMA). The BPP-PMO conjugates significantly increased the level of full-length SMN2 in the patient-derived SMA fibroblasts in a concentration-dependent manner with minimal to no toxicity. Furthermore, the systemic administration of the most potent BPP-PMO conjugates significantly increased the expression of full-length SMN2 in the brain and spinal cord of SMN2 transgenic adult mice. Notably, BPP8-PMO conjugate showed a 1.25-fold increase in the expression of full-length functional SMN2 in the brain. Fluorescence imaging studies confirmed that 78% of the fluorescently (Cy7)-labelled BPP8-PMO reached brain parenchyma, with 11% uptake in neuronal cells. Additionally, the BPP-PMO conjugates containing retro-inverso (RI) D-BPPs were found to possess extended half-lives compared to their L-counterparts, indicating increased stability against protease degradation while preserving the bioactivity. This delivery platform based on BPP enhances the CNS bioavailability of PMO targeting the SMN2 gene, paving the way for the development of systemically administered neurotherapeutics for CNS disorders.


Asunto(s)
Apolipoproteínas E , Barrera Hematoencefálica , Ratones Transgénicos , Oligonucleótidos Antisentido , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/farmacocinética , Humanos , Apolipoproteínas E/metabolismo , Ratones , Morfolinos/administración & dosificación , Morfolinos/farmacocinética , Morfolinos/farmacología , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Atrofia Muscular Espinal/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Péptidos/administración & dosificación , Péptidos/farmacología , Péptidos/química , Péptidos/farmacocinética , Péptidos de Penetración Celular/química
3.
Hereditas ; 161(1): 14, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685093

RESUMEN

BACKGROUND: Nicotinamide phosphoribosyltransferase (Nampt) is required for recycling NAD+ in numerous cellular contexts. Morpholino-based knockdown of zebrafish nampt-a has been shown to cause abnormal development and defective hematopoiesis concomitant with decreased NAD+ levels. However, surprisingly, nampt-a mutant zebrafish were recently found to be viable, suggesting a discrepancy between the phenotypes in knockdown and knockout conditions. Here, we address this discrepancy by directly comparing loss-of-function approaches that result in identical defective transcripts in morphants and mutants. RESULTS: Using CRISPR/Cas9-mediated mutagenesis, we generated nampt-a mutant lines that carry the same mis-spliced mRNA as nampt-a morphants. Despite reduced NAD+ levels and perturbed expression of specific blood markers, nampt-a mutants did not display obvious developmental defects and were found to be viable. In contrast, injection of nampt-a morpholinos into wild-type or mutant nampt-a embryos caused aberrant phenotypes. Moreover, nampt-a morpholinos caused additional reduction of blood-related markers in nampt-a mutants, suggesting that the defects observed in nampt-a morphants can be partially attributed to off-target effects of the morpholinos. CONCLUSIONS: Our findings show that zebrafish nampt-a mutants are viable despite reduced NAD+ levels and a perturbed hematopoietic gene expression program, indicating strong robustness of primitive hematopoiesis during early embryogenesis.


Asunto(s)
Hematopoyesis , Nicotinamida Fosforribosiltransferasa , Pez Cebra , Animales , Pez Cebra/genética , Nicotinamida Fosforribosiltransferasa/genética , Hematopoyesis/genética , Mutación , Proteínas de Pez Cebra/genética , Fenotipo , Sistemas CRISPR-Cas , NAD/metabolismo , Técnicas de Silenciamiento del Gen , Morfolinos/genética
4.
Chem Biol Drug Des ; 103(4): e14512, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570316

RESUMEN

A thorough search for the development of innovative drugs to treat tuberculosis, especially considering the urgent need to address developing drug resistance, we report here a synthetic series of ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o) as potent anti-tubercular agents. These morpholino-indolizines were synthesized by reacting 4-morpholino pyridinium salts, with various electron-deficient acetylenes to afford the ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o). All synthesized intermediate and final compounds are characterized by spectroscopic methods such as 1H NMR, 13C NMR and HRMS and further examined for their anti-tubercular activity against the M. tuberculosis H37Rv strain (ATCC 27294-American type cell culture). All the compounds screened for anti-tubercular activity in the range of 6.25-50 µM against the H37Rv strain of Mycobacterium tuberculosis. Compound 5g showed prominent activity with MIC99 2.55 µg/mL whereas compounds 5d and 5j showed activity with MIC99 18.91 µg/mL and 25.07 µg/mL, respectively. In silico analysis of these compounds revealed drug-likeness. Additionally, the molecular target identification for Malate synthase (PDB 5CBB) is attained by computational approach. The compound 5g with a MIC99 value of 2.55 µg/mL against M. tuberculosis H37Rv emerged as the most promising anti-TB drug and in silico investigations suggest Malate synthase (5CBB) might be the compound's possible target.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos , Relación Estructura-Actividad , Malato Sintasa , Morfolinos , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Microbiana
5.
Muscle Nerve ; 70(1): 60-70, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38482981

RESUMEN

INTRODUCTION/AIMS: Eteplirsen, approved in the US for patients with Duchenne muscular dystrophy (DMD) with exon 51 skip-amenable variants, is associated with attenuated ambulatory/pulmonary decline versus DMD natural history (NH). We report overall survival in a US cohort receiving eteplirsen and contextualize these outcomes versus DMD NH. METHODS: US patients with DMD receiving eteplirsen were followed through a patient support program, with data collected on ages at eteplirsen initiation and death/end of follow-up. Individual DMD NH data were extracted by digitizing Kaplan-Meier (KM) curves from published systematic and targeted literature reviews. Overall survival age was analyzed using KM curves and contextualized with DMD NH survival curves; subanalyses considered age groups and duration of eteplirsen exposure. Overall survival time from treatment initiation was also evaluated. RESULTS: A total of 579 eteplirsen-treated patients were included. During a total follow-up of 2119 person-years, median survival age was 32.8 years. DMD NH survival curves extracted from four publications (follow-up for 1224 DMD NH controls) showed overall pooled median survival age of 27.4 years. Eteplirsen-treated patients had significantly longer survival from treatment initiation versus age-matched controls (age-adjusted hazard ratio [HR], 0.65; 95% confidence interval [CI], 0.44-0.98; p < .05). Longer treatment exposure was associated with improved survival (HR, 0.15; 95% CI, 0.05-0.41; p < .001). Comparisons using different DMD NH cohorts to address common risks of bias yielded consistent findings. DISCUSSION: Data suggest eteplirsen may prolong survival in patients with DMD across a wide age range. As more data become available, the impact of eteplirsen on survival will be further elucidated.


Asunto(s)
Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/mortalidad , Humanos , Masculino , Niño , Adolescente , Adulto , Preescolar , Adulto Joven , Morfolinos/uso terapéutico , Femenino , Estudios de Cohortes , Estudios de Seguimiento , Estimación de Kaplan-Meier
6.
EMBO Mol Med ; 16(4): 1027-1045, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448545

RESUMEN

Clinical deployment of oligonucleotides requires delivery technologies that improve stability, target tissue accumulation and cellular internalization. Exosomes show potential as ideal delivery vehicles. However, an affordable generalizable system for efficient loading of oligonucleotides on exosomes remain lacking. Here, we identified an Exosomal Anchor DNA Aptamer (EAA) via SELEX against exosomes immobilized with our proprietary CP05 peptides. EAA shows high binding affinity to different exosomes and enables efficient loading of nucleic acid drugs on exosomes. Serum stability of thrombin inhibitor NU172 was prolonged by exosome-loading, resulting in increased blood flow after injury in vivo. Importantly, Duchenne Muscular Dystrophy PMO can be readily loaded on exosomes via EAA (EXOEAA-PMO). EXOEAA-PMO elicited significantly greater muscle cell uptake, tissue accumulation and dystrophin expression than PMO in vitro and in vivo. Systemic administration of EXOEAA-PMO elicited therapeutic levels of dystrophin restoration and functional improvements in mdx mice. Altogether, our study demonstrates that EAA enables efficient loading of different nucleic acid drugs on exosomes, thus providing an easy and generalizable strategy for loading nucleic acid therapeutics on exosomes.


Asunto(s)
Exosomas , Distrofia Muscular de Duchenne , Animales , Ratones , Distrofina/genética , Ratones Endogámicos mdx , Exosomas/metabolismo , Morfolinos/metabolismo , Morfolinos/farmacología , Morfolinos/uso terapéutico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleótidos/metabolismo , Oligonucleótidos/uso terapéutico
7.
J Org Chem ; 89(5): 2895-2903, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38344977

RESUMEN

The synthesis of phosphorodiamidate morpholino oligonucleotides (PMOs) incorporating single or double triazole rings in the backbone has been achieved via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The synthetic approach implemented is fundamentally convergent, involving the ligation of a 5'-azide PMO fragment to a 3'-alkyne fragment both in solution and on solid support. To access the 3'-alkyne PMO fragment, we synthesized 3'-N-propargyl chlorophosphoramidate morpholino monomers for all four nucleobases. The resulting triazole-incorporated PMOs (TzPMOs) have exhibited comparable or improved binding affinity toward complementary deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) strands compared to its regular analogues. Finally, a full-length TzPMO was designed to target the Nanog gene, demonstrating almost identical hybridization properties when compared to its regular version. Circular dichroism studies revealed a B-type helical conformation for the duplexes formed by TzPMOs.


Asunto(s)
Alquinos , Azidas , Morfolinos , Dicroismo Circular , Triazoles
8.
Angew Chem Int Ed Engl ; 63(17): e202318773, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38411401

RESUMEN

Conditionally controlled antisense oligonucleotides provide precise interrogation of gene function at different developmental stages in animal models. Only one example of small molecule-induced activation of antisense function exist. This has been restricted to cyclic caged morpholinos that, based on sequence, can have significant background activity in the absence of the trigger. Here, we provide a new approach using azido-caged nucleobases that are site-specifically introduced into antisense morpholinos. The caging group design is a simple azidomethylene (Azm) group that, despite its very small size, efficiently blocks Watson-Crick base pairing in a programmable fashion. Furthermore, it undergoes facile decaging via Staudinger reduction when exposed to a small molecule phosphine, generating the native antisense oligonucleotide under conditions compatible with biological environments. We demonstrated small molecule-induced gene knockdown in mammalian cells, zebrafish embryos, and frog embryos. We validated the general applicability of this approach by targeting three different genes.


Asunto(s)
Oligonucleótidos , Pez Cebra , Animales , Morfolinos/genética , Morfolinos/farmacología , Oligonucleótidos Antisentido , Fenotipo , Mamíferos
9.
ACS Infect Dis ; 10(3): 971-987, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38385613

RESUMEN

Oligonucleotides offer a unique opportunity for sequence specific regulation of gene expression in bacteria. A fundamental question to address is the choice of oligonucleotide, given the large number of options available. Different modifications varying in RNA binding affinities and cellular uptake are available but no comprehensive comparisons have been performed. Herein, the efficiency of blocking expression of ß-galactosidase (ß-Gal) in E. coli was evaluated utilizing different antisense oligomers (ASOs). Fluorescein (FAM)-labeled oligomers were used to understand their differences in bacterial uptake. Flow cytometry analysis revealed significant differences in uptake, with high fluorescence seen in cells treated with FAM-labeled peptidic nucleic acid (PNA), phosphorodiamidate morpholino oligonucleotide (PMO) and phosphorothioate (PS) oligomers, and low fluorescence observed in cells treated with phosphodiester (PO) oligomers. Thermal denaturation (Tm) of oligomer:RNA duplexes and isothermal titration calorimetry (ITC) studies reveal that ASO binding to target RNA demonstrates a good correlation between Tm and Kd values. There was no correlation between Kd values and reduction of ß-Gal activity in bacterial cells. However, cell-free translation assays demonstrated a direct relationship between Kd values and inhibition of gene expression by antisense oligomers, with tight binding oligomers such as LNA being the most efficient. Membrane active compounds such as polymyxin B and A22 further improved the cellular uptake of FAM-PNA and FAM-PS oligomers in wild-type E. coli cells. PNA and PMO were most effective in cellular uptake and reducing ß-Gal activity as compared to oligomers with PS or those with PO linkages. Overall, cell uptake of the oligomers is shown as the key determinant in predicting their differences in bacterial antisense inhibition, and the RNA affinity is the key determinant in inhibition of gene expression in cell free systems.


Asunto(s)
Escherichia coli , Oligonucleótidos Antisentido , Oligonucleótidos Antisentido/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Oligonucleótidos , Morfolinos , ARN/química , ARN/metabolismo , Expresión Génica
10.
Nucleic Acids Res ; 52(6): 2836-2847, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38412249

RESUMEN

The field of synthetic nucleic acids with novel backbone structures [xenobiotic nucleic acids (XNAs)] has flourished due to the increased importance of XNA antisense oligonucleotides and aptamers in medicine, as well as the development of XNA processing enzymes and new XNA genetic materials. Molecular modeling on XNA structures can accelerate rational design in the field of XNAs as it contributes in understanding and predicting how changes in the sugar-phosphate backbone impact on the complementation properties of the nucleic acids. To support the development of novel XNA polymers, we present a first-in-class open-source program (Ducque) to build duplexes of nucleic acid analogs with customizable chemistry. A detailed procedure is described to extend the Ducque library with new user-defined XNA fragments using quantum mechanics (QM) and to generate QM-based force field parameters for molecular dynamics simulations within standard packages such as AMBER. The tool was used within a molecular modeling workflow to accurately reproduce a selection of experimental structures for nucleic acid duplexes with ribose-based as well as non-ribose-based nucleosides. Additionally, it was challenged to build duplexes of morpholino nucleic acids bound to complementary RNA sequences.


Asunto(s)
Simulación de Dinámica Molecular , Morfolinos , Ácidos Nucleicos , ARN , Programas Informáticos , Morfolinos/química , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Oligonucleótidos/química , ARN/química , Programas Informáticos/normas
11.
Mol Pharm ; 21(3): 1256-1271, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38324380

RESUMEN

Delivery of macromolecular drugs inside cells has been a huge challenge in the field of oligonucleotide therapeutics for the past few decades. Earliest natural inspirations included the arginine rich stretch of cell permeable HIV-TAT peptide, which led to the design of several molecular transporters with varying numbers of rigid or flexible guanidinium units with different tethering groups. These transporters have been shown to efficiently deliver phosphorodiamidate morpholino oligonucleotides, which have a neutral backbone and cannot form lipoplexes. In this report, PMO based delivery agents having 3 or 4 guanidinium groups at the C5 position of the nucleobases of cytosine and uracil have been explored, which can be assimilated within the desired stretch of the antisense oligonucleotide. Guanidinium units have been connected by varying the flexibility with either a saturated (propyl) or an unsaturated (propargyl) spacer, which showed different serum dependency along with varied cytoplasmic distribution. The effect of cholesterol conjugation in the delivery agent as well as at the 5'-end of full length PMO in cellular delivery has also been studied. Finally, the efficacy of the delivery has been studied by the PMO mediated downregulation of the stemness marker Sox2 in the triple-negative breast cancer cell line MDA-MB 231. These results have validated the use of this class of delivery agents, which permit at a stretch PMO synthesis where the modified bases can also participate in Watson-Crick-Franklin base pairing for enhanced mRNA binding and protein downregulation and could solve the delivery problem of PMO.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Regulación hacia Abajo , Pirimidinas , Guanidina , Morfolinos/química , Oligonucleótidos
12.
RNA ; 30(6): 624-643, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38413166

RESUMEN

Antisense oligomer (ASO)-based antibiotics that target mRNAs of essential bacterial genes have great potential for counteracting antimicrobial resistance and for precision microbiome editing. To date, the development of such antisense antibiotics has primarily focused on using phosphorodiamidate morpholino (PMO) and peptide nucleic acid (PNA) backbones, largely ignoring the growing number of chemical modalities that have spurred the success of ASO-based human therapy. Here, we directly compare the activities of seven chemically distinct 10mer ASOs, all designed to target the essential gene acpP upon delivery with a KFF-peptide carrier into Salmonella. Our systematic analysis of PNA, PMO, phosphorothioate (PTO)-modified DNA, 2'-methylated RNA (RNA-OMe), 2'-methoxyethylated RNA (RNA-MOE), 2'-fluorinated RNA (RNA-F), and 2'-4'-locked RNA (LNA) is based on a variety of in vitro and in vivo methods to evaluate ASO uptake, target pairing and inhibition of bacterial growth. Our data show that only PNA and PMO are efficiently delivered by the KFF peptide into Salmonella to inhibit bacterial growth. Nevertheless, the strong target binding affinity and in vitro translational repression activity of LNA and RNA-MOE make them promising modalities for antisense antibiotics that will require the identification of an effective carrier.


Asunto(s)
Antibacterianos , Oligonucleótidos Antisentido , Ácidos Nucleicos de Péptidos , Antibacterianos/farmacología , Antibacterianos/química , Ácidos Nucleicos de Péptidos/farmacología , Ácidos Nucleicos de Péptidos/química , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/genética , Morfolinos/química , Morfolinos/farmacología , Morfolinos/genética , Péptidos/farmacología , Péptidos/química , Péptidos/genética , Humanos
13.
J Hum Genet ; 69(3-4): 139-144, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38321215

RESUMEN

BACKGROUND: Non-syndromic orofacial cleft (NSOC) is one of the most common craniofacial malformations with complex etiology. This study aimed to explore the role of specific SNPs in ZFP36L2 and its functional relevance in zebrafish models. METHODS: We analyzed genetic data of the Chinese Han population from two previous GWAS, comprising of 2512 cases and 2255 controls. Based on the Hardy-Weinberg Equilibrium (HWE) and minor allele frequency (MAF), SNPs in the ZFP36L2 were selected for association analysis. In addition, zebrafish models were used to clarify the in-situ expression pattern of zfp36l2 and the impact of its Morpholino-induced knockdown. RESULTS: Via association analysis, rs7933 in ZFP36L2 was significantly associated with various non-syndromic cleft lip-only subtypes, potentially conferring a protective effect. Zebrafish embryos showed elevated expression of zfp36l2 in the craniofacial region during critical stages of oral cavity formation. Furthermore, Morpholino-induced knockdown of zfp36l2 led to craniofacial abnormalities, including cleft lip, which was partially rescued by the addition of zfp36l2 mRNA. CONCLUSION: Our findings highlight the significance of ZFP36L2 in the etiology of NSOC, supported by both human genetic association data and functional studies in zebrafish. These results pave the way for further exploration of targeted interventions for craniofacial malformations.


Asunto(s)
Labio Leporino , Fisura del Paladar , Anomalías Craneofaciales , Animales , Humanos , Labio Leporino/genética , Fisura del Paladar/genética , Pez Cebra , Predisposición Genética a la Enfermedad , Morfolinos , Polimorfismo de Nucleótido Simple , Genotipo , Factores de Transcripción/genética
14.
Methods Cell Biol ; 181: 17-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38302238

RESUMEN

Dopaminergic neurons in the brain are an important source of dopamine, which is a crucial neurotransmitter for wellbeing, memory, reward, and motor control. Deficiency of dopamine due to advanced age and accumulative dopaminergic neuron defects can lead to movement disorders such as Parkinson's disease. Glial cell-derived neurotrophic factor (GDNF) is one of many factors involved in dopaminergic neuron development and/or survival. However, other endogenous GDNF functions in the brain await further investigation. Zebrafish is a well-established genetic model for neurodevelopment and neurodegeneration studies. Importantly, zebrafish shares approximately 70% functional orthologs with human genes including GDNF. To gain a better understanding on the precise functional role of gdnf in dopaminergic neurons, our laboratory devised a targeted knockdown of gdnf in the zebrafish larval brain using vivo morpholino. Here, detailed protocols on the generation of gdnf morphants using vivo morpholino are outlined. This method can be applied for targeting of genes in the brain to determine specific spatiotemporal gene function in situ.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Morfolinos/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Dopamina , Microinyecciones
15.
J Med Microbiol ; 73(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38353513

RESUMEN

Introduction. Influenza is a global health issue causing substantial health and economic burdens on affected populations. Routine, annual vaccination for influenza virus is recommended for all persons older than 6 months of age. The propagation of the influenza virus for vaccine production is predominantly through embryonated chicken eggs.Hypothesis/Gap Statement. Many challenges face the propagation of the virus, including but not limited to low yields and lengthy production times. The development of a method to increase vaccine production in eggs or cell lines by suppressing cellular gene expression would be helpful to overcome some of the challenges facing influenza vaccine production.Aims. This study aimed to increase influenza virus titres by using a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO), an antisense molecule, to suppress protein expression of the host genes interferon alpha (IFN-α) and interferon beta (IFN-ß) in chicken embryo fibroblast (DF-1) cells.Methods. The toxicity of PPMOs was evaluated by cytotoxicity assays, and their specificity to inhibit IFN-α and IFN-ß proteins was measured by ELISA. We evaluated the potential of anti-IFN-α and anti-IFN-ß PPMOs to reduce the antiviral proteins in influenza virus-infected DF-1 cells and compared the virus titres to untreated controls, nonsense-PPMO and JAK/STAT inhibitors. The effects of complementation and reconstitution of IFN-α and IFN-ß proteins in PPMO-treated-infected cells were evaluated, and the virus titres were compared between treatment groups.Results. Suppression of IFN-α by PPMO resulted in significantly reduced levels of IFN-α protein in treated wells, as measured by ELISA and was shown to not have any cytotoxicity to DF-1 cells at the effective concentrations tested. Treatment of the self-directing PPMOs increased the ability of the influenza virus to replicate in DF-1 cells. Over a 2-log10 increase in viral production was observed in anti-IFN-α and IFN-ß PPMO-treated wells compared to those of untreated controls at the initial viral input of 0.1 multiplicity of infection. The data from complementation and reconstitution of IFN-α and IFN-ß proteins in PPMO-treated-infected cells was about 82 and 97% compared to the combined PPMO-treated but uncomplemented group and untreated group, respectively. There was a 0.5-log10 increase in virus titre when treated with anti-IFN-α and IFN-ß PPMO compared to virus titre when treated with JAK/STAT inhibitors.Conclusions. This study emphasizes the utility of PPMO in allowing cell cultures to produce increased levels of influenza for vaccine production or alternatively, as a screening tool to cheaply test targets prior to the development of permanent knockouts of host gene expression.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Animales , Embrión de Pollo , Humanos , Morfolinos/farmacología , Interferón-alfa/farmacología , Pollos , Replicación Viral , Péptidos/farmacología , Fibroblastos
17.
Macromol Biosci ; 24(3): e2300375, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37838941

RESUMEN

Drug-free macromolecular therapeutics (DFMT) utilizes modified monoclonal antibodies (or antibody fragments) to generate antigen-crosslinking-induced apoptosis in target cells. DFMT is a two-component system containing a morpholino oligonucleotide (MORF1) modified antibody (Ab-MORF1) and human serum albumin conjugated with multiple copies of complementary morpholino oligonucleotide (MORF2), (HSA-(MORF2)x ). The two components recognize each other via the Watson-Crick base pairing complementation of their respective MORFs. One HSA-(MORF2)x molecule can hybridize with multiple Ab-MORF1 molecules on the cell surface, thus serving as the therapeutic crosslink-inducing mechanism of action. Herein, various anti-neoplastic agents in combination with the anti-CD20 Obinutuzumab (OBN)-based DFMT system are examined. Three different classes of chemotherapies are examined: DNA alkylating agents; proliferation pathway inhibitors; and DNA replication inhibitors. Chou-Talalay combination index mathematics is utilized to determine which drugs engaged synergistically with OBN-based DFMT. It is determined that OBN-based DFMT synergizes with topoisomerase inhibitors and DNA nucleotide analogs but is antagonistic with proliferation pathway inhibitors. Cell mechanism experiments are performed to analyze points of synergism or antagonism by investigating Ca2+ influx, mitochondrial health, lysosomal stability, and cell cycle arrest. Finally, the synergistic drug combinatorial effects of OBN-based DFMT with etoposide in vivo are demonstrated using a human xenograft non-Hodgkin's lymphoma mouse model.


Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa , Humanos , Animales , Ratones , Antígenos CD20/genética , Morfolinos , Anticuerpos Monoclonales Humanizados/farmacología , Sustancias Macromoleculares , ADN
18.
J Thromb Haemost ; 22(4): 951-964, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38104724

RESUMEN

BACKGROUND: Pituitary adenylate cyclase-activating polypeptide is a neuropeptide with diverse roles in biological processes. Its involvement in the blood coagulation cascade is unclear. OBJECTIVES: This study unraveled adcyap1b's role in blood coagulation using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 in zebrafish. Effects were validated via adcyap1b knockdown. Gene expression changes in adcyap1b mutants were explored, linking them to clotting disorders. An analysis of proca gene splicing illuminated its role in adcyap1b-related anticoagulation deficiencies. METHODS: Zebrafish were genetically modified using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 to induce adcyap1b knockout. Morpholino-mediated gene knockdown was employed for validation. Expression levels of coagulation factors, anticoagulant proteins, and fibrinolytic system genes were assessed in adcyap1b mutant zebrafish. Alternative splicing of proca gene was analyzed. RESULTS: Adcyap1b mutant zebrafish exhibited severe hemorrhage, clotting disorders, and disrupted blood coagulation. Morpholino-mediated knockdown replicated observed phenotypes. Downregulation in transcripts related to coagulation factors V and IX, anticoagulation protein C, and plasminogen was observed. Abnormal alternative splicing of the proca gene was identified, providing a mechanistic explanation for anticoagulation system deficiencies. CONCLUSION: Adcyap1b plays a crucial role in maintaining zebrafish blood coagulation and hemostasis. Its influence extends to the regulation of procoagulant and anticoagulant pathways, with abnormal alternative splicing contributing to observed deficiencies. These findings unveil a novel aspect of adcyap1b function, offering potential insights into similar processes in mammalian systems.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Coagulación Sanguínea/genética , Factor V/metabolismo , Hemorragia , Anticoagulantes/metabolismo , Mamíferos/metabolismo
19.
Skelet Muscle ; 13(1): 19, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980539

RESUMEN

BACKGROUND: The lack of functional dystrophin protein in Duchenne muscular dystrophy (DMD) causes chronic skeletal muscle inflammation and degeneration. Therefore, the restoration of functional dystrophin levels is a fundamental approach for DMD therapy. Electrical impedance myography (EIM) is an emerging tool that provides noninvasive monitoring of muscle conditions and has been suggested as a treatment response biomarker in diverse indications. Although magnetic resonance imaging (MRI) of skeletal muscles has become a standard measurement in clinical trials for DMD, EIM offers distinct advantages, such as portability, user-friendliness, and reduced cost, allowing for remote monitoring of disease progression or response to therapy. To investigate the potential of EIM as a biomarker for DMD, we compared longitudinal EIM data with MRI/histopathological data from an X-linked muscular dystrophy (mdx) mouse model of DMD. In addition, we investigated whether EIM could detect dystrophin-related changes in muscles using antisense-mediated exon skipping in mdx mice. METHODS: The MRI data for muscle T2, the magnetic resonance spectroscopy (MRS) data for fat fraction, and three EIM parameters with histopathology were longitudinally obtained from the hindlimb muscles of wild-type (WT) and mdx mice. In the EIM study, a cell-penetrating peptide (Pip9b2) conjugated antisense phosphorodiamidate morpholino oligomer (PPMO), designed to induce exon-skipping and restore functional dystrophin production, was administered intravenously to mdx mice. RESULTS: MRI imaging in mdx mice showed higher T2 intensity at 6 weeks of age in hindlimb muscles compared to WT mice, which decreased at ≥ 9 weeks of age. In contrast, EIM reactance began to decline at 12 weeks of age, with peak reduction at 18 weeks of age in mdx mice. This decline was associated with myofiber atrophy and connective tissue infiltration in the skeletal muscles. Repeated dosing of PPMO (10 mg/kg, 4 times every 2 weeks) in mdx mice led to an increase in muscular dystrophin protein and reversed the decrease in EIM reactance. CONCLUSIONS: These findings suggest that muscle T2 MRI is sensitive to the early inflammatory response associated with dystrophin deficiency, whereas EIM provides a valuable biomarker for the noninvasive monitoring of subsequent changes in skeletal muscle composition. Furthermore, EIM reactance has the potential to monitor dystrophin-deficient muscle abnormalities and their recovery in response to antisense-mediated exon skipping.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Ratones , Animales , Distrofina/genética , Distrofina/metabolismo , Ratones Endogámicos mdx , Impedancia Eléctrica , Ratones Endogámicos C57BL , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Músculo Esquelético/metabolismo , Morfolinos/farmacología , Morfolinos/uso terapéutico , Miografía , Biomarcadores
20.
Bioconjug Chem ; 34(12): 2263-2274, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37991502

RESUMEN

Phosphorodiamidate morpholino oligomers (PMOs) are a special type of antisense oligonucleotides (ASOs) that can be used as therapeutic modulators of pre-mRNA splicing. Application of nucleic-acid-based therapeutics generally requires suitable delivery systems to enable efficient transport to intended tissues and intracellular targets. To identify potent formulations of PMOs, we established a new in vitro-in vivo screening platform based on mdx exon 23 skipping. Here, a new in vitro positive read-out system (mCherry-DMDEx23) is presented that is sensitive toward the PMO(Ex23) sequence mediating DMD exon 23 skipping and, in this model, functional mCherry expression. After establishment of the reporter system in HeLa cells, a set of amphiphilic, ionizable xenopeptides (XPs) was screened in order to identify potent carriers for PMO delivery. The identified best-performing PMO formulation with high splice-switching activity at nanomolar concentrations in vitro was then translated to in vivo trials, where exon 23 skipping in different organs of healthy BALB/c mice was confirmed. The predesigned in vitro-in vivo workflow enables evaluation of PMO(Ex23) carriers without change of the PMO sequence and formulation composition. Furthermore, the identified PMO-XP conjugate formulation was found to induce highly potent exon skipping in vitro and redistributed PMO activity in different organs in vivo.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Ratones , Humanos , Animales , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Ratones Endogámicos mdx , Células HeLa , Morfolinos , Exones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA