Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.596
Filtrar
1.
Org Lett ; 26(19): 4065-4070, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38696591

RESUMEN

We introduce a novel and straightforward methodology for photoredox arylation of an indole scaffold using aryldiazonium salts under mild and metal-free conditions. Our approach enables the regioselective and chemoselective introduction of several aryl groups to the C(2) position of indoles and tryptophan, even in competition with other amino acids. This approach extends to the late-stage functionalization of peptides and lysozyme, heralding the unprecedented arylation of tryptophan residues in wild-type proteins and offering broad utility in chemical biology.


Asunto(s)
Indoles , Oxidación-Reducción , Triptófano , Triptófano/química , Indoles/química , Estructura Molecular , Procesos Fotoquímicos , Muramidasa/química , Péptidos/química , Estereoisomerismo , Catálisis
2.
ACS Appl Mater Interfaces ; 16(20): 25740-25756, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722759

RESUMEN

Micro- and nano-plastics (NPs) are found in human milk, blood, tissues, and organs and associate with aberrant health outcomes including inflammation, genotoxicity, developmental disorders, onset of chronic diseases, and autoimmune disorders. Yet, interfacial interactions between plastics and biomolecular systems remain underexplored. Here, we have examined experimentally, in vitro, in vivo, and by computation, the impact of polystyrene (PS) NPs on a host of biomolecular systems and assemblies. Our results reveal that PS NPs essentially abolished the helix-content of the milk protein ß-lactoglobulin (BLG) in a dose-dependent manner. Helix loss is corelated with the near stoichiometric formation of ß-sheet elements in the protein. Structural alterations in BLG are also likely responsible for the nanoparticle-dependent attrition in binding affinity and weaker on-rate constant of retinol, its physiological ligand (compromising its nutritional role). PS NP-driven helix-to-sheet conversion was also observed in the amyloid-forming trajectory of hen egg-white lysozyme (accelerated fibril formation and reduced helical content in fibrils). Caenorhabditis elegans exposed to PS NPs exhibited a decrease in the fluorescence of green fluorescent protein-tagged dopaminergic neurons and locomotory deficits (akin to the neurotoxin paraquat exposure). Finally, in silico analyses revealed that the most favorable PS/BLG docking score and binding energies corresponded to a pose near the hydrophobic ligand binding pocket (calyx) of the protein where the NP fragment was found to make nonpolar contacts with side-chain residues via the hydrophobic effect and van der Waals forces, compromising side chain/retinol contacts. Binding energetics indicate that PS/BLG interactions destabilize the binding of retinol to the protein and can potentially displace retinol from the calyx region of BLG, thereby impairing its biological function. Collectively, the experimental and high-resolution in silico data provide new insights into the mechanism(s) by which PS NPs corrupt the bimolecular structure and function, induce amyloidosis and onset neuronal injury, and drive aberrant physiological and behavioral outcomes.


Asunto(s)
Caenorhabditis elegans , Lactoglobulinas , Muramidasa , Animales , Muramidasa/química , Muramidasa/metabolismo , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Caenorhabditis elegans/metabolismo , Poliestirenos/química , Nanopartículas/química , Vitamina A/química , Vitamina A/metabolismo , Humanos , Homeostasis/efectos de los fármacos , Plásticos/química
3.
J Phys Chem Lett ; 15(20): 5543-5548, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38752860

RESUMEN

Protein dynamics display distinct traits that are linked to their specific biological function. However, the interplay between intrinsic dynamics and the molecular environment on protein stability remains poorly understood. In this study, we investigate, by incoherent neutron scattering, the subnanosecond time scale dynamics of three model proteins: the mesophilic lysozyme, the thermophilic thermolysin, and the intrinsically disordered ß-casein. Moreover, we address the influence of water, glycerol, and glucose, which create progressively more viscous matrices around the protein surface. By comparing the protein thermal fluctuations, we find that the internal dynamics of thermolysin are less affected by the environment compared to lysozyme and ß-casein. We ascribe this behavior to the protein dynamic personality, i.e., to the stiffer dynamics of the thermophilic protein that contrasts the influence of the environment. Remarkably, lysozyme and thermolysin in all molecular environments reach a critical common flexibility when approaching the calorimetric melting temperature.


Asunto(s)
Caseínas , Muramidasa , Termolisina , Muramidasa/química , Muramidasa/metabolismo , Termolisina/química , Termolisina/metabolismo , Caseínas/química , Glicerol/química , Agua/química , Glucosa/química , Difracción de Neutrones , Simulación de Dinámica Molecular
4.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731411

RESUMEN

Fullerenes, particularly C60, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C60 models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C60 to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C60 model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C60 in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C60 models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.


Asunto(s)
Fulerenos , Simulación de Dinámica Molecular , Muramidasa , Unión Proteica , Fulerenos/química , Muramidasa/química , Muramidasa/metabolismo , Sitios de Unión , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Ácidos Grasos/química , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteasa del VIH
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731809

RESUMEN

Polysaccharide-based systems have very good emulsifying and stabilizing properties, and starch plays a leading role. Their modifications should add new quality features to the product to such an extent that preserves the structure-forming properties of native starch. The aim of this manuscript was to examine the physicochemical characteristics of the combinations of starch with phospholipids or lysozymes and determine the effect of starch modification (surface hydrophobization or biological additives) and preparation temperature (before and after gelatinization). Changes in electrokinetic potential (zeta), effective diameter, and size distribution as a function of time were analyzed using the dynamic light scattering and microelectrophoresis techniques. The wettability of starch-coated glass plates before and after modification was checked by the advancing and receding contact angle measurements, as well as the angle hysteresis, using the settle drop method as a complement to profilometry and FTIR. It can be generalized that starch dispersions are more stable than analogous n-alkane/starch emulsions at room and physiological temperatures. On the other hand, the contact angle hysteresis values usually decrease with temperature increase, pointing to a more homogeneous surface, and the hydrophobization effect decreases vs. the thickness of the substrate. Surface hydrophobization of starch carried out using an n-alkane film does not change its bulk properties and leads to improvement of its mechanical and functional properties. The obtained specific starch-based hybrid systems, characterized in detail by switchable wettability, give the possibility to determine the energetic state of the starch surface and understand the strength and specificity of interactions with substances of different polarities in biological processes and their applicability for multidirectional use.


Asunto(s)
Polisacáridos , Almidón , Humectabilidad , Almidón/química , Polisacáridos/química , Temperatura , Muramidasa/química , Interacciones Hidrofóbicas e Hidrofílicas , Fosfolípidos/química , Fenómenos Químicos , Emulsiones/química
6.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731940

RESUMEN

Amyloid fibroproliferation leads to organ damage and is associated with a number of neurodegenerative diseases affecting populations worldwide. There are several ways to protect against fibril formation, including inhibition. A variety of organic compounds based on molecular recognition of amino acids within the protein have been proposed for the design of such inhibitors. However, the role of macrocyclic compounds, i.e., thiacalix[4]arenes, in inhibiting fibrillation is still almost unknown. In the present work, the use of water-soluble thiacalix[4]arene derivatives for the inhibition of hen egg-white lysozyme (HEWL) amyloid fibrillation is proposed for the first time. The binding of HEWL by the synthesized thiacalix[4]arenes (logKa = 5.05-5.13, 1:1 stoichiometry) leads to the formation of stable supramolecular systems capable of stabilizing the protein structure and protecting against fibrillation by 29-45%. The macrocycle conformation has little effect on protein binding strength, and the native HEWL secondary structure does not change via interaction. The synthesized compounds are non-toxic to the A549 cell line in the range of 0.5-250 µg/mL. The results obtained may be useful for further investigation of the anti-amyloidogenic role of thiacalix[4]arenes, and also open up future prospects for the creation of new ways to prevent neurodegenerative diseases.


Asunto(s)
Ácidos Carboxílicos , Muramidasa , Muramidasa/química , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Animales , Células A549 , Amiloide/química , Amiloide/metabolismo , Amiloide/antagonistas & inhibidores , Unión Proteica , Fenoles/química , Fenoles/farmacología , Calixarenos/química , Calixarenos/farmacología , Sulfuros
7.
Phys Chem Chem Phys ; 26(20): 14766-14776, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716816

RESUMEN

Hybrid ionic fluids (HIFs) are newly emerging and fascinating sustainable solvent media, which are attracting a great deal of scientific interest in protecting the native structure of proteins. For a few decades, there has been a demand to consider ionic liquids (ILs) and deep eutectic solvents (DESs) as biocompatible solvent media for enzymes; however, in some cases, these solvent media also show limitations. Therefore, this work focuses on synthesising novel HIFs to intensify the properties of existing ILs and DESs by mixing them. Herein, HIFs have been synthesised by the amalgamation of a deep eutectic solvent (DES) and an ionic liquid (IL) with a common cation or anion. Later on, the stability and activity of hen's egg white lysozyme (Lyz) in the presence of biocompatible solvent media and HIFs were studied by various techniques such as UV-vis, steady-state fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and dynamic light scattering (DLS) measurements. This work emphasises the effect of a DES (synthesised using 1 : 2 choline chloride and malonic acid) [Maline], ILs (1-butyl-3-methylimidazolium chloride [BMIM]Cl or choline acetate [Chn][Ac]) and their corresponding HIFs on the structure and functionality of Lyz. Moreover, we also studied the secondary structure, thermal stability, enzymatic activity and thermodynamic profile of Lyz at pH = 7 in the presence of varying concentrations (0.1 to 0.5 M) of [BMIM]Cl and [Chn][Ac] ILs, Maline as a DES, and Maline [BMIM]Cl (HIF1) and Maline [Chn][Ac] (HIF2). Spectroscopic results elucidate that ILs affect the activity and structural stability of Lyz. In contrast, the stability and activity are inhibited by DES and are enhanced by HIFs at all the studied concentrations. Overall, the experimental results studied explicitly elucidate that the structure and stability of Lyz are maintained in the presence of HIF1 while these properties are intensified in HIF2. This study shows various applications in biocompatible green solvents, particularly in the stability and functionality of proteins, due to their unique combination where the properties counteract the negative effect of either DESs or ILs in HIFs.


Asunto(s)
Disolventes Eutécticos Profundos , Estabilidad de Enzimas , Líquidos Iónicos , Muramidasa , Líquidos Iónicos/química , Muramidasa/química , Muramidasa/metabolismo , Disolventes Eutécticos Profundos/química , Solventes/química , Animales , Pollos , Colina/química
8.
Dalton Trans ; 53(20): 8535-8540, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38727007

RESUMEN

The reactivity of the anticancer drug picoplatin (cis-amminedichlorido(2-methylpyridine)platinum(II) complex) with the model proteins hen egg white lysozyme (HEWL) and bovine pancreatic ribonuclease (RNase A) was investigated by electrospray ionisation mass spectrometry (ESI MS) and X-ray crystallography. The data were compared with those previously obtained for the adducts of these proteins with cisplatin, carboplatin and oxaliplatin under the same experimental conditions. ESI-MS data show binding of Pt to both proteins, with fragments retaining the 2-methylpyridine ligand and, possibly, a chloride ion. X-ray crystallography identifies different binding sites on the two proteins, highlighting a different behaviour of picoplatin in the absence or presence of dimethyl sulfoxide (DMSO). Metal-containing fragments bind to HEWL close to the side chains of His15, Asp18, Asp119 and both Lys1 and Glu7, whereas they bind to RNase A on the side chain of His12, Met29, His48, Asp53, Met79, His105 and His119. The data suggest that the presence of DMSO favours the loss of 2-methylpyridine and alters the ability of the Pt compound to bind to the two proteins. With both proteins, picoplatin appears to behave similarly to cisplatin and carboplatin when dissolved in DMSO, whereas it behaves more like oxaliplatin in the absence of the coordinating solvent. This study provides important insights into the pharmacological profile of picoplatin and supports the conclusion that coordinating solvents should not be used to evaluate the biological activities of Pt-based drugs.


Asunto(s)
Muramidasa , Compuestos Organoplatinos , Ribonucleasa Pancreática , Muramidasa/química , Muramidasa/metabolismo , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/metabolismo , Animales , Cristalografía por Rayos X , Compuestos Organoplatinos/química , Compuestos Organoplatinos/metabolismo , Bovinos , Unión Proteica , Sitios de Unión , Modelos Moleculares , Pollos , Espectrometría de Masa por Ionización de Electrospray , Dimetilsulfóxido/química , Carboplatino/química , Carboplatino/metabolismo
9.
Dalton Trans ; 53(21): 9001-9010, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38726661

RESUMEN

Cyclometallated Pt(II) complexes possessing hydrophobic 2-phenylpyridine (ppy) ligands and hydrophilic acetonylacetone (acac) ligands have been investigated for their ability to detect amyloid fibrils via luminescence response. Using hen egg-white lysozyme (HEWL) as a model amyloid protein, Pt(II) complexes featuring benzanilide-substituted ppy ligands and ethylene glycol-functionalized acac ligands demonstrated enhanced luminescence in the presence of HEWL fibrils, whereas Pt(II) complexes lacking complementary hydrophobic/hydrophilic ligand sets displayed little to no emission enhancement. An amphiphilic Pt(II) complex incorporating a bis(ethylene glycol)-derivatized acac ligand was additionally found to trigger restructuring of HEWL fibrils into smaller spherical aggregates. Amphiphilic Pt(II) complexes were generally non-toxic to SH-SY5Y neuroblastoma cells, and several complexes also exhibited enhanced luminescence in the presence of Aß42 fibrils associated with Alzheimer's disease. This study demonstrates that easily prepared and robust (ppy)PtII(acac) complexes show promising reactivity toward amyloid fibrils and represent attractive molecular scaffolds for design of small-molecule probes targeting amyloid assemblies.


Asunto(s)
Amiloide , Muramidasa , Humanos , Amiloide/química , Amiloide/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Línea Celular Tumoral , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Luminiscencia , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Agregado de Proteínas/efectos de los fármacos , Platino (Metal)/química , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/síntesis química , Ligandos , Tensoactivos/química , Tensoactivos/síntesis química
10.
J Phys Chem B ; 128(20): 4922-4930, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38733344

RESUMEN

The disaccharide trehalose is generally acknowledged as a superior stabilizer of proteins and other biomolecules in aqueous environments. Despite many theories aiming to explain this, the stabilization mechanism is still far from being fully understood. This study compares the stabilizing properties of trehalose with those of the structurally similar disaccharide sucrose. The stability has been evaluated for the two proteins, lysozyme and myoglobin, at both low and high temperatures by determining the glass transition temperature, Tg, and the denaturation temperature, Tden. The results show that the sucrose-containing samples exhibit higher Tden than the corresponding trehalose-containing samples, particularly at low water contents. The better stabilizing effect of sucrose at high temperatures may be explained by the fact that sucrose, to a greater extent, binds directly to the protein surface compared to trehalose. Both sugars show Tden elevation with an increasing sugar-to-protein ratio, which allows for a more complete sugar shell around the protein molecules. Finally, no synergistic effects were found by combining trehalose and sucrose. Conclusively, the exact mechanism of protein stabilization may vary with the temperature, as influenced by temperature-dependent interactions between the protein, sugar, and water. This variability can make trehalose to a superior stabilizer under some conditions and sucrose under others.


Asunto(s)
Rastreo Diferencial de Calorimetría , Muramidasa , Mioglobina , Sacarosa , Trehalosa , Trehalosa/química , Sacarosa/química , Muramidasa/química , Muramidasa/metabolismo , Mioglobina/química , Estabilidad Proteica , Animales , Temperatura
11.
Int J Biol Macromol ; 268(Pt 2): 131997, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697420

RESUMEN

Hybrid ionic fluids (HIFs) are one of the emerging and fascinating sustainable solvent media, a novel environment-friendly solvent for biomolecules. The HIFs have been synthesized by combining a deep eutectic solvent (DES), an ionic liquid (IL) having a common ion. The stability and activity of hen's egg white lysozyme (Lyz) in the presence of a recently designed new class of biocompatible solvents, HIFs have been explored by UV-visible, steady-state fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) along with dynamic light scattering (DLS) measurements. This work emphasizes the effect of DES synthesized by using 1:2 choline chloride and glycerol [Glyn], ILs (1-butly-3-methylimidazolium chloride [BMIM]Cl and choline acetate [Chn][Ac]) and their corresponding HIFs on the structure and functionality of Lyz. Moving forward, we also studied the secondary structure, thermal stability and enzymatic activity and thermodynamic profile of Lyz at pH = 7 in the presence of varying concentrations (0.1 to 0.5) M of [BMIM]Cl, [Chn][Ac] ILs, [Glyn] DES and [Glyn][BMIM]Cl (hybrid ionic fluid1) as well as [Glyn][Chn][Ac] (hybrid ionic fluid2). Spectroscopic results elucidate that ILs affect the activity and structural stability of Lyz, whereas the stability and activity are increased by DES and are maintained by HIFs at all the studied concentrations. Overall, the experimental results studied elucidate expressly that the properties of Lyz are maintained in the presence of hybrid ionic fluid1 while these properties are intensified in hybrid ionic fluid2. This work has elucidated expressly biocompatible green solvents in protein stability and functionality due to the alluring properties of DES, which can counteract the negative effect of ILs in HIFs.


Asunto(s)
Líquidos Iónicos , Muramidasa , Líquidos Iónicos/química , Muramidasa/química , Disolventes Eutécticos Profundos/química , Estabilidad de Enzimas , Animales , Colina/química , Termodinámica , Imidazoles/química , Glicerol/química , Solventes/química , Estructura Secundaria de Proteína , Concentración de Iones de Hidrógeno
12.
Colloids Surf B Biointerfaces ; 238: 113928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692175

RESUMEN

In this research, four water-insoluble flavonoid compounds were utilized and reacted with arginine to prepare four carbonized polymer dots with good water-solubility in a hydrothermal reactor. Structural characterization demonstrated that the prepared carbonized polymer dots were classic core-shell structure. Effect of the prepared carbonized polymer dots on protein amyloid aggregation was further investigated using hen egg white lysozyme and human lysozyme as model protein in aqueous solution. All of the prepared carbonized polymer dots could retard the amyloid aggregation of hen egg white lysozyme and human lysozyme in a dose-depended manner. All measurements displayed that the inhibition ratio of luteolin-derived carbonized polymer dots (CPDs-1) was higher than that of the other three carbonized polymer dots under the same dosage. This result may be interpreted by the highest content of phenolic hydroxyl groups on the periphery. The inhibition ratio of CPDs-1 on hen egg white lysozyme and human lysozyme reached 88 % and 83 % at the concentration of 0.5 mg/mL, respectively. CPDs-1 also could disaggregate the formed mature amyloid fibrils into short aggregates.


Asunto(s)
Amiloide , Flavonoides , Muramidasa , Polímeros , Agregado de Proteínas , Muramidasa/química , Muramidasa/metabolismo , Humanos , Polímeros/química , Polímeros/farmacología , Amiloide/química , Amiloide/antagonistas & inhibidores , Flavonoides/química , Flavonoides/farmacología , Agregado de Proteínas/efectos de los fármacos , Animales , Pollos , Carbono/química
13.
Mikrochim Acta ; 191(6): 307, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713296

RESUMEN

An assay that integrates histidine-rich peptides (HisRPs) with high-affinity aptamers was developed enabling the specific and sensitive determination of the target lysozyme. The enzyme-like activity of HisRP is inhibited by its interaction with a target recognized by an aptamer. In the presence of the target, lysozyme molecules progressively assemble on the surface of HisRP in a concentration-dependent manner, resulting in the gradual suppression of enzyme-like activity. This inhibition of HisRP's enzyme-like activity can be visually observed through color changes in the reaction product or quantified using UV-visible absorption spectroscopy. Under optimal conditions, the proposed colorimetric assay for lysozyme had a detection limit as low as 1 nM and exhibited excellent selectivity against other nonspecific interferents. Furthermore, subsequent research validated the practical applicability of the developed colorimetric approach to saliva samples, indicating that the assay holds significant potential for the detection of lysozymes in samples derived from humans.


Asunto(s)
Colorimetría , Muramidasa , Saliva , Muramidasa/análisis , Muramidasa/química , Muramidasa/metabolismo , Colorimetría/métodos , Humanos , Saliva/química , Saliva/enzimología , Límite de Detección , Péptidos/química , Aptámeros de Nucleótidos/química , Proteínas/análisis , Técnicas Biosensibles/métodos , Histidina/análisis , Histidina/química
14.
Int J Biol Macromol ; 268(Pt 1): 131703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643915

RESUMEN

Interaction under amyloidogenic condition between naturally occurring protoberberine alkaloid palmatine and hen egg white lysozyme was executed by adopting spectrofluorometric and theoretical molecular docking and dynamic simulation analysis. In spetrofluorometric method, different types of experiments were performed to explore the overall mode and mechanism of interaction. Intrinsic fluorescence quenching of lysozyme (Trp residues) by palmatine showed effective binding interaction and also yielded different binding parameters like binding constant, quenching constant and number of binding sites. Synchronous fluorescence quenching and 3D fluorescence map revealed that palmatine was able to change the microenvironment of the interacting site. Fluorescence life time measurements strongly suggested that this interaction was basically static in nature. Molecular docking result matched with fluorimetric experimental data. Efficient drug like interaction of palmatine with lysozyme at low pH and high salt concentration prompted us to analyze its antifibrillation potential. Different assays and microscopic techniques were employed for detailed analysis of lysozyme amyloidosis.Thioflavin T(ThT) assay, Congo Red (CR) assay, 8-anilino-1-naphthalenesulfonic acid (ANS) assay, Nile Red (NR) assay, anisotropy and intrinsic fluorescence measurements confirmed that palmatine successfully retarded and reduced lysozyme fibrillation. Dynamic light scattering (DLS) and atomic force microscopy (AFM) further reiterated the excellent antiamyloidogenic potency of palmatine.


Asunto(s)
Alcaloides de Berberina , Simulación del Acoplamiento Molecular , Muramidasa , Muramidasa/química , Muramidasa/metabolismo , Alcaloides de Berberina/farmacología , Alcaloides de Berberina/química , Unión Proteica , Espectrometría de Fluorescencia , Animales , Amiloide/química , Amiloide/metabolismo , Simulación de Dinámica Molecular , Sitios de Unión , Concentración de Iones de Hidrógeno , Pollos
15.
Nanoscale ; 16(19): 9348-9360, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38651870

RESUMEN

Understanding nanoparticle-cell interaction is essential for advancing research in nanomedicine and nanotoxicology. Apart from the transcytotic pathway mediated by cellular recognition and energetics, nanoparticles (including nanomedicines) may harness the paracellular route for their transport by inducing endothelial leakiness at cadherin junctions. This phenomenon, termed as NanoEL, is correlated with the physicochemical properties of the nanoparticles in close association with cellular signalling, membrane mechanics, as well as cytoskeletal remodelling. However, nanoparticles in biological systems are transformed by the ubiquitous protein corona and yet the potential effect of the protein corona on NanoEL remains unclear. Using confocal fluorescence microscopy, biolayer interferometry, transwell, toxicity, and molecular inhibition assays, complemented by molecular docking, here we reveal the minimal to significant effects of the anionic human serum albumin and fibrinogen, the charge neutral immunoglobulin G as well as the cationic lysozyme on negating gold nanoparticle-induced endothelial leakiness in vitro and in vivo. This study suggests that nanoparticle-cadherin interaction and hence the extent of NanoEL may be partially controlled by pre-exposing the nanoparticles to plasma proteins of specific charge and topology to facilitate their biomedical applications.


Asunto(s)
Cadherinas , Fibrinógeno , Oro , Nanopartículas del Metal , Corona de Proteínas , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Humanos , Cadherinas/metabolismo , Cadherinas/química , Oro/química , Nanopartículas del Metal/química , Fibrinógeno/química , Fibrinógeno/metabolismo , Animales , Células Endoteliales de la Vena Umbilical Humana , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Simulación del Acoplamiento Molecular , Ratones
16.
J Mater Chem B ; 12(19): 4666-4672, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647183

RESUMEN

The formation of transient structures plays important roles in biological processes, capturing temporary states of matter through influx of energy or biological reaction networks catalyzed by enzymes. These natural transient structures inspire efforts to mimic this elegant mechanism of structural control in synthetic analogues. Specifically, though traditional supramolecular materials are designed on the basis of equilibrium formation, recent efforts have explored out-of-equilibrium control of these materials using both direct and indirect mechanisms; the preponderance of such works has been in the area of low molecular weight gelators. Here, a transient supramolecular hydrogel is realized through cucurbit[7]uril host-guest physical crosslinking under indirect control from a biocatalyzed network that regulates and oscillates pH. The duration of transient hydrogel formation, and resulting mechanical properties, are tunable according to the dose of enzyme, substrate, or pH stimulus. This tunability enables control over emergent functions, such as the programmable burst release of encapsulated model macromolecular payloads.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Hidrogeles , Imidazoles , Hidrogeles/química , Hidrogeles/síntesis química , Concentración de Iones de Hidrógeno , Imidazoles/química , Hidrocarburos Aromáticos con Puentes/química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/síntesis química , Biocatálisis , Estructura Molecular , Muramidasa/química , Muramidasa/metabolismo
17.
IUCrJ ; 11(Pt 3): 359-373, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639558

RESUMEN

Metal-based complexes with their unique chemical properties, including multiple oxidation states, radio-nuclear capabilities and various coordination geometries yield value as potential pharmaceuticals. Understanding the interactions between metals and biological systems will prove key for site-specific coordination of new metal-based lead compounds. This study merges the concepts of target coordination with fragment-based drug methodologies, supported by varying the anomalous scattering of rhenium along with infrared spectroscopy, and has identified rhenium metal sites bound covalently with two amino acid types within the model protein. A time-based series of lysozyme-rhenium-imidazole (HEWL-Re-Imi) crystals was analysed systematically over a span of 38 weeks. The main rhenium covalent coordination is observed at His15, Asp101 and Asp119. Weak (i.e. noncovalent) interactions are observed at other aspartic, asparagine, proline, tyrosine and tryptophan side chains. Detailed bond distance comparisons, including precision estimates, are reported, utilizing the diffraction precision index supplemented with small-molecule data from the Cambridge Structural Database. Key findings include changes in the protein structure induced at the rhenium metal binding site, not observed in similar metal-free structures. The binding sites are typically found along the solvent-channel-accessible protein surface. The three primary covalent metal binding sites are consistent throughout the time series, whereas binding to neighbouring amino acid residues changes through the time series. Co-crystallization was used, consistently yielding crystals four days after setup. After crystal formation, soaking of the compound into the crystal over 38 weeks is continued and explains these structural adjustments. It is the covalent bond stability at the three sites, their proximity to the solvent channel and the movement of residues to accommodate the metal that are important, and may prove useful for future radiopharmaceutical development including target modification.


Asunto(s)
Muramidasa , Compuestos Organometálicos , Renio , Renio/química , Muramidasa/química , Muramidasa/metabolismo , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Desarrollo de Medicamentos/métodos , Cristalografía por Rayos X , Sitios de Unión , Complejos de Coordinación/química , Imidazoles/química , Imidazoles/metabolismo , Modelos Moleculares
18.
Food Chem ; 449: 139229, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581793

RESUMEN

The unique high isoelectric point of lysozyme (LYZ) restricts its application in composite antibacterial coating due to the unfavorable liability to electrostatic interaction with other components. In this work, the antibacterial activity of a dispersible LYZ-carboxymethyl konjac glucomannan (CMKGM) polyelectrolyte complex was evaluated. Kinetic analysis revealed that, compared with free LYZ, the complexed enzyme exhibited decreased affinity (Km) but markedly increased Vmax against Micrococcus lysodeikticus, and QCM and dynamic light scattering analysis confirmed that the complex could bind with the substrate but in a much lower ratio. The complexation with CMKGM did not alter the antibacterial spectrum of LYZ, and the complex exerted antibacterial function by delaying the logarithmic growth phase and impairing the cell integrity of Staphylococcus aureus. Since the LYZ-CMKGM complex is dispersible in water and could be assembled easily, it has great potential as an edible coating in food preservation.


Asunto(s)
Antibacterianos , Mananos , Muramidasa , Staphylococcus aureus , Mananos/química , Mananos/farmacología , Mananos/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Muramidasa/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Cinética , Micrococcus/efectos de los fármacos , Micrococcus/crecimiento & desarrollo
19.
J Phys Chem B ; 128(17): 4076-4086, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38642057

RESUMEN

In aqueous binary solvents with fluorinated alcohols, 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and aliphatic alcohols, ethanol (EtOH) and 2-propanol (2-PrOH), the denaturation of hen egg white lysozyme (HEWL) with increasing alcohol mole fraction xA has been investigated in a wide view from the molecular vibration to the secondary and ternary structures. Circular dichroism (CD) measurement showed that the secondary structure of α-helix content of HEWL increases on adding a small amount of the fluorinated alcohol to the aqueous solution, while the ß-sheet content decreases. On the contrary, the secondary structure does not significantly change by the addition of the aliphatic alcohols. Correspondingly, the infrared (IR) spectroscopic measurements revealed that the amide I band red-shifts on the addition of the fluorinated alcohol. However, the band remains unchanged in the aliphatic alcohol systems with increasing alcohol content. To observe the ternary structure of HEWL, small-angle neutron scattering (SANS) experiments with H/D substitution technique have been applied to the HEWL solutions. The SANS experiments were successful in revealing the details of how the geometry of the HEWL changes as a function of xA. The SANS profiles indicated the spherical structure of HEWL in all of the alcohol systems in the xA range examined. The mean radius of HEWL in the two fluorinated alcohol systems increases from ∼16 to ∼18 Å during the change in the secondary structure against the increase in the fluorinated alcohol content. On contrast, the radius does not significantly change in both aliphatic alcohol systems below xA = 0.3 but expands to ∼19 Å as the alcohol content is close to the limitation of the HEWL solubility. According to the present results, together with our knowledge of the alcohol cluster formation and the interaction of the trifluoromethyl (CF3) groups with the hydrophobic moieties of biomolecules, the effects of alcohols on the denaturation of the protein have been discussed on a molecular scale.


Asunto(s)
Dicroismo Circular , Muramidasa , Desnaturalización Proteica , Dispersión del Ángulo Pequeño , Muramidasa/química , Muramidasa/metabolismo , Animales , Difracción de Neutrones , Espectrofotometría Infrarroja , Pollos , Alcoholes/química
20.
Int J Biol Macromol ; 267(Pt 2): 131588, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615860

RESUMEN

Dietary selenium (Se) supplementation has recently received increasing attention; however, Selenium nanoparticles (SeNPs) exhibit poor stability and tend to aggregate in aqueous solution. Therefore, enhancing the stability of SeNPs and their effective delivery to plants remain challenging. In this study, sodium alginate (SA) and lysozyme (LZ) were reacted via the wet-heat Maillard reaction (MR) to obtain amphiphilic alginate-based polymers (SA-LZ). Alkyl glycosides (APG) were introduced into SA-LZ to enhance the deposition of SeNPs in leaves. Thus, a renewable and degradable polysaccharide-based material (SA-LZ/APG) loaded with Se formed an amphiphilic alginate-based-based shell with a Se core. Notably, the encapsulation of SeNPs into a polysaccharide base (SA-LZ/APG) increased the stabilization of SeNPs and resulted in orange-red, zero-valent, monoclinic and spherical SeNPs with a mean diameter of approximately 43.0 nm. In addition, SA-LZ/APG-SeNPs reduced the interfacial tension of plant leaves and increased the Se content of plants compared to the blank group. In vitro studies have reported that SA-LZ/APG-SeNPs and SA-LZ-SeNPs have significantly better clearance of DDPH and ABTS than that of APG-SeNPs. Thus, we believe that SA-LZ/APG is a promising smart delivery system that can synergistically enhance the stability of SeNPs in aqueous solutions and improve the bioavailability of Se nutrient solutions.


Asunto(s)
Alginatos , Glicósidos , Nanopartículas , Selenio , Alginatos/química , Selenio/química , Nanopartículas/química , Glicósidos/química , Hojas de la Planta/química , Muramidasa/química , Tensoactivos/química , Estabilidad de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA