Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.728
Filtrar
1.
Sci Rep ; 14(1): 10608, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719911

RESUMEN

Over the last decades, monoclonal antibodies have substantially improved the treatment of several conditions. The continuous search for novel therapeutic targets and improvements in antibody's structure, demands for a constant optimization of their development. In this regard, modulation of an antibody's affinity to its target has been largely explored and culminated in the discovery and optimization of a variety of molecules. It involves the creation of antibody libraries and selection against the target of interest. In this work, we aimed at developing a novel protocol to be used for the affinity maturation of an antibody previously developed by our group. An antibody library was constructed using an in vivo random mutagenesis approach that, to our knowledge, has not been used before for antibody development. Then, a cell-based phage display selection protocol was designed to allow the fast and simple screening of antibody clones capable of being internalized by target cells. Next generation sequencing coupled with computer analysis provided an extensive characterization of the created library and post-selection pool, that can be used as a guide for future antibody development. With a single selection step, an enrichment in the mutated antibody library, given by a decrease in almost 50% in sequence diversity, was achieved, and structural information useful in the study of the antibody-target interaction in the future was obtained.


Asunto(s)
Anticuerpos Monoclonales , Afinidad de Anticuerpos , Biblioteca de Péptidos , Humanos , Anticuerpos Monoclonales/inmunología , Mutagénesis
3.
Microbiome ; 12(1): 93, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778376

RESUMEN

BACKGROUND: The gut microbiota and their hosts profoundly affect each other's physiology and evolution. Identifying host-selected traits is crucial to understanding the processes that govern the evolving interactions between animals and symbiotic microbes. Current experimental approaches mainly focus on the model bacteria, like hypermutating Escherichia coli or the evolutionary changes of wild stains by host transmissions. A method called atmospheric and room temperature plasma (ARTP) may overcome the bottleneck of low spontaneous mutation rates while maintaining mild conditions for the gut bacteria. RESULTS: We established an experimental symbiotic system with gnotobiotic bee models to unravel the molecular mechanisms promoting host colonization. By in vivo serial passage, we tracked the genetic changes of ARTP-treated Snodgrassella strains from Bombus terrestris in the non-native honeybee host. We observed that passaged isolates showing genetic changes in the mutual gliding locus have a competitive advantage in the non-native host. Specifically, alleles in the orphan mglB, the GTPase activating protein, promoted colonization potentially by altering the type IV pili-dependent motility of the cells. Finally, competition assays confirmed that the mutations out-competed the ancestral strain in the non-native honeybee gut but not in the native host. CONCLUSIONS: Using the ARTP mutagenesis to generate a mutation library of gut symbionts, we explored the potential genetic mechanisms for improved gut colonization in non-native hosts. Our findings demonstrate the implication of the cell mutual-gliding motility in host association and provide an experimental system for future study on host-microbe interactions. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Mutagénesis , Simbiosis , Animales , Abejas/microbiología , Microbioma Gastrointestinal/genética , Mutación
4.
Int J Med Mushrooms ; 26(5): 25-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780421

RESUMEN

Ganoderic acids (GAs) are the main active ingredient of Ganoderma lucidum, which has been widely accepted as a medicinal mushroom. Due to the low yield of GAs produced by liquid cultured Ganoderma mycelium and solid cultured fruiting bodies, the commercial production and clinical application of GAs are limited. Therefore, it is important to increase the yield of GA in G. lucidum. A comprehensive literature search was performed with no set data range using the following keywords such as "triterpene," "ganoderic acids," "Ganoderma lucidum," and "Lingzhi" within the main databases including Web of Science, PubMed, and China National Knowledge Infrastructure (CNKI). The data were screened using titles and abstracts and those relevant to the topic were included in the paper and was not limited to studies published in English. Present review focuses on the four aspects: fermentation conditions and substrate, extrinsic elicitor, genetic engineering, and mutagenesis, which play significant roles in increasing triterpene acids production, thus providing an available reference for further research on G. lucidum fermentation.


Asunto(s)
Fermentación , Reishi , Triterpenos , Triterpenos/metabolismo , Reishi/metabolismo , Reishi/genética , Reishi/química , Ingeniería Genética , Cuerpos Fructíferos de los Hongos/metabolismo , Cuerpos Fructíferos de los Hongos/química , Mutagénesis , Micelio/metabolismo
5.
Bull Exp Biol Med ; 176(5): 645-648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38727954

RESUMEN

Using the method of dominant lethal mutations, we assessed the frequency of the death of Drosophila melanogaster embryos under combined exposure to ionizing γ-radiation and non-ionizing pulsed magnetic field at various doses and modes of exposure. Mutagenic effect of combined exposure is antagonistic in nature. The antagonism is more pronounced when the following mode of exposure was used: exposure to non-ionizing pulsed magnetic field for 5 h followed by exposure to γ-radiation at doses of 3, 10, and 60 Gy. In case of reverse sequence of exposures, the antagonistic effect was statistically significant after exposure to γ-radiation at doses of 3 and 10 Gy, whereas at a dose of 20 Gy, a synergistic interaction was noted.


Asunto(s)
Drosophila melanogaster , Rayos gamma , Animales , Drosophila melanogaster/efectos de la radiación , Drosophila melanogaster/genética , Rayos gamma/efectos adversos , Radiación Electromagnética , Relación Dosis-Respuesta en la Radiación , Campos Electromagnéticos/efectos adversos , Embrión no Mamífero/efectos de la radiación , Radiación Ionizante , Mutación/efectos de la radiación , Mutagénesis/efectos de la radiación
6.
Acta Biochim Pol ; 71: 12299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721302

RESUMEN

This report describes a comprehensive approach to local random mutagenesis of the E. coli Ntn-amidohydrolase EcAIII, and supplements the results published earlier for the randomization series RDM1. Here, random mutagenesis was applied in the center of the EcAIII molecule, i.e., in the region important for substrate binding and its immediate neighborhood (series RDM2, RDM3, RDM7), in the vicinity of the catalytic threonine triplet (series RDM4, RDM5, RDM6), in the linker region (series RDM8), and in the sodium-binding (stabilization) loop (series RDM9). The results revealed that the majority of the new EcAIII variants have abolished or significantly reduced rate of autoprocessing, even if the mutation was not in a highly conserved sequence and structure regions. AlphaFold-predicted structures of the mutants suggest the role of selected residues in the positioning of the linker and stabilization of the scissile bond in precisely correct orientation, enabling the nucleophilic attack during the maturation process. The presented data highlight the details of EcAIII geometry that are important for the autoproteolytic maturation and for the catalytic mechanism in general, and can be treated as a guide for protein engineering experiments with other Ntn-hydrolases.


Asunto(s)
Amidohidrolasas , Escherichia coli , Mutagénesis , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Amidohidrolasas/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Secuencia de Aminoácidos , Mutación
7.
Microb Ecol ; 87(1): 63, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691135

RESUMEN

Bacterial azoreductases are enzymes that catalyze the reduction of ingested or industrial azo dyes. Although azoreductase genes have been well identified and characterized, the regulation of their expression has not been systematically investigated. To determine how different factors affect the expression of azoR, we extracted and analyzed transcriptional data from the Gene Expression Omnibus (GEO) resource, then confirmed computational predictions by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results showed that azoR expression was lower with higher glucose concentration, agitation speed, and incubation temperature, but higher at higher culture densities. Co-expression and clustering analysis indicated ten genes with similar expression patterns to azoR: melA, tpx, yhbW, yciK, fdnG, fpr, nfsA, nfsB, rutF, and chrR (yieF). In parallel, constructing a random transposon library in E. coli K-12 and screening 4320 of its colonies for altered methyl red (MR)-decolorizing activity identified another set of seven genes potentially involved in azoR regulation. Among these genes, arsC, relA, plsY, and trmM were confirmed as potential azoR regulators based on the phenotypic decolorization activity of their transposon mutants, and the expression of arsC and relA was confirmed, by qRT-PCR, to significantly increase in E. coli K-12 in response to different MR concentrations. Finally, the significant decrease in azoR transcription upon transposon insertion in arsC and relA (as compared to its expression in wild-type E. coli) suggests their probable involvement in azoR regulation. In conclusion, combining in silico analysis and random transposon mutagenesis suggested a set of potential regulators of azoR in E. coli.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Nitrorreductasas , Elementos Transponibles de ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Mutagénesis , Genoma Bacteriano , Biología Computacional , Mutagénesis Insercional
8.
Viruses ; 16(5)2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38793569

RESUMEN

Tomato (Solanum lycopersicum) is the most important vegetable and fruit crop in the family Solanaceae worldwide. Numerous pests and pathogens, especially viruses, severely affect tomato production, causing immeasurable market losses. In Taiwan, the cultivation of tomato crops is mainly threatened by insect-borne viruses, among which pepper veinal mottle virus (PVMV) is one of the most prevalent. PVMV is a member of the genus Potyvirus of the family Potyviridae and is non-persistently transmitted by aphids. Its infection significantly reduces tomato fruit yield and quality. So far, no PVMV-resistant tomato lines are available. In this study, we performed nitrite-induced mutagenesis of the PVMV tomato isolate Tn to generate attenuated PVMV mutants. PVMV Tn causes necrotic lesions in Chenopodium quinoa leaves and severe mosaic and wilting in Nicotiana benthamiana plants. After nitrite treatment, three attenuated PVMV mutants, m4-8, m10-1, and m10-11, were selected while inducing milder responses to C. quinoa and N. benthamiana with lower accumulation in tomato plants. In greenhouse tests, the three mutants showed different degrees of cross-protection against wild-type PVMV Tn. m4-8 showed the highest protective efficacy against PVMV Tn in N. benthamiana and tomato plants, 100% and 97.9%, respectively. A whole-genome sequence comparison of PVMV Tn and m4-8 revealed that 20 nucleotide substitutions occurred in the m4-8 genome, resulting in 18 amino acid changes. Our results suggest that m4-8 has excellent potential to protect tomato crops from PVMV. The application of m4-8 in protecting other Solanaceae crops, such as peppers, will be studied in the future.


Asunto(s)
Nicotiana , Enfermedades de las Plantas , Potyvirus , Solanum lycopersicum , Solanum lycopersicum/virología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/prevención & control , Potyvirus/genética , Potyvirus/fisiología , Nicotiana/virología , Productos Agrícolas/virología , Resistencia a la Enfermedad , Genoma Viral , Chenopodium quinoa/virología , Mutación , Hojas de la Planta/virología , Taiwán , Mutagénesis
9.
Water Res ; 257: 121722, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723359

RESUMEN

The development of wastewater treatment processes capable of reducing and fixing carbon is currently a hot topic in the wastewater treatment field. Microalgae possess a natural carbon-fixing advantage, and microalgae that can symbiotically coexist with indigenous bacteria in actual wastewater attract more significant attention. Ultraviolet (UV) mutagenesis and dissolved organic carbon (DOC) acclimation were applied to strengthen the carbon-fixing performance of microalgae in this study. The mechanisms associated with microalgal water purification ability, gene regulation at the molecular level and photosynthetic potential under different trophic modes resulting from carbon fixation and transformation were disclosed. The superior performance of Chlorella sp. MHQ2 was eventually screened out among a large number of mutants generated from 3 wild-type Chlorella strains. Results indicated that the dry cell weight of the optimal species Chlorella sp. HQ mutant MHQ2 was 1.91 times that of the wild strain in the pure algal system, more carbon from municipal wastewater (MW) were transferred to the microalgae and re-entered into the biological cycle through resource utilization. In addition, COD, NH3-N and TP removal efficiencies of MW by Chlorella sp. MHQ2 were found to increase to 95.8% (1.1-times), 96.4% (1.4-times), and 92.9% (1.2-times), respectively, under the extra DOC supply and the assistance of indigenous bacteria in the MW. In the transcriptome analysis of the logarithmic phase, the glycolytic pathway was inhibited, and the pentose phosphate pathway was mainly carried out for microalgal life activities, further promoting efficient energy utilization. Upon analysis of carbon capture capacity and photosynthetic potential in trophic mode, the addition of NaHCO3 increased the photosynthetic rate of Chlorella sp. MHQ2 in mixotrophy whereas it was attenuated in autotrophy. This study could provide a new perspective for the study of resource utilization and microalgae carbon- fixing mechanisms in the actual wastewater treatment process.


Asunto(s)
Carbono , Chlorella , Microalgas , Fotosíntesis , Aguas Residuales , Microalgas/genética , Carbono/metabolismo , Chlorella/genética , Mutagénesis , Eliminación de Residuos Líquidos
10.
Sci Rep ; 14(1): 8754, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627478

RESUMEN

Wild-type SAASoti and its monomeric variant mSAASoti can undergo phototransformations, including reversible photoswitching of the green form to a nonfluorescent state and irreversible green-to-red photoconversion. In this study, we extend the photochemistry of mSAASoti variants to enable reversible photoswitching of the red form. This result is achieved by rational and site-saturated mutagenesis of the M163 and F177 residues. In the case of mSAASoti it is M163T substitution that leads to the fastest switching and the most photostable variant, and reversible photoswitching can be observed for both green and red forms when expressed in eukaryotic cells. We obtained a 13-fold increase in the switching efficiency with the maximum switching contrast of the green form and the appearance of comparable switching of the red form for the C21N/M163T mSAASoti variant. The crystal structure of the C21N mSAASoti in its green on-state was obtained for the first time at 3.0 Å resolution, and it is in good agreement with previously calculated 3D-model. Dynamic network analysis reveals that efficient photoswitching occurs if motions of the 66H residue and phenyl fragment of chromophore are correlated and these moieties belong to the same community.


Asunto(s)
Colorantes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/química , Proteínas Fluorescentes Verdes/genética , Mutagénesis , Fotoquímica
11.
Biochemistry ; 63(9): 1194-1205, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38598309

RESUMEN

Barley (1,3;1,4)-ß-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-ß-d-glucanase, enabling the hydrolysis of (1,3;1,4)-ß-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-ß-d-glucan endohydrolase [(1,3;1,4)-ß-d-glucanase] isoenzyme EII (HvEII) and (1,3)-ß-d-glucan endohydrolase [(1,3)-ß-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-ß-d-glucanase and one variant that hydrolyzed both (1,3)-ß-d-glucans and (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-ß-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-ß-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-ß-d-glucans or (1,3)-ß-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-ß-d-glucans and (1,3)-ß-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.


Asunto(s)
Hordeum , Hordeum/enzimología , Hordeum/genética , Especificidad por Sustrato , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Glucanos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/química , Mutagénesis , beta-Glucanos/metabolismo
12.
Bioresour Technol ; 400: 130685, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599349

RESUMEN

D-arabitol, a versatile compound with applications in food, pharmaceutical, and biochemical industries, faces challenges in biomanufacturing due to poor chassis performance and unclear synthesis mechanisms. This study aimed to enhance the performance of Zygosaccharomyces rouxii to improve D-arabitol production. Firstly, a mutant strain Z. rouxii M075 obtained via atmospheric and room temperature plasma-mediated mutagenesis yielded 42.0 g/L of D-arabitol at 96 h, with about 50 % increase. Transcriptome-guided metabolic engineering of pathway key enzymes co-expression produced strain ZR-M3, reaching 48.9 g/L D-arabitol after 96 h fermentation. Finally, under optimized conditions, fed-batch fermentation of ZR-M3 in a 5 L bioreactor yielded an impressive D-arabitol titer of 152.8 g/L at 192 h, with a productivity of 0.8 g/L/h. This study highlights promising advancements in enhancing D-arabitol production, offering potential for more efficient biomanufacturing processes and wider industrial applications.


Asunto(s)
Fermentación , Ingeniería Metabólica , Mutagénesis , Alcoholes del Azúcar , Transcriptoma , Ingeniería Metabólica/métodos , Alcoholes del Azúcar/metabolismo , Transcriptoma/genética , Reactores Biológicos , Perfilación de la Expresión Génica , Saccharomycetales/genética , Saccharomycetales/metabolismo
13.
Nat Commun ; 15(1): 3596, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678037

RESUMEN

The long-term effects of the Central Atlantic Magmatic Province, a large igneous province connected to the end-Triassic mass-extinction (201.5 Ma), remain largely elusive. Here, we document the persistence of volcanic-induced mercury (Hg) pollution and its effects on the biosphere for ~1.3 million years after the extinction event. In sediments recovered in Germany (Schandelah-1 core), we record not only high abundances of malformed fern spores at the Triassic-Jurassic boundary, but also during the lower Jurassic Hettangian, indicating repeated vegetation disturbance and stress that was eccentricity-forced. Crucially, these abundances correspond to increases in sedimentary Hg-concentrations. Hg-isotope ratios (δ202Hg, Δ199Hg) suggest a volcanic source of Hg-enrichment at the Triassic-Jurassic boundary but a terrestrial source for the early Jurassic peaks. We conclude that volcanically injected Hg across the extinction was repeatedly remobilized from coastal wetlands and hinterland areas during eccentricity-forced phases of severe hydrological upheaval and erosion, focusing Hg-pollution in the Central European Basin.


Asunto(s)
Extinción Biológica , Helechos , Fósiles , Sedimentos Geológicos , Mercurio , Mercurio/análisis , Sedimentos Geológicos/química , Alemania , Erupciones Volcánicas , Mutagénesis , Clima , Esporas
14.
Biochem Biophys Res Commun ; 715: 149957, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688057

RESUMEN

Clostridioides difficile endolysin (Ecd09610) consists of an unknown domain at its N terminus, followed by two catalytic domains, a glucosaminidase domain and endopeptidase domain. X-ray structure and mutagenesis analyses of the Ecd09610 catalytic domain with glucosaminidase activity (Ecd09610CD53) were performed. Ecd09610CD53 was found to possess an α-bundle-like structure with nine helices, which is well conserved among GH73 family enzymes. The mutagenesis analysis based on X-ray structures showed that Glu405 and Asn470 were essential for enzymatic activity. Ecd09610CD53 may adopt a neighboring-group mechanism for a catalytic reaction in which Glu405 acted as an acid/base catalyst and Asn470 helped to stabilize the oxazolinium ion intermediate. Structural comparisons with the newly identified Clostridium perfringens autolysin catalytic domain (AcpCD) in the P1 form and a zymography analysis demonstrated that AcpCD was 15-fold more active than Ecd09610CD53. The strength of the glucosaminidase activity of the GH73 family appears to be dependent on the depth of the substrate-binding groove.


Asunto(s)
Dominio Catalítico , Clostridioides difficile , Endopeptidasas , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Cristalografía por Rayos X , Endopeptidasas/química , Endopeptidasas/metabolismo , Endopeptidasas/genética , Modelos Moleculares , Hexosaminidasas/química , Hexosaminidasas/genética , Hexosaminidasas/metabolismo , Mutagénesis , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutagénesis Sitio-Dirigida , Dominios Proteicos
15.
Nucleic Acids Res ; 52(8): 4739-4755, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38567723

RESUMEN

Mutagenesis driving genetic diversity is vital for understanding and engineering biological systems. However, the lack of effective methods to generate in-situ mutagenesis in multiple genomic loci combinatorially limits the study of complex biological functions. Here, we design and construct MultiduBE, a dCas12a-based multiplexed dual-function base editor, in an all-in-one plasmid for performing combinatorial in-situ mutagenesis. Two synthetic effectors, duBE-1a and duBE-2b, are created by amalgamating the functionalities of cytosine deaminase (from hAPOBEC3A or hAID*Δ ), adenine deaminase (from TadA9), and crRNA array processing (from dCas12a). Furthermore, introducing the synthetic separator Sp4 minimizes interference in the crRNA array, thereby facilitating multiplexed in-situ mutagenesis in both Escherichia coli and Bacillus subtilis. Guided by the corresponding crRNA arrays, MultiduBE is successfully employed for cell physiology reprogramming and metabolic regulation. A novel mutation conferring streptomycin resistance has been identified in B. subtilis and incorporated into the mutant strains with multiple antibiotic resistance. Moreover, surfactin and riboflavin titers of the combinatorially mutant strains improved by 42% and 15-fold, respectively, compared with the control strains with single gene mutation. Overall, MultiduBE provides a convenient and efficient way to perform multiplexed in-situ mutagenesis.


Asunto(s)
Bacillus subtilis , Sistemas CRISPR-Cas , Escherichia coli , Edición Génica , Mutagénesis , Escherichia coli/genética , Bacillus subtilis/genética , Edición Génica/métodos , Plásmidos/genética , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Mutación , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Aminohidrolasas
16.
Arch Toxicol ; 98(6): 1919-1935, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38584193

RESUMEN

Human liver-derived metabolically competent HepaRG cells have been successfully employed in both two-dimensional (2D) and 3D spheroid formats for performing the comet assay and micronucleus (MN) assay. In the present study, we have investigated expanding the genotoxicity endpoints evaluated in HepaRG cells by detecting mutagenesis using two error-corrected next generation sequencing (ecNGS) technologies, Duplex Sequencing (DS) and High-Fidelity (HiFi) Sequencing. Both HepaRG 2D cells and 3D spheroids were exposed for 72 h to N-nitrosodimethylamine (NDMA), followed by an additional incubation for the fixation of induced mutations. NDMA-induced DNA damage, chromosomal damage, and mutagenesis were determined using the comet assay, MN assay, and ecNGS, respectively. The 72-h treatment with NDMA resulted in concentration-dependent increases in cytotoxicity, DNA damage, MN formation, and mutation frequency in both 2D and 3D cultures, with greater responses observed in the 3D spheroids compared to 2D cells. The mutational spectrum analysis showed that NDMA induced predominantly A:T → G:C transitions, along with a lower frequency of G:C → A:T transitions, and exhibited a different trinucleotide signature relative to the negative control. These results demonstrate that the HepaRG 2D cells and 3D spheroid models can be used for mutagenesis assessment using both DS and HiFi Sequencing, with the caveat that severe cytotoxic concentrations should be avoided when conducting DS. With further validation, the HepaRG 2D/3D system may become a powerful human-based metabolically competent platform for genotoxicity testing.


Asunto(s)
Ensayo Cometa , Daño del ADN , Dimetilnitrosamina , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Micronúcleos , Mutágenos , Humanos , Dimetilnitrosamina/toxicidad , Ensayo Cometa/métodos , Pruebas de Micronúcleos/métodos , Mutágenos/toxicidad , Daño del ADN/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Técnicas de Cultivo de Célula , Línea Celular , Hepatocitos/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Mutación , Relación Dosis-Respuesta a Droga
17.
Nat Genet ; 56(5): 913-924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627597

RESUMEN

How chronic mutational processes and punctuated bursts of DNA damage drive evolution of the cancer genome is poorly understood. Here, we demonstrate a strategy to disentangle and quantify distinct mechanisms underlying genome evolution in single cells, during single mitoses and at single-strand resolution. To distinguish between chronic (reactive oxygen species (ROS)) and acute (ultraviolet light (UV)) mutagenesis, we microfluidically separate pairs of sister cells from the first mitosis following burst UV damage. Strikingly, UV mutations manifest as sister-specific events, revealing mirror-image mutation phasing genome-wide. In contrast, ROS mutagenesis in transcribed regions is reduced strand agnostically. Successive rounds of genome replication over persisting UV damage drives multiallelic variation at CC dinucleotides. Finally, we show that mutation phasing can be resolved to single strands across the entire genome of liver tumors from F1 mice. This strategy can be broadly used to distinguish the contributions of overlapping cancer relevant mutational processes.


Asunto(s)
Daño del ADN , Reparación del ADN , Mitosis , Mutagénesis , Rayos Ultravioleta , Animales , Ratones , Reparación del ADN/genética , Rayos Ultravioleta/efectos adversos , Daño del ADN/genética , Mitosis/genética , Especies Reactivas de Oxígeno/metabolismo , Mutación , Humanos
18.
Nucleic Acids Res ; 52(9): 5392-5405, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38634780

RESUMEN

N6-(2-deoxy-α,ß-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood. To address this we investigated how DNA polymerase ß (Pol ß), a model mammalian polymerase, bypasses a templating Fapy•dG, inserts Fapy•dGTP, and extends from Fapy•dG at the primer terminus. When Fapy•dG is present in the template, Pol ß incorporates TMP less efficiently than either dCMP or dAMP. Kinetic analysis revealed that Fapy•dGTP is a poor substrate but is incorporated ∼3-times more efficiently opposite dA than dC. Extension from Fapy•dG at the 3'-terminus of a nascent primer is inefficient due to the primer terminus being poorly positioned for catalysis. Together these data indicate that mutagenic bypass of Fapy•dG is likely to be the source of the mutagenic effects of the lesion and not Fapy•dGTP. These experiments increase our understanding of the promutagenic effects of Fapy•dG.


Asunto(s)
ADN Polimerasa beta , Replicación del ADN , Formamidas , Furanos , Pirimidinas , Humanos , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , ADN Polimerasa beta/metabolismo , ADN Polimerasa beta/química , Cinética , Modelos Moleculares , Pirimidinas/química , Pirimidinas/metabolismo , Furanos/química , Furanos/metabolismo , Formamidas/metabolismo , Mutagénesis
19.
Elife ; 122024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592763

RESUMEN

The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.


Asunto(s)
Arabidopsis , Microscopía por Crioelectrón , Arabidopsis/genética , Membrana Celular , Mecanotransducción Celular , Mutagénesis
20.
Microbiol Res ; 284: 127713, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38608339

RESUMEN

Deinococcus radiodurans, with its high homologous recombination (HR) efficiency of double-stranded DNA breaks (DSBs), is a model organism for studying genome stability maintenance and an attractive microbe for industrial applications. Here, we developed an efficient CRISPR/Cpf1 genome editing system in D. radiodurans by evaluating and optimizing double-plasmid strategies and four Cas effector proteins from various organisms, which can precisely introduce different types of template-dependent mutagenesis without off-target toxicity. Furthermore, the role of DNA repair genes in determining editing efficiency in D. radiodurans was evaluated by introducing the CRISPR/Cpf1 system into 13 mutant strains lacking various DNA damage response and repair factors. In addition to the crucial role of RecA-dependent HR required for CRISPR/Cpf1 editing, D. radiodurans showed higher editing efficiency when lacking DdrB, the single-stranded DNA annealing (SSA) protein involved in the RecA-independent DSB repair pathway. This suggests a possible competition between HR and SSA pathways in the CRISPR editing of D. radiodurans. Moreover, off-target effects were observed during the genome editing of the pprI knockout strain, a master DNA damage response gene in Deinococcus species, which suggested that precise regulation of DNA damage response is critical for a high-fidelity genome editing system.


Asunto(s)
Sistemas CRISPR-Cas , Reparación del ADN , Deinococcus , Edición Génica , Deinococcus/genética , Edición Génica/métodos , Reparación del ADN/genética , Genoma Bacteriano , Roturas del ADN de Doble Cadena , Recombinación Homóloga , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plásmidos/genética , Mutagénesis , Inestabilidad Genómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Daño del ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA