Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.316
Filtrar
1.
Integr Biol (Camb) ; 162024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-39299711

RESUMEN

Cosmic radiation, composed of high charge and energy (HZE) particles, causes cellular DNA damage that can result in cell death or mutation that can evolve into cancer. In this work, a cell death model is applied to several cell lines exposed to HZE ions spanning a broad range of linear energy transfer (LET) values. We hypothesize that chromatin movement leads to the clustering of multiple double strand breaks (DSB) within one radiation-induced foci (RIF). The survival probability of a cell population is determined by averaging the survival probabilities of individual cells, which is function of the number of pairwise DSB interactions within RIF. The simulation code RITCARD was used to compute DSB. Two clustering approaches were applied to determine the number of RIF per cell. RITCARD outputs were combined with experimental data from four normal human cell lines to derive the model parameters and expand its predictions in response to ions with LET ranging from ~0.2 keV/µm to ~3000 keV/µm. Spherical and ellipsoidal nuclear shapes and two ion beam orientations were modeled to assess the impact of geometrical properties on cell death. The calculated average number of RIF per cell reproduces the saturation trend for high doses and high-LET values that is usually experimentally observed. The cell survival model generates the recognizable bell shape of LET dependence for the relative biological effectiveness (RBE). At low LET, smaller nuclei have lower survival due to increased DNA density and DSB clustering. At high LET, nuclei with a smaller irradiation area-either because of a smaller size or a change in beam orientation-have a higher survival rate due to a change in the distribution of DSB/RIF per cell. If confirmed experimentally, the geometric characteristics of cells would become a significant factor in predicting radiation-induced biological effects. Insight Box: High-charge and energy (HZE) ions are characterized by dense linear energy transfer (LET) that induce unique spatial distributions of DNA damage in cell nuclei that result in a greater biological effect than sparsely ionizing radiation like X-rays. HZE ions are a prominent component of galactic cosmic ray exposure during human spaceflight and specific ions are being used for radiotherapy. Here, we model DNA damage clustering at sub-micrometer scale to predict cell survival. The model is in good agreement with experimental data for a broad range of LET. Notably, the model indicates that nuclear geometry and ion beam orientation affect DNA damage clustering, which reveals their possible role in mediating cell radiosensitivity.


Asunto(s)
Muerte Celular , Radiación Cósmica , Roturas del ADN de Doble Cadena , Transferencia Lineal de Energía , Humanos , Muerte Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Tamaño de la Célula/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Línea Celular , Modelos Biológicos , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Análisis por Conglomerados , Núcleo Celular/efectos de la radiación , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Cromatina/efectos de la radiación
3.
Cell ; 187(14): 3652-3670.e40, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38843833

RESUMEN

While ultraviolet (UV) radiation damages DNA, eliciting the DNA damage response (DDR), it also damages RNA, triggering transcriptome-wide ribosomal collisions and eliciting a ribotoxic stress response (RSR). However, the relative contributions, timing, and regulation of these pathways in determining cell fate is unclear. Here we use time-resolved phosphoproteomic, chemical-genetic, single-cell imaging, and biochemical approaches to create a chronological atlas of signaling events activated in cells responding to UV damage. We discover that UV-induced apoptosis is mediated by the RSR kinase ZAK and not through the DDR. We identify two negative-feedback modules that regulate ZAK-mediated apoptosis: (1) GCN2 activation limits ribosomal collisions and attenuates ZAK-mediated RSR and (2) ZAK activity leads to phosphodegron autophosphorylation and its subsequent degradation. These events tune ZAK's activity to collision levels to establish regimes of homeostasis, tolerance, and death, revealing its key role as the cellular sentinel for nucleic acid damage.


Asunto(s)
Apoptosis , Daño del ADN , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Apoptosis/efectos de la radiación , Fosforilación/efectos de la radiación , Humanos , Transducción de Señal/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico/efectos de la radiación , Ribosomas/metabolismo , Muerte Celular/efectos de la radiación
4.
Cell Mol Immunol ; 21(8): 856-872, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849539

RESUMEN

The key role of structural cells in immune modulation has been revealed with the advent of single-cell multiomics, but the underlying mechanism remains poorly understood. Here, we revealed that the transcriptional activation of interferon regulatory factor 1 (IRF1) in response to ionizing radiation, cytotoxic chemicals and SARS-CoV-2 viral infection determines the fate of structural cells and regulates communication between structural and immune cells. Radiation-induced leakage of mtDNA initiates the nuclear translocation of IRF1, enabling it to regulate the transcription of inflammation- and cell death-related genes. Novel posttranslational modification (PTM) sites in the nuclear localization sequence (NLS) of IRF1 were identified. Functional analysis revealed that mutation of the acetylation site and the phosphorylation sites in the NLS blocked the transcriptional activation of IRF1 and reduced cell death in response to ionizing radiation. Mechanistically, reciprocal regulation between the single-stranded DNA sensors SSBP1 and IRF1, which restrains radiation-induced and STING/p300-mediated PTMs of IRF1, was revealed. In addition, genetic deletion or pharmacological inhibition of IRF1 tempered radiation-induced inflammatory cell death, and radiation mitigators also suppressed SARS-CoV-2 NSP-10-mediated activation of IRF1. Thus, we revealed a novel cytoplasm-oriented mechanism of IRF1 activation in structural cells that promotes inflammation and highlighted the potential effectiveness of IRF1 inhibitors against immune disorders.


Asunto(s)
Muerte Celular , Inflamación , Factor 1 Regulador del Interferón , Procesamiento Proteico-Postraduccional , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Humanos , Muerte Celular/efectos de la radiación , Inflamación/patología , Animales , Ratones , SARS-CoV-2 , COVID-19/inmunología , Fosforilación , Radiación Ionizante , Células HEK293 , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Señales de Localización Nuclear , Activación Transcripcional
6.
Environ Res ; 251(Pt 1): 118634, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452915

RESUMEN

Several human studies indicate that mobile phone specific electromagnetic fields may cause cancer in humans but the underlying molecular mechanisms are currently not known. Studies concerning chromosomal damage (which is causally related to cancer induction) are controversial and those addressing this issue in mobile phone users are based on the use of questionnaires to assess the exposure. We realized the first human intervention trial in which chromosomal damage and acute toxic effects were studied under controlled conditions. The participants were exposed via headsets at one randomly assigned side of the head to low and high doses of a UMTS signal (n = 20, to 0.1 W/kg and n = 21 to 1.6 W/kg Specific Absorption Rate) for 2 h on 5 consecutive days. Before and three weeks after the exposure, buccal cells were collected from both cheeks and micronuclei (MN, which are formed as a consequence of structural and numerical chromosomal aberrations) and other nuclear anomalies reflecting mitotic disturbance and acute cytotoxic effects were scored. We found no evidence for induction of MN and of nuclear buds which are caused by gene amplifications, but a significant increase of binucleated cells which are formed as a consequence of disturbed cell divisions, and of karyolitic cells, which are indicative for cell death. No such effects were seen in cells from the less exposed side. Our findings indicate that mobile phone specific high frequency electromagnetic fields do not cause acute chromosomal damage in oral mucosa cells under the present experimental conditions. However, we found clear evidence for disturbance of the cell cycle and cytotoxicity. These effects may play a causal role in the induction of adverse long term health effects in humans.


Asunto(s)
Teléfono Celular , Citocinesis , Mucosa Bucal , Humanos , Mucosa Bucal/efectos de la radiación , Mucosa Bucal/citología , Adulto , Masculino , Citocinesis/efectos de la radiación , Muerte Celular/efectos de la radiación , Adulto Joven , Femenino , Aberraciones Cromosómicas/efectos de la radiación , Pruebas de Micronúcleos , Campos Electromagnéticos/efectos adversos , Micronúcleos con Defecto Cromosómico/efectos de la radiación
7.
Theranostics ; 13(12): 4121-4137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554266

RESUMEN

Background: Due to the immunosuppressive tumor microenvironment (TME), radiation therapy (RT)-mediated immune response is far from satisfactory. How to improve the efficacy of immunogenic RT by priming strong immunogenic cell death (ICD) is an interesting and urgent challenge. Methods: A polyacrylic acid-coated core-shell UiO@Mn3O4 (denoted as UMP) nanocomposite is constructed for immunogenic RT via multiple strategies. Results: Reshaping the TME via Mn3O4-mediated integration of O2 production, GSH depletion, ROS generation and cell cycle arrest, accompanied by Hf-based UiO-mediated radiation absorption, eventually amplifies UMP-mediated RT to induce intense ICD. With the potent ICD induction and reprogrammed tumor-associated macrophages, this synergetic strategy can promote dendritic cells maturation and CD8+ T cells infiltration, and potentiate anti-tumor immunity against primary, distant, and metastatic tumors. Conclusion: This work is expected to shed light on the immunosuppressive TME-reshaping via multiple strategies to reinforce the immunogenic RT outcome and facilitate the development of effective cancer nanomedicine.


Asunto(s)
Muerte Celular , Nanomedicina , Nanoestructuras , Neoplasias , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Puntos de Control del Ciclo Celular , Muerte Celular/inmunología , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Células Dendríticas/inmunología , Glutatión/metabolismo , Ratones Endogámicos BALB C , Nanomedicina/métodos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Metástasis de la Neoplasia/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/radioterapia , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Nature ; 618(7966): 834-841, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286599

RESUMEN

Tumours most often arise from progression of precursor clones within a single anatomical niche. In the bone marrow, clonal progenitors can undergo malignant transformation to acute leukaemia, or differentiate into immune cells that contribute to disease pathology in peripheral tissues1-4. Outside the marrow, these clones are potentially exposed to a variety of tissue-specific mutational processes, although the consequences of this are unclear. Here we investigate the development of blastic plasmacytoid dendritic cell neoplasm (BPDCN)-an unusual form of acute leukaemia that often presents with malignant cells isolated to the skin5. Using tumour phylogenomics and single-cell transcriptomics with genotyping, we find that BPDCN arises from clonal (premalignant) haematopoietic precursors in the bone marrow. We observe that BPDCN skin tumours first develop at sun-exposed anatomical sites and are distinguished by clonally expanded mutations induced by ultraviolet (UV) radiation. A reconstruction of tumour phylogenies reveals that UV damage can precede the acquisition of alterations associated with malignant transformation, implicating sun exposure of plasmacytoid dendritic cells or committed precursors during BPDCN pathogenesis. Functionally, we find that loss-of-function mutations in Tet2, the most common premalignant alteration in BPDCN, confer resistance to UV-induced cell death in plasmacytoid, but not conventional, dendritic cells, suggesting a context-dependent tumour-suppressive role for TET2. These findings demonstrate how tissue-specific environmental exposures at distant anatomical sites can shape the evolution of premalignant clones to disseminated cancer.


Asunto(s)
Transformación Celular Neoplásica , Células Dendríticas , Leucemia Mieloide Aguda , Neoplasias Cutáneas , Piel , Rayos Ultravioleta , Humanos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Células de la Médula Ósea/efectos de la radiación , Muerte Celular/efectos de la radiación , Linaje de la Célula/genética , Linaje de la Célula/efectos de la radiación , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/efectos de la radiación , Células Clonales/metabolismo , Células Clonales/patología , Células Clonales/efectos de la radiación , Células Dendríticas/metabolismo , Células Dendríticas/patología , Células Dendríticas/efectos de la radiación , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación/efectos de la radiación , Especificidad de Órganos , Análisis de Expresión Génica de una Sola Célula , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Rayos Ultravioleta/efectos adversos , Piel/patología , Piel/efectos de la radiación
9.
PLoS One ; 18(5): e0277759, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37130114

RESUMEN

Ultrasound-stimulated microbubbles (USMB) cause localized vascular effects and sensitize tumors to radiation therapy (XRT). We investigated acoustic parameter optimization for combining USMB and XRT. We treated breast cancer xenograft tumors with 500 kHz pulsed ultrasound at varying pressures (570 or 740 kPa), durations (1 to 10 minutes), and microbubble concentrations (0.01 to 1% (v/v)). Radiation therapy (2 Gy) was administered immediately or after a 6-hour delay. Histological staining of tumors 24 hours after treatment detected changes in cell morphology, cell death, and microvascular density. Significant cell death resulted at 570 kPa after a 1-minute exposure with 1% (v/v) microbubbles with or without XRT. However, significant microvascular disruption required higher ultrasound pressure and exposure duration greater than 5 minutes. Introducing a 6-hour delay between treatments (USMB and XRT) showed a similar tumor effect with no further improvement in response as compared to when XRT was delivered immediately after USMB.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Terapia por Ultrasonido , Animales , Humanos , Femenino , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/patología , Terapia por Ultrasonido/métodos , Microburbujas , Muerte Celular/efectos de la radiación , Ultrasonografía
10.
Health Phys ; 123(5): 376-386, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36069830

RESUMEN

ABSTRACT: With rapid technical advances, ionizing radiation has been put into wider application in ordinary living, with the worst cytological effect on the human body being cell death. Moreover, according to the Nomenclature Committee on Cell Death, the method of radiation-induced cell death, usually classified as interphase and proliferative death, undergoes more detailed classifications oriented by its molecular mechanism. Elaborating its mode and molecular mechanism is crucial for the protection and treatment of radiation injury, as well as the radiotherapy and recovery of tumors. Varying with the changes of the radiation dose and the environment, the diverse targets and pathways of ionizing radiation result in various cell deaths. This review focuses on classifications of radiation-induced cell death and its molecular mechanism. We also examine the main characteristics of ionizing radiation-induced cell death. The modes of radiation-induced cell death can be classified as apoptosis, necrosis, autophagy-dependent cell death, pyroptosis, ferroptosis, immunogenic cell death, and non-lethal processes. Once the dose is high enough, radiation effects mostly appear as destructiveness ("destructiveness" is used to describe a situation in which cells do not have the opportunity to undergo a routine death process, in which case high-dose radiation works like a physical attack). This breaks up or even shatters cells, making it difficult to find responses of the cell itself. Due to diversities concerning cell phenotypes, phases of cell cycle, radiation dose, and even cellular subregions, various methods of cell death occur, which are difficult to identify and classify. Additionally, the existence of common initial activation and signaling molecules among all kinds of cell deaths, as well as sophisticated crossways in cellular molecules, makes it more laborious to distinguish and classify various cell deaths.


Asunto(s)
Apoptosis , Neoplasias , Apoptosis/efectos de la radiación , Muerte Celular/efectos de la radiación , Humanos , Neoplasias/radioterapia , Radiación Ionizante , Transducción de Señal/efectos de la radiación
11.
Nature ; 606(7913): 351-357, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35545677

RESUMEN

Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases1,2, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.


Asunto(s)
Fototransducción , Rehabilitación Neurológica , Cambios Post Mortem , Retina , Animales , Autopsia , Muerte Celular/efectos de la radiación , Sistema Nervioso Central/efectos de la radiación , Humanos , Fototransducción/efectos de la radiación , Macaca , Ratones , Retina/metabolismo , Retina/efectos de la radiación , Factores de Tiempo
12.
J Biol Chem ; 298(4): 101776, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35227760

RESUMEN

Zyxin is a zinc-binding phosphoprotein known to regulate cell migration, adhesion, and cell survival. Zyxin also plays a role in signal transduction between focal adhesions and the nuclear compartment. However, the mechanism of Zyxin shuttling to nucleus is still unclear. Here, we identify that the GlcNAc transferase (O-linked GlcNAc [O-GlcNAc] transferase) can O-GlcNAcylate Zyxin and regulate its nuclear localization. We show that O-GlcNAc transferase O-GlcNAcylates Zyxin at two residues, serine 169 (Ser-169) and Ser-246. In addition, O-GlcNAcylation of Ser-169, but not Ser-246, enhances its interaction with 14-3-3γ, which is a phosphoserine/threonine-binding protein and is reported to bind with phosphorylated Zyxin. Furthermore, we found that 14-3-3γ could promote the nuclear localization of Zyxin after Ser-169 O-GlcNAcylation by affecting the function of the N-terminal nuclear export signal sequence; functionally, UV treatment increases the O-GlcNAcylation of Zyxin, which may enhance the nuclear location of Zyxin. Finally, Zyxin in the nucleus maintains homeodomain-interacting protein kinase 2 stability and promotes UV-induced cell death. In conclusion, we uncover that the nuclear localization of Zyxin can be regulated by its O-GlcNAcylation, and that this protein may regulate UV-induced cell death.


Asunto(s)
Muerte Celular , Adhesiones Focales , N-Acetilglucosaminiltransferasas/metabolismo , Transporte de Proteínas , Zixina , Muerte Celular/genética , Muerte Celular/efectos de la radiación , Adhesiones Focales/metabolismo , N-Acetilglucosaminiltransferasas/genética , Serina , Zixina/genética , Zixina/metabolismo
13.
Exp Cell Res ; 410(1): 112946, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826424

RESUMEN

The principle underlying radiotherapy is to kill cancer cells while minimizing the harmful effects on non-cancer cells, which has still remained as a major challenge. In relation, ferroptosis has recently been proposed as a novel mechanism of radiation-induced cell death. In this study, we investigated and demonstrated the role of Hemin as an iron overloading agent in the generation of reactive oxygen species (ROS) induced by ionizing radiation in lung cancer and non-cancer cells. It was found that the presence of Hemin in irradiated lung cancer cells enhanced the productivity of initial ROS, resulting in lipid peroxidation and subsequent ferroptosis. We observed that application of Hemin as a co-treatment increased the activity of GPx4 degradation in both cancer and normal lung cells. Furthermore, Hemin protected normal lung cells against radiation-induced cell death, in that it suppressed ROS after radiation, and boosted the production of bilirubin which was a lipophilic ROS antioxidant. In addition, we demonstrated significant FTH1 expression in normal lung cells when compared to lung cancer cells, which prevented iron from playing a role in increasing IR-induced cell death. Our findings demonstrated that Hemin had a dual function in enhancing the radiosensitivity of ferroptosis in lung cancer cells while promoting cell survival in normal lung cells.


Asunto(s)
Ferritinas/genética , Hemina/farmacología , Neoplasias Pulmonares/radioterapia , Oxidorreductasas/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Células A549 , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Hemina/química , Xenoinjertos , Humanos , Hierro/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Tolerancia a Radiación/efectos de los fármacos , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo
14.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830482

RESUMEN

Radiotherapy promotes tumor cell death and senescence through the induction of oxidative damage. Recent work has highlighted the importance of lipid peroxidation for radiotherapy efficacy. Excessive lipid peroxidation can promote ferroptosis, a regulated form of cell death. In this review, we address the evidence supporting a role of ferroptosis in response to radiotherapy and discuss the molecular regulators that underlie this interaction. Finally, we postulate on the clinical implications for the intersection of ferroptosis and radiotherapy.


Asunto(s)
Metabolismo de los Lípidos/efectos de la radiación , Peroxidación de Lípido/efectos de la radiación , Neoplasias/radioterapia , Muerte Celular/efectos de la radiación , Senescencia Celular/genética , Senescencia Celular/efectos de la radiación , Ferroptosis/genética , Ferroptosis/efectos de la radiación , Humanos , Metabolismo de los Lípidos/genética , Neoplasias/genética , Neoplasias/patología , Estrés Oxidativo/efectos de la radiación
15.
Cells ; 10(11)2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34831123

RESUMEN

Fluoroquinolones cause phototoxic reactions, manifested as different types of skin lesions, including hyperpigmentation. The disturbances of melanogenesis indicate that fluoroquinolones may affect cellular processes in melanocytes. It has been reported that these antibiotics may bind with melanin and accumulate in pigmented cells. The study aimed to examine the changes in melanogenesis in human normal melanocytes exposed to UVA radiation and treated with lomefloxacin and moxifloxacin, the most and the least fluoroquinolone, respectively. The obtained results demonstrated that both tested fluoroquinolones inhibited melanogenesis through a decrease in tyrosinase activity and down-regulation of tyrosinase and microphthalmia-associated transcription factor production. Only lomefloxacin potentiated UVA-induced melanogenesis. Under UVA irradiation lomefloxacin significantly enhanced melanin content and tyrosinase activity in melanocytes, although the drug did not cause an increased expression of tyrosinase or microphthalmia-associated transcription factor. The current studies revealed that phototoxic activity of fluoroquinolones is associated with alterations in the melanogenesis process. The difference in phototoxic potential of fluoroquinolones derivatives may be connected with various effects on UVA-induced events at a cellular level.


Asunto(s)
Fluoroquinolonas/farmacología , Melaninas/biosíntesis , Melanocitos/metabolismo , Rayos Ultravioleta , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Fluoroquinolonas/química , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/efectos de la radiación , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Moxifloxacino/química , Moxifloxacino/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Bull Exp Biol Med ; 172(1): 22-25, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34792714

RESUMEN

We performed a comparative study of the colony-forming ability and the number of residual foci of DNA repair proteins in cultured human lung fibroblasts (MRC-5 cell line) after exposure to subpicosecond beams of accelerated electrons with an energy of 3.6 MeV and quasi-continuous radiation (accelerated electrons with an energy of 4 MeV and X-rays). The yield of damages causing reproductive cell death after pulsed subpicosecond radiation exposure was higher by ~1.8 times than after quasi-continuous radiation exposure. The quantitative yield of residual γH2AX foci (phosphorylated H2AX histone, a protein marker of DNA double breaks) in cells irradiated with subpicosecond beams of accelerated electrons was shown to be ~2.0- 2.5-fold higher than in cells irradiated with quasi-continuous beams of accelerated electrons.


Asunto(s)
Muerte Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Enzimas Reparadoras del ADN/metabolismo , Fibroblastos/efectos de la radiación , Línea Celular , Electrones , Histonas/metabolismo , Humanos , Pulmón/citología , Pulmón/efectos de la radiación
17.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769035

RESUMEN

Background: The invention of non-ionizing emission devices revolutionized science, medicine, industry, and the military. Currently, different laser systems are commonly used, generating the potential threat of excessive radiation exposure, which can lead to adverse health effects. Skin is the organ most exposed to laser irradiation; therefore, this study aims to evaluate the effects of 445 nm, 520 nm, and 638 nm non-ionizing irradiation on keratinocytes and fibroblasts. Methods: Keratinocytes and fibroblasts were exposed to a different fluency of 445 nm, 520 nm, and 638 nm laser irradiation. In addition, viability, type of cell death, cell cycle distribution, and proliferation rates were investigated. Results: The 445 nm irradiation was cytotoxic to BJ-5ta (≥58.7 J/cm2) but not to Ker-CT cells. Exposure influenced the cell cycle distribution of Ker-CT (≥61.2 J/cm2) and BJ-5ta (≥27.6 J/cm2) cells, as well as the Bj-5ta proliferation rate (≥50.5 J/cm2). The 520 nm irradiation was cytotoxic to BJ-5ta (≥468.4 J/cm2) and Ker-CT (≥385.7 J/cm2) cells. Cell cycle distribution (≥27.6 J/cm2) of Ker-CT cells was also affected. The 638 nm irradiation was cytotoxic to BJ-5ta and Ker-CT cells (≥151.5 J/cm2). The proliferation rate and cell cycle distribution of BJ-5ta (≥192.9 J/cm2) and Ker-CT (13.8 and 41.3 J/cm2) cells were also affected. Conclusions: At high fluences, 455 nm, 520 nm, and 638 nm irradiation, representing blue, green, and red light spectra, are hazardous to keratinocytes and fibroblasts. However, laser irradiation may benefit the cells at low fluences by modulating the cell cycle and proliferation rate.


Asunto(s)
Fibroblastos/efectos de la radiación , Piel/efectos de la radiación , Ciclo Celular/efectos de la radiación , Muerte Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Humanos , Rayos Láser , Luz , Terapia por Luz de Baja Intensidad/métodos
18.
Genes (Basel) ; 12(6)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204447

RESUMEN

(1) Kinase inhibitors (KI) targeting components of the DNA damage repair pathway are a promising new type of drug. Combining them with ionizing radiation therapy (IR), which is commonly used for treatment of head and neck tumors, could improve tumor control, but could also increase negative side effects on surrounding normal tissue. (2) The effect of KI of the DDR (ATMi: AZD0156; ATRi: VE-822, dual DNA-PKi/mTORi: CC-115) in combination with IR on HPV-positive and HPV-negative HNSCC and healthy skin cells was analyzed. Cell death and cell cycle arrest were determined using flow cytometry. Additionally, clonogenic survival and migration were analyzed. (3) Studied HNSCC cell lines reacted differently to DDRi. An increase in cell death for all of the malignant cells could be observed when combining IR and KI. Healthy fibroblasts were not affected by simultaneous treatment. Migration was partially impaired. Influence on the cell cycle varied between the cell lines and inhibitors; (4) In conclusion, a combination of DDRi with IR could be feasible for patients with HNSCC. Side effects on healthy cells are expected to be limited to normal radiation-induced response. Formation of metastases could be decreased because cell migration is impaired partially. The treatment outcome for HPV-negative tumors tends to be improved by combined treatment.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Muerte Celular/efectos de los fármacos , Neoplasias de Cabeza y Cuello/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Rayos X , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Células Cultivadas , Reparación del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Humanos , Isoxazoles/farmacología , Pirazinas/farmacología , Piridinas/farmacología , Quinolinas/farmacología , Triazoles/farmacología
19.
Cells ; 10(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201238

RESUMEN

Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5-15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors.


Asunto(s)
Muerte Celular/efectos de la radiación , Hipertermia Inducida/métodos , Microondas/uso terapéutico , Neoplasias/radioterapia , Animales , Terapia Combinada , Humanos , Células MCF-7 , Melanoma Experimental , Ratones
20.
Photochem Photobiol Sci ; 20(5): 639-652, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33978941

RESUMEN

Solar UV radiation consists of both UVA and UVB. The wavelength-specific molecular responses to UV radiation have been studied, but the interaction between UVA and UVB has not been well understood. In this study, we found that long-wavelength UVA, UVA1, augmented UVB-induced cell death, and examined the underlying mechanisms. Human keratinocytes HaCaT were exposed to UVA1, followed by UVB irradiation. Irradiation by UVA1 alone showed no effect on cell survival, whereas the UVA1 pre-irradiation remarkably enhanced UVB-induced cell death. UVA1 delayed the repair of pyrimidine dimers formed by UVB and the accumulation of nucleotide excision repair (NER) proteins to damaged sites. Gap synthesis during NER was also decreased, suggesting that UVA1 delayed NER, and unrepaired pyrimidine dimers and single-strand breaks generated in the process of NER were left behind. Accumulation of this unrepaired DNA damage might have led to the formation of DNA double-strand breaks (DSBs), as was detected using gel electrophoresis analysis and phosphorylated histone H2AX assay. Combined exposure enhanced the ATM-Chk2 signaling pathway, but not the ATR-Chk1 pathway, confirming the enhanced formation of DSBs. Moreover, UVA1 suppressed the UVB-induced phosphorylation of Akt, a survival signal pathway. These results indicated that UVA1 influenced the repair of UVB-induced DNA damage, which resulted in the formation of DSBs and enhanced cell death, suggesting the risk of simultaneous exposure to high doses of UVA1 and UVB.


Asunto(s)
Queratinocitos/patología , Rayos Ultravioleta , Muerte Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Roturas del ADN de Doble Cadena/efectos de la radiación , Humanos , Queratinocitos/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA