Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.189
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 217, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790028

RESUMEN

BACKGROUND: To investigate the peripheral nervous system involvement in S sialidosis with typical features of myoclonus, seizure, and giant waves in somatosensory evoked potentials suggesting hyperexcitability in the central nervous system. METHODS: The clinical presentation of patients with genetically confirmed sialidosis was recorded. Neurophysiological studies, including nerve conduction studies (NCSs), F-wave studies, and needle electromyography (EMG), were performed on these patients. RESULTS: Six patients (M/F: 2:4) were recruited. In addition to the classical presentation, intermittent painful paresthesia was noted in four patients, and three of whom reported it as the earliest symptom. In the NCSs, one patient had reduced compound muscle action potential amplitudes in the right ulnar nerve, while another patient had prolonged distal motor latency in the bilateral tibial and peroneal nerves. Prolonged F-wave latency (83.3%), repeater F-waves (50%), and neurogenic polyphasic waves in EMG (in 2 out of 3 examined patients) were also noted. Interestingly, a very late response was noted in the F-wave study of all patients, probably indicating lesions involving the proximal peripheral nerve or spinal cord. CONCLUSION: In addition to the central nervous system, the peripheral nervous system is also involved in sialidosis, with corresponding clinical symptoms. Further study on these phenomena is indicated.


Asunto(s)
Electromiografía , Mucolipidosis , Humanos , Masculino , Femenino , Adulto , Mucolipidosis/fisiopatología , Conducción Nerviosa/fisiología , Adulto Joven , Nervios Periféricos/fisiopatología , Nervios Periféricos/patología , Adolescente , Sistema Nervioso Periférico/fisiopatología , Potenciales Evocados Somatosensoriales/fisiología , Persona de Mediana Edad , Niño
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 339-344, 2024 Mar 10.
Artículo en Chino | MEDLINE | ID: mdl-38448026

RESUMEN

OBJECTIVE: To explore the clinical and genetic characteristics of a neonate with Microvillus inclusion disease (MVID). METHODS: A neonate with MVID admitted to the First Affiliated Hospital of Zhengzhou University in May 2019 was selected as the study subject. Clinical data were collected. Whole exome sequencing (WES) was carried out, and candidate variants were verified by Sanger sequencing and multiple ligation-dependent probe amplification (MLPA). A literature was also carried out to summarize the clinical and genetic characteristics of MVID. RESULTS: The prematurely born neonate had presented with unexplained refractory diarrhea and metabolic acidosis. Active symptomatic treatment was ineffective, and the child had died at 2 months old. WES revealed that he had harbored compound heterozygous variants of the MYO5B gene, namely c.1591C>T (p.R531W) and deletion of exon 9. Sanger sequencing showed that the R531W variant was inherited form his father, and MLPA confirmed that the exon 9 deletion was inherited from his mother. Seven children with MVID were reported in China, of which one was lost during follow-up and six had deceased. One hundred eighty eight patients were reported worldwide and only one was cured. The clinical features of MVID had included refractory diarrhea, metabolic acidosis and poor prognosis. CONCLUSION: The child was diagnosed with MVID due to the compound heterozygous variants of the MYO5B gene, which has provided a basis for genetic counseling and prenatal diagnosis.


Asunto(s)
Acidosis , Síndromes de Malabsorción , Microvellosidades , Mucolipidosis , Miosina Tipo V , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Diarrea/genética , Síndromes de Malabsorción/genética , Microvellosidades/patología , Mucolipidosis/genética , Cadenas Pesadas de Miosina , Miosina Tipo V/genética
3.
Cell Mol Gastroenterol Hepatol ; 17(6): 983-1005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38307491

RESUMEN

Microvillus inclusion disease (MVID) is a rare condition that is present from birth and affects the digestive system. People with MVID experience severe diarrhea that is difficult to control, cannot absorb dietary nutrients, and struggle to grow and thrive. In addition, diverse clinical manifestations, some of which are life-threatening, have been reported in cases of MVID. MVID can be caused by variants in the MYO5B, STX3, STXBP2, or UNC45A gene. These genes produce proteins that have been functionally linked to each other in intestinal epithelial cells. MVID associated with STXBP2 variants presents in a subset of patients diagnosed with familial hemophagocytic lymphohistiocytosis type 5. MVID associated with UNC45A variants presents in most patients diagnosed with osteo-oto-hepato-enteric syndrome. Furthermore, variants in MYO5B or STX3 can also cause other diseases that are characterized by phenotypes that can co-occur in subsets of patients diagnosed with MVID. Recent studies involving clinical data and experiments with cells and animals revealed connections between specific phenotypes occurring outside of the digestive system and the type of gene variants that cause MVID. Here, we have reviewed these patterns and correlations, which are expected to be valuable for healthcare professionals in managing the disease and providing personalized care for patients and their families.


Asunto(s)
Síndromes de Malabsorción , Microvellosidades , Mucolipidosis , Fenotipo , Humanos , Mucolipidosis/genética , Mucolipidosis/patología , Microvellosidades/patología , Microvellosidades/genética , Síndromes de Malabsorción/genética , Síndromes de Malabsorción/patología , Animales , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Mutación , Predisposición Genética a la Enfermedad
4.
Gene Ther ; 31(5-6): 263-272, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38321198

RESUMEN

Patients with sialidosis (mucolipidosis type I) type I typically present with myoclonus, seizures, ataxia, cherry-red spots, and blindness because of mutations in the neuraminidase 1 (NEU1) gene. Currently, there is no treatment for sialidosis. In this study, we developed an adeno-associated virus (AAV)-mediated gene therapy for a Neu1 knockout (Neu1-/-) mouse model of sialidosis. The vector, AAV9-P3-NP, included the human NEU1 promoter, NEU1 cDNA, IRES, and CTSA cDNA. Untreated Neu1-/- mice showed astrogliosis and microglial LAMP1 accumulation in the nervous system, including brain, spinal cord, and dorsal root ganglion, together with impaired motor function. Coexpression of NEU1 and protective protein/cathepsin A (PPCA) in neonatal Neu1-/- mice by intracerebroventricular injection, and less effective by facial vein injection, decreased astrogliosis and LAMP1 accumulation in the nervous system and improved rotarod performance of the treated mice. Facial vein injection also improved the grip strength and survival of Neu1-/- mice. Therefore, cerebrospinal fluid delivery of AAV9-P3-NP, which corrects the neurological deficits of mice with sialidosis, could be a suitable treatment for patients with sialidosis type I. After intracerebroventricular or facial vein injection of AAV vectors, NEU1 and PPCA are expressed together. PPCA-protected NEU1 is then sent to lysosomes, where ß-Gal binds to this complex to form a multienzyme complex in order to execute its function.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos , Ratones Noqueados , Mucolipidosis , Neuraminidasa , Animales , Terapia Genética/métodos , Neuraminidasa/genética , Neuraminidasa/metabolismo , Ratones , Dependovirus/genética , Mucolipidosis/terapia , Mucolipidosis/genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Catepsina A/genética , Catepsina A/metabolismo , Humanos , Encéfalo/metabolismo
6.
Am J Med Genet A ; 194(6): e63545, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38264826

RESUMEN

Mucolipidosis type-II (ML-II) is an ultra-rare disorder caused by deficiency of N-acetylglucosaminyl-1-phosphotransferase enzyme due to biallelic pathogenic variants in GNPTAB gene. There are a few known about the natural history of ML-II. In this study, we presented the natural course of 24 patients diagnosed with ML-II. Mean age at diagnosis was 9.3 ± 5.7 months. All patients had coarse face, developmental delay, and hypotonia. The mean survival time was 3.01 ± 1.4 years. The oldest patient was 6.5 years old. Twelve patients died due to lung infection and respiratory failure. We observed early and significant radiological findings of ML-II were different from typical dysostosis multiplex such as femoral cloaking, rickets-like changes, and talocalcaneal stippling. These are significant findings observed in the fetal or newborn period which is considered to be highly characteristic of ML-II and disappears in the first year. Cloaking, rickets-like changes, and stippling were not observed in patients older than three months of age and this suggests that these findings disappear within the first year. These radiological features can be used as important clues for diagnosis. We detected eight different pathogenic variants in GNPTAB gene, three of them were novel.


Asunto(s)
Mucolipidosis , Humanos , Mucolipidosis/genética , Mucolipidosis/diagnóstico , Mucolipidosis/diagnóstico por imagen , Mucolipidosis/patología , Masculino , Femenino , Lactante , Preescolar , Niño , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Mutación/genética , Radiografía , Diagnóstico Precoz , Recién Nacido , Fenotipo
7.
Am J Ophthalmol ; 258: 183-195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37972748

RESUMEN

PURPOSE: To report the genetic etiology of Lisch epithelial corneal dystrophy (LECD). DESIGN: Multicenter cohort study. METHODS: A discovery cohort of 27 individuals with LECD from 17 families, including 7 affected members from the original LECD family, 6 patients from 2 new families and 14 simplex cases, was recruited. A cohort of 6 individuals carrying a pathogenic MCOLN1 (mucolipin 1) variant was reviewed for signs of LECD. Next-generation sequencing or targeted Sanger sequencing were used in all patients to identify pathogenic or likely pathogenic variants and penetrance of variants. RESULTS: Nine rare heterozygous MCOLN1 variants were identified in 23 of 27 affected individuals from 13 families. The truncating nature of 7 variants and functional testing of 1 missense variant indicated that they result in MCOLN1 haploinsufficiency. Importantly, in the homozygous and compound-heterozygous state, 4 of 9 LECD-associated variants cause the rare lysosomal storage disorder mucolipidosis IV (MLIV). Autosomal recessive MLIV is a systemic disease and comprises neurodegeneration as well as corneal opacity of infantile-onset with epithelial autofluorescent lysosomal inclusions. However, the 6 parents of 3 patients with MLIV confirmed to carry pathogenic MCOLN1 variants did not have the LECD phenotype, suggesting MCOLN1 haploinsufficiency may be associated with reduced penetrance and variable expressivity. CONCLUSIONS: MCOLN1 haploinsufficiency is the major cause of LECD. Based on the overlapping clinical features of corneal epithelial cells with autofluorescent inclusions reported in both LECD and MLIV, it is concluded that some carriers of MCOLN1 haploinsufficiency-causing variants present with LECD.


Asunto(s)
Distrofias Hereditarias de la Córnea , Mucolipidosis , Canales de Potencial de Receptor Transitorio , Humanos , Canales de Potencial de Receptor Transitorio/genética , Estudios de Cohortes , Mucolipidosis/diagnóstico , Mucolipidosis/genética , Mucolipidosis/patología , Distrofias Hereditarias de la Córnea/diagnóstico , Distrofias Hereditarias de la Córnea/genética
9.
Indian J Pediatr ; 91(6): 598-605, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38105403

RESUMEN

Congenital diarrhea and enteropathies (CODEs) constitute a group of rare genetic disorders characterized by severe diarrhea and malabsorption in the neonatal period or early infancy. Timely diagnosis and treatment is essential to prevent life-threatening complications, including dehydration, electrolyte imbalance, and malnutrition. This review offers a simplified approach to the diagnosis of CODEs, with a specific focus on microvillus inclusion disease (MVID), congenital tufting enteropathy (CTE), congenital chloride diarrhea (CLD), and congenital sodium diarrhea (CSD). Patients with CODEs typically present with severe watery or occasionally bloody diarrhea, steatorrhea, dehydration, poor growth, and developmental delay. Therefore, it is crucial to thoroughly evaluate infants with diarrhea to rule out infectious, allergic, or anatomical causes before considering CODEs as the underlying etiology. Diagnostic investigations for CODEs encompass various modalities, including stool tests, blood tests, immunological studies, endoscopy and biopsies for histology and electron microscopy, and next-generation sequencing (NGS). NGS plays a pivotal role in identifying the genetic mutations responsible for CODEs. Treatment options for CODEs are limited, often relying on total parenteral nutrition for hydration and nutritional support. In severe cases, intestinal transplantation may be considered. The long-term prognosis varies among specific CODEs, with some patients experiencing ongoing intestinal failure and associated complications. In conclusion, the early recognition and accurate diagnosis of CODEs are of paramount importance for implementing appropriate management strategies. Further research and advancements in genetic testing hold promise for enhancing diagnostic accuracy and exploring potential targeted therapies for these rare genetic disorders.


Asunto(s)
Diarrea , Síndromes de Malabsorción , Humanos , Diarrea/terapia , Diarrea/etiología , Diarrea/congénito , Síndromes de Malabsorción/terapia , Síndromes de Malabsorción/diagnóstico , Síndromes de Malabsorción/genética , Recién Nacido , Lactante , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/terapia , Errores Innatos del Metabolismo/genética , Mucolipidosis/diagnóstico , Mucolipidosis/terapia , Mucolipidosis/genética , Microvellosidades/patología , Enfermedades Intestinales/diagnóstico , Enfermedades Intestinales/terapia , Enfermedades Intestinales/genética , Anomalías Múltiples , Diarrea Infantil
10.
Glycoconj J ; 40(6): 611-619, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38147151

RESUMEN

Neuraminidase 1 (NEU1) is a lysosomal sialidase that cleaves terminal α-linked sialic acid residues from sialylglycans. NEU1 is biosynthesized in the rough endoplasmic reticulum (RER) lumen as an N-glycosylated protein to associate with its protective protein/cathepsin A (CTSA) and then form a lysosomal multienzyme complex (LMC) also containing ß-galactosidase 1 (GLB1). Unlike other mammalian sialidases, including NEU2 to NEU4, NEU1 transport to lysosomes requires association of NEU1 with CTSA, binding of the CTSA carrying terminal mannose 6-phosphate (M6P)-type N-glycan with M6P receptor (M6PR), and intralysosomal NEU1 activation at acidic pH. In contrast, overexpression of the single NEU1 gene in mammalian cells causes intracellular NEU1 protein crystallization in the RER due to self-aggregation when intracellular CTSA is reduced to a relatively low level. Sialidosis (SiD) and galactosialidosis (GS) are autosomal recessive lysosomal storage diseases caused by the gene mutations of NEU1 and CTSA, respectively. These incurable diseases associate with the NEU1 deficiency, excessive accumulation of sialylglycans in neurovisceral organs, and systemic manifestations. We established a novel GS model mouse carrying homozygotic Ctsa IVS6 + 1 g/a mutation causing partial exon 6 skipping with simultaneous deficiency of Ctsa and Neu1. Symptoms developed in the GS mice like those in juvenile/adult GS patients, such as myoclonic seizures, suppressed behavior, gargoyle-like face, edema, proctoptosis due to Neu1 deficiency, and sialylglycan accumulation associated with neurovisceral inflammation. We developed a modified NEU1 (modNEU1), which does not form protein crystals but is transported to lysosomes by co-expressed CTSA. In vivo gene therapy for GS and SiD utilizing a single adeno-associated virus (AAV) carrying modNEU1 and CTSA genes under dual promoter control will be created.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Mucolipidosis , Neuraminidasa , Animales , Humanos , Ratones , Neuraminidasa/química , Mucolipidosis/genética , Mucolipidosis/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo
13.
JCI Insight ; 8(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37698928

RESUMEN

Sialidosis is an ultra-rare multisystemic lysosomal disease caused by mutations in the neuraminidase 1 (NEU1) gene. The severe type II form of the disease manifests with a prenatal/infantile or juvenile onset, bone abnormalities, severe neuropathology, and visceromegaly. A subset of these patients present with nephrosialidosis, characterized by abrupt onset of fulminant glomerular nephropathy. We studied the pathophysiological mechanism of the disease in 2 NEU1-deficient mouse models, a constitutive Neu1-knockout, Neu1ΔEx3, and a conditional phagocyte-specific knockout, Neu1Cx3cr1ΔEx3. Mice of both strains exhibited terminal urinary retention and severe kidney damage with elevated urinary albumin levels, loss of nephrons, renal fibrosis, presence of storage vacuoles, and dysmorphic mitochondria in the intraglomerular and tubular cells. Glycoprotein sialylation in glomeruli, proximal distal tubules, and distal tubules was drastically increased, including that of an endocytic reabsorption receptor megalin. The pool of megalin bearing O-linked glycans with terminal galactose residues, essential for protein targeting and activity, was reduced to below detection levels. Megalin levels were severely reduced, and the protein was directed to lysosomes instead of the apical membrane. Together, our results demonstrated that desialylation by NEU1 plays a crucial role in processing and cellular trafficking of megalin and that NEU1 deficiency in sialidosis impairs megalin-mediated protein reabsorption.


Asunto(s)
Enfermedades Renales , Mucolipidosis , Animales , Humanos , Ratones , Enfermedades Renales/metabolismo , Glomérulos Renales/metabolismo , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Mucolipidosis/genética , Mucolipidosis/patología , Neuraminidasa/genética
14.
BMC Ophthalmol ; 23(1): 394, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752499

RESUMEN

BACKGROUND: We describe the case of a 47-year-old man referred to a retinal clinic and diagnosed with late-onset retinitis pigmentosa. Surprisingly, genetic testing revealed compound heterozygous pathogenic variants in GNPTG, leading to the diagnosis of the autosomal recessive lysosomal storage disorder mucolipidosis type III gamma. Mucolipidosis type III gamma is typically diagnosed during childhood due to symptoms relating to skeletal dysplasia. Retinal dystrophy is not a common phenotypic feature. CASE PRESENTATION: Ophthalmologic examination was consistent with a mild form of retinitis pigmentosa and included fundus photography, measurement of best-corrected visual acuity, optical coherence tomography, electroretinogram and visual field testing. Extraocular findings included joint restriction and pains from an early age leading to bilateral hip replacement by age 30, aortic insufficiency, and hypertension. Genetic analysis was performed by whole genome sequencing filtered for a gene panel of 325 genes associated with retinal disease. Two compound heterozygous pathogenic variants were identified in GNPTG, c.347_349del and c.607dup. The diagnosis of mucolipidosis type III gamma was confirmed biochemically by measurement of increased activities of specific lysosomal enzymes in plasma. CONCLUSION: To our knowledge this is the first description of retinitis pigmentosa caused by compound heterozygous variants in GNPTG, providing further indications that late-onset retinal dystrophy is part of the phenotypic spectrum of mucolipidosis type III gamma.


Asunto(s)
Mucolipidosis , Distrofias Retinianas , Masculino , Humanos , Adulto , Persona de Mediana Edad , Mucolipidosis/diagnóstico , Mucolipidosis/genética , Secuenciación Completa del Genoma , Electrorretinografía , Transferasas (Grupos de Otros Fosfatos Sustitutos)
15.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37643022

RESUMEN

Microvillus inclusion disease (MVID), caused by loss-of-function mutations in the motor protein myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid/base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na+/H+ exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking antidiarrheal drug crofelemer dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. γ-Secretase inhibition with DAPT recovered apical brush border structure and functional Na+/H+ exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum/glucocorticoid-regulated kinase 2 (SGK2) and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID.


Asunto(s)
Síndromes de Malabsorción , Mucolipidosis , Miosina Tipo V , Humanos , Microvellosidades/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Enterocitos/metabolismo , Síndromes de Malabsorción/genética , Síndromes de Malabsorción/terapia , Síndromes de Malabsorción/metabolismo , Mucolipidosis/genética , Mucolipidosis/terapia , Mucolipidosis/metabolismo
18.
Int J Rheum Dis ; 26(7): 1363-1367, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36869440

RESUMEN

Juvenile idiopathic arthritis is the most common form of chronic arthritis in children and at times misdiagnosed in those presenting with arthropathy secondary to non-inflammatory causes. The overlap of symptoms often pose a diagnostic challenge for clinicians. This mostly results in a delayed diagnosis subjecting children to unnecessary use of long-term immunosuppressants and disease-modifying drugs. We present the case of a 9-year-old boy who was previously misdiagnosed as a case of juvenile idiopathic arthritis. Detailed evaluation later led to the diagnosis of mucolipidosis (type III) which was confirmed on genetic testing. Emphasis on detailed history and clinical examination including the subtle hints like lack of signs of inflammation, family history, no morning stiffness and normal inflammatory markers should be picked up to make a timely diagnosis. In today's era of genetic testing and diagnosis, it is prudent to offer these tests for such patients to make an accurate diagnosis and prognosticate them for the long-term outcome.


Asunto(s)
Artritis Juvenil , Artropatías , Mucolipidosis , Niño , Masculino , Humanos , Artritis Juvenil/diagnóstico , Artritis Juvenil/complicaciones , Mucolipidosis/diagnóstico , Mucolipidosis/genética , Mucolipidosis/complicaciones , Inflamación/complicaciones , Inmunosupresores/uso terapéutico
19.
Stem Cell Res ; 68: 103057, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36868038

RESUMEN

Mutations in UNC45A, a co-chaperone for myosins, were recently found causative of a syndrome combining cholestasis, diarrhea, loss of hearing and bone fragility. We generated induced pluripotent stem cells (iPSCs) from a patient with a homozygous missense mutation in UNC45A. Cells from this patient, which were reprogrammed using integration-free Sendaï virus, have normal karyotype, express pluripotency markers and are able to differentiate into the three germ cell layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndromes de Malabsorción , Mucolipidosis , Humanos , Mutación Missense , Mutación , Péptidos y Proteínas de Señalización Intracelular/genética
20.
J Inherit Metab Dis ; 46(2): 206-219, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752951

RESUMEN

Oligosaccharidoses, sphingolipidoses and mucolipidoses are lysosomal storage disorders (LSDs) in which defective breakdown of glycan-side chains of glycosylated proteins and glycolipids leads to the accumulation of incompletely degraded oligosaccharides within lysosomes. In metabolic laboratories, these disorders are commonly diagnosed by thin-layer chromatography (TLC) but more recently also mass spectrometry-based approaches have been published. To expand the possibilities to screen for these diseases, we developed an ultra-high-performance liquid chromatography (UHPLC) with a high-resolution accurate mass (HRAM) mass spectrometry (MS) screening platform, together with an open-source iterative bioinformatics pipeline. This pipeline generates comprehensive biomarker profiles and allows for extensive quality control (QC) monitoring. Using this platform, we were able to identify α-mannosidosis, ß-mannosidosis, α-N-acetylgalactosaminidase deficiency, sialidosis, galactosialidosis, fucosidosis, aspartylglucosaminuria, GM1 gangliosidosis, GM2 gangliosidosis (M. Sandhoff) and mucolipidosis II/III in patient samples. Aberrant urinary oligosaccharide excretions were also detected for other disorders, including NGLY1 congenital disorder of deglycosylation, sialic acid storage disease, MPS type IV B and GSD II (Pompe disease). For the latter disorder, we identified heptahexose (Hex7), as a potential urinary biomarker, in addition to glucose tetrasaccharide (Glc4), for the diagnosis and monitoring of young onset cases of Pompe disease. Occasionally, so-called "neonate" biomarker profiles were observed in young patients, which were probably due to nutrition. Our UHPLC/HRAM-MS screening platform can easily be adopted in biochemical laboratories and allows for simple and robust screening and straightforward interpretation of the screening results to detect disorders in which aberrant oligosaccharides accumulate.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Enfermedades por Almacenamiento Lisosomal , Mucolipidosis , Mucopolisacaridosis IV , Humanos , Cromatografía Líquida de Alta Presión/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Mucolipidosis/diagnóstico , Espectrometría de Masas en Tándem/métodos , Oligosacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA