Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.884
Filtrar
1.
J Neurosci Methods ; 407: 110156, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703796

RESUMEN

BACKGROUND: DBS entails the insertion of an electrode into the patient brain, enabling Subthalamic nucleus (STN) stimulation. Accurate delineation of STN borders is a critical but time-consuming task, traditionally reliant on the neurosurgeon experience in deciphering the intricacies of microelectrode recording (MER). While clinical outcomes of MER have been satisfactory, they involve certain risks to patient safety. Recently, there has been a growing interest in exploring the potential of local field potentials (LFP) due to their correlation with the STN motor territory. METHOD: A novel STN detection system, integrating LFP and wavelet packet transform (WPT) with stacking ensemble learning, is developed. Initial steps involve the inclusion of soft thresholding to increase robustness to LFP variability. Subsequently, non-linear WPT features are extracted. Finally, a unique ensemble model, comprising a dual-layer structure, is developed for STN localization. We harnessed the capabilities of support vector machine, Decision tree and k-Nearest Neighbor in conjunction with long short-term memory (LSTM) network. LSTM is pivotal for assigning adequate weights to every base model. RESULTS: Results reveal that the proposed model achieved a remarkable accuracy and F1-score of 89.49% and 91.63%. COMPARISON WITH EXISTING METHODS: Ensemble model demonstrated superior performance when compared to standalone base models and existing meta techniques. CONCLUSION: This framework is envisioned to enhance the efficiency of DBS surgery and reduce the reliance on clinician experience for precise STN detection. This achievement is strategically significant to serve as an invaluable tool for refining the electrode trajectory, potentially replacing the current methodology based on MER.


Asunto(s)
Estimulación Encefálica Profunda , Núcleo Subtalámico , Análisis de Ondículas , Núcleo Subtalámico/fisiología , Humanos , Estimulación Encefálica Profunda/métodos , Estimulación Encefálica Profunda/instrumentación , Máquina de Vectores de Soporte , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador , Microelectrodos
2.
Proc Natl Acad Sci U S A ; 121(22): e2316149121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768342

RESUMEN

Speech impediments are a prominent yet understudied symptom of Parkinson's disease (PD). While the subthalamic nucleus (STN) is an established clinical target for treating motor symptoms, these interventions can lead to further worsening of speech. The interplay between dopaminergic medication, STN circuitry, and their downstream effects on speech in PD is not yet fully understood. Here, we investigate the effect of dopaminergic medication on STN circuitry and probe its association with speech and cognitive functions in PD patients. We found that changes in intrinsic functional connectivity of the STN were associated with alterations in speech functions in PD. Interestingly, this relationship was characterized by altered functional connectivity of the dorsolateral and ventromedial subdivisions of the STN with the language network. Crucially, medication-induced changes in functional connectivity between the STN's dorsolateral subdivision and key regions in the language network, including the left inferior frontal cortex and the left superior temporal gyrus, correlated with alterations on a standardized neuropsychological test requiring oral responses. This relation was not observed in the written version of the same test. Furthermore, changes in functional connectivity between STN and language regions predicted the medication's downstream effects on speech-related cognitive performance. These findings reveal a previously unidentified brain mechanism through which dopaminergic medication influences speech function in PD. Our study sheds light into the subcortical-cortical circuit mechanisms underlying impaired speech control in PD. The insights gained here could inform treatment strategies aimed at mitigating speech deficits in PD and enhancing the quality of life for affected individuals.


Asunto(s)
Lenguaje , Enfermedad de Parkinson , Habla , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/tratamiento farmacológico , Núcleo Subtalámico/fisiopatología , Núcleo Subtalámico/efectos de los fármacos , Masculino , Habla/fisiología , Habla/efectos de los fármacos , Femenino , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética , Dopamina/metabolismo , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología , Cognición/efectos de los fármacos , Dopaminérgicos/farmacología , Dopaminérgicos/uso terapéutico
3.
Physiol Rep ; 12(9): e16001, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697943

RESUMEN

Local field potential (LFP) oscillations in the beta band (13-30 Hz) in the subthalamic nucleus (STN) of Parkinson's disease patients have been implicated in disease severity and treatment response. The relationship between single-neuron activity in the STN and regional beta power changes remains unclear. We used spike-triggered average (STA) to assess beta synchronization in STN. Beta power and STA magnitude at the beta frequency range were compared in three conditions: STN versus other subcortical structures, dorsal versus ventral STN, and high versus low beta power STN recordings. Magnitude of STA-LFP was greater within the STN compared to extra-STN structures along the trajectory path, despite no difference in percentage of the total power. Within the STN, there was a higher percent beta power in dorsal compared to ventral STN but no difference in STA-LFP magnitude. Further refining the comparison to high versus low beta peak power recordings inside the STN to evaluate if single-unit activity synchronized more strongly with beta band activity in areas of high beta power resulted in a significantly higher STA magnitude for areas of high beta power. Overall, these results suggest that STN single units strongly synchronize to beta activity, particularly units in areas of high beta power.


Asunto(s)
Ritmo beta , Enfermedad de Parkinson , Núcleo Subtalámico , Núcleo Subtalámico/fisiopatología , Enfermedad de Parkinson/fisiopatología , Humanos , Masculino , Ritmo beta/fisiología , Persona de Mediana Edad , Femenino , Anciano , Potenciales de Acción/fisiología , Neuronas/fisiología , Estimulación Encefálica Profunda/métodos
4.
Nat Commun ; 15(1): 3130, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605039

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/fisiología , Ganglios Basales/fisiología , Neuronas/fisiología
5.
Nat Commun ; 15(1): 3166, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38605062

RESUMEN

Increasing evidence suggests a considerable role of pre-movement beta bursts for motor control and its impairment in Parkinson's disease. However, whether beta bursts occur during precise and prolonged movements and if they affect fine motor control remains unclear. To investigate the role of within-movement beta bursts for fine motor control, we here combine invasive electrophysiological recordings and clinical deep brain stimulation in the subthalamic nucleus in 19 patients with Parkinson's disease performing a context-varying task that comprised template-guided and free spiral drawing. We determined beta bursts in narrow frequency bands around patient-specific peaks and assessed burst amplitude, duration, and their immediate impact on drawing speed. We reveal that beta bursts occur during the execution of drawing movements with reduced duration and amplitude in comparison to rest. Exclusively when drawing freely, they parallel reductions in acceleration. Deep brain stimulation increases the acceleration around beta bursts in addition to a general increase in drawing velocity and improvements of clinical function. These results provide evidence for a diverse and task-specific role of subthalamic beta bursts for fine motor control in Parkinson's disease; suggesting that pathological beta bursts act in a context dependent manner, which can be targeted by clinical deep brain stimulation.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Ritmo beta/fisiología , Movimiento/fisiología
6.
Neurotherapeutics ; 21(3): e00348, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579455

RESUMEN

Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiología , Animales , Neurociencias/métodos
7.
J Clin Neurosci ; 124: 81-86, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669906

RESUMEN

BACKGROUND: Delayed-onset seizures after deep brain stimulation (DBS) surgery were seldom reported. This study summarized the clinical characteristics of delayed-onset seizures after subthalamic nucleus (STN) DBS surgery for Parkinson's disease (PD) and analyzed risk factors. METHODS: A single-center retrospective study containing consecutive STN-DBS PD patients from 2006 to 2021 was performed. Seizures occurred during the DBS surgery or within one month after DBS surgery were identified based on routine clinical records. Patients with postoperative magnetic resonance imaging (MRI) were included to further analyze the risk factors for postoperative seizures with univariate and multivariate statistical methods. RESULTS: 341 consecutive PD patients treated with bilateral STN-DBS surgery wereidentified, and five patients experienced seizures after DBS surgery with an incidence of 1.47 %. All seizures of the five cases were characterized as delayed onset with average 12 days post-operatively. All seizures presented as generalized tonic-clonic seizures and didn't recur after the first onset. In those seizures cases, peri-electrode edema was found in both hemispheres without hemorrhage and infarction. The average diameter of peri-electrode edema of patients with seizures was larger than those without seizures (3.15 ± 1.00 cm vs 1.57 ± 1.02 cm, p = 0.005). Multivariate risk factor analysis indicated that seizures were only associated with the diameter of peri-electrode edema (OR 4.144, 95 % CI 1.269-13.530, p = 0.019). CONCLUSIONS: Delayed-onset seizures after STN-DBS surgery in PD patients were uncommon with an incidence of 1.47 % in this study. The seizures were transient and self-limiting, with no developing into chronic epilepsy. Peri-electrode edema was a risk factor for delayed-onset seizures after DBS surgery. Patients with an average peri-electrode edema diameter > 2.70 cm had a higher risk to develop seizures.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Complicaciones Posoperatorias , Convulsiones , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/efectos adversos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/cirugía , Masculino , Femenino , Persona de Mediana Edad , Núcleo Subtalámico/cirugía , Estudios Retrospectivos , Convulsiones/etiología , Convulsiones/epidemiología , Anciano , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Factores de Riesgo , Imagen por Resonancia Magnética
9.
Neurobiol Dis ; 195: 106490, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561111

RESUMEN

The auditory oddball is a mainstay in research on attention, novelty, and sensory prediction. How this task engages subcortical structures like the subthalamic nucleus and substantia nigra pars reticulata is unclear. We administered an auditory OB task while recording single unit activity (35 units) and local field potentials (57 recordings) from the subthalamic nucleus and substantia nigra pars reticulata of 30 patients with Parkinson's disease undergoing deep brain stimulation surgery. We found tone modulated and oddball modulated units in both regions. Population activity differentiated oddball from standard trials from 200 ms to 1000 ms after the tone in both regions. In the substantia nigra, beta band activity in the local field potential was decreased following oddball tones. The oddball related activity we observe may underlie attention, sensory prediction, or surprise-induced motor suppression.


Asunto(s)
Estimulación Acústica , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Porción Reticular de la Sustancia Negra , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Masculino , Persona de Mediana Edad , Femenino , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Anciano , Porción Reticular de la Sustancia Negra/fisiología , Estimulación Encefálica Profunda/métodos , Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Sustancia Negra/fisiología , Adulto
10.
Prog Neurobiol ; 236: 102613, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631480

RESUMEN

While medial frontal cortex (MFC) and subthalamic nucleus (STN) have been implicated in conflict monitoring and action inhibition, respectively, an integrated understanding of the spatiotemporal and spectral interaction of these nodes and how they interact with motor cortex (M1) to definitively modify motor behavior during conflict is lacking. We recorded neural signals intracranially across presupplementary motor area (preSMA), M1, STN, and globus pallidus internus (GPi), during a flanker task in 20 patients undergoing deep brain stimulation implantation surgery for Parkinson disease or dystonia. Conflict is associated with sequential and causal increases in local theta power from preSMA to STN to M1 with movement delays directly correlated with increased STN theta power, indicating preSMA is the MFC locus that monitors conflict and signals STN to implement a 'break.' Transmission of theta from STN-to-M1 subsequently results in a transient increase in M1-to-GPi beta flow immediately prior to movement, modulating the motor network to actuate the conflict-related action inhibition (i.e., delayed response). Action regulation during conflict relies on two distinct circuits, the conflict-related theta and movement-related beta networks, that are separated spatially, spectrally, and temporally, but which interact dynamically to mediate motor performance, highlighting complex parallel yet interacting networks regulating movement.


Asunto(s)
Conflicto Psicológico , Estimulación Encefálica Profunda , Corteza Motora , Enfermedad de Parkinson , Corteza Prefrontal , Núcleo Subtalámico , Ritmo Teta , Humanos , Ritmo Teta/fisiología , Núcleo Subtalámico/fisiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Corteza Prefrontal/fisiología , Corteza Motora/fisiología , Enfermedad de Parkinson/fisiopatología , Anciano , Vías Nerviosas/fisiología , Distonía/fisiopatología
11.
CNS Neurosci Ther ; 30(4): e14710, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38615363

RESUMEN

AIMS: The present study aimed to explore the effect of cortico-cortical paired-associative stimulation (ccPAS) in modulating hyperdirect pathway and its influence on balance performance. METHODS: Forty healthy participants were randomly allocated to the active ccPAS group (n = 20) or the sham ccPAS group (n = 20). The primary motor cortex and subthalamic nucleus were stimulated sequentially with ccPAS. Unlike the active ccPAS group, one wing of coil was tilted to form a 90° angle with scalp of stimulation locations for the sham ccPAS group. Magnetic resonance imaging, functional reach test (FRT), timed up and go (TUG) test, and limit of stability (LOS) test were performed, and correlation between them was also analyzed. RESULTS: Three participants in the sham ccPAS group were excluded because of poor quality of NIfTI images. The active group had strengthened hyperdirect pathway, increased functional connectivity (FC) between orbital part of frontal cortex and bilateral precuneus, and decreased FC among basal ganglia (all p < 0.05). Regional network properties of triangular and orbital parts of IFG, middle cingulate cortex, and hippocampus increased. The active group performed better in FRT and LOS (all p < 0.05). FRT positively correlated with FC of the hyperdirect pathway (r = 0.439, p = 0.007) and FCs between orbital part of frontal cortex and bilateral precuneus (all p < 0.05). CONCLUSION: The ccPAS enhanced balance performance by promotion-like plasticity mechanisms through the hyperdirect pathway.


Asunto(s)
Encéfalo , Núcleo Subtalámico , Humanos , Encéfalo/diagnóstico por imagen , Cuero Cabelludo , Ganglios Basales , Lóbulo Frontal
12.
Artículo en Inglés | MEDLINE | ID: mdl-38656860

RESUMEN

In neurodegenerative disorders, neuronal firing patterns and oscillatory activity are remarkably altered in specific brain regions, which can serve as valuable biomarkers for the identification of deep brain regions. The subthalamic nucleus (STN) has been the primary target for DBS in patients with Parkinson's disease (PD). In this study, changes in the spike firing patterns and spectral power of local field potentials (LFPs) in the pre-STN (zona incerta, ZI) and post-STN (cerebral peduncle, cp) regions were investigated in PD rats, providing crucial evidence for the functional localization of the STN. Sixteen-channel microelectrode arrays (MEAs) with sites distributed at different depths and widths were utilized to record neuronal activities. The spikes in the STN exhibited higher firing rates than those in the ZI and cp. Furthermore, the LFP power in the delta band in the STN was the greatest, followed by that in the ZI, and was greater than that in the cp. Additionally, increased LFP power was observed in the beta bands in the STN. To identify the best performing classification model, we applied various convolutional neural networks (CNNs) based on transfer learning to analyze the recorded raw data, which were processed using the Gram matrix of the spikes and the fast Fourier transform of the LFPs. The best transfer learning model achieved an accuracy of 95.16%. After fusing the spike and LFP classification results, the time precision for processing the raw data reached 500 ms. The pretrained model, utilizing raw data, demonstrated the feasibility of employing transfer learning for training models on neural activity. This approach highlights the potential for functional localization within deep brain regions.


Asunto(s)
Estimulación Encefálica Profunda , Microelectrodos , Ratas Sprague-Dawley , Núcleo Subtalámico , Núcleo Subtalámico/fisiopatología , Animales , Ratas , Masculino , Modelos Animales de Enfermedad , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/rehabilitación , Potenciales de Acción/fisiología , Algoritmos , Sistemas de Computación , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/rehabilitación , Aprendizaje Automático
13.
Medicine (Baltimore) ; 103(17): e37955, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669414

RESUMEN

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) is a viable therapeutic for advanced Parkinson's disease. However, the efficacy and safety of STN-DBS under local anesthesia (LA) versus general anesthesia (GA) remain controversial. This meta-analysis aims to compare them using an expanded sample size. METHODS: The databases of Embase, Cochrane Library and Medline were systematically searched for eligible cohort studies published between 1967 and 2023. Clinical efficacy was assessed using either Unified Parkinson's Disease Rating Scale (UPDRS) section III scores or levodopa equivalent dosage requirements. Subgroup analyses were performed to assess complications (adverse effects related to stimulation, general neurological and surgical complications, and hardware-related complications). RESULTS: Fifteen studies, comprising of 13 retrospective cohort studies and 2 prospective cohort studies, involving a total of 943 patients were included in this meta-analysis. The results indicate that there were no significant differences between the 2 groups with regards to improvement in UPDRS III score or postoperative levodopa equivalent dosage requirement. However, subgroup analysis revealed that patients who underwent GA with intraoperative imaging had higher UPDRS III score improvement compared to those who received LA with microelectrode recording (MER) (P = .03). No significant difference was found in the improvement of UPDRS III scores between the GA group and LA group with MER. Additionally, there were no notable differences in the incidence rates of complications between these 2 groups. CONCLUSIONS: Our meta-analysis indicates that STN-DBS performed under GA or LA have similar clinical outcomes and complications. Therefore, GA may be a suitable option for patients with severe symptoms who cannot tolerate the procedure under LA. Additionally, the GA group with intraoperative imaging showed better clinical outcomes than the LA group with MER. A more compelling conclusion would require larger prospective cohort studies with a substantial patient population and extended long follow-up to validate.


Asunto(s)
Anestesia General , Anestesia Local , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Estimulación Encefálica Profunda/efectos adversos , Enfermedad de Parkinson/terapia , Anestesia General/métodos , Anestesia Local/métodos , Resultado del Tratamiento
14.
Neurotherapeutics ; 21(3): e00356, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38608373

RESUMEN

Deep brain stimulation (DBS) is an established therapeutic tool for the treatment of Parkinson's disease (PD). The mechanisms of DBS for PD are likely rooted in modulation of the subthalamo-pallidal network. However, it can be difficult to electrophysiologically interrogate that network in human patients. The recent identification of large amplitude evoked potential (EP) oscillations from DBS in the subthalamic nucleus (STN) or globus pallidus internus (GPi) are providing new scientific opportunities to expand understanding of human basal ganglia network activity. In turn, the goal of this review is to provide a summary of DBS-induced EPs in the basal ganglia and attempt to explain various components of the EP waveforms from their likely network origins. Our analyses suggest that DBS-induced antidromic activation of globus pallidus externus (GPe) is a key driver of these oscillatory EPs, independent of stimulation location (i.e. STN or GPi). This suggests a potentially more important role for GPe in the mechanisms of DBS for PD than typically assumed. And from a practical perspective, DBS EPs are poised to become clinically useful electrophysiological biomarker signals for verification of DBS target engagement.


Asunto(s)
Ganglios Basales , Estimulación Encefálica Profunda , Potenciales Evocados , Enfermedad de Parkinson , Estimulación Encefálica Profunda/métodos , Humanos , Ganglios Basales/fisiología , Ganglios Basales/fisiopatología , Potenciales Evocados/fisiología , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Animales , Globo Pálido/fisiología , Núcleo Subtalámico/fisiología
15.
J Integr Neurosci ; 23(4): 84, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38682230

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established treatment for the motor symptoms of Parkinson's disease (PD). While PD is primarily characterized by motor symptoms such as tremor, rigidity, and bradykinesia, it also involves a range of non-motor symptoms, and anxiety is one of the most common. The relationship between PD and anxiety is complex and can be a result of both pathological neural changes and the psychological and emotional impacts of living with a chronic progressive condition. Managing anxiety in PD is critical for improving the patients' quality of life. However, patients undergoing STN DBS can occasionally experience increased anxiety. METHODS: This study investigates changes in risk-avoidant behavior following STN DBS in a pre-motor animal model of PD under chronic and acute unilateral high frequency stimulation. RESULTS: No significant changes in risk-avoidant behaviors were observed in rats who underwent STN DBS compared with sham stimulation controls. Chronic stimulation prevented sensitization in the elevated zero maze. CONCLUSIONS: These results suggest that unilateral stimulation of the STN may have minimal effects on risk-avoidant behaviors in PD. However, additional research is required to fully understand the mechanisms responsible for changes in anxiety during STN DBS for PD.


Asunto(s)
Estimulación Encefálica Profunda , Modelos Animales de Enfermedad , Oxidopamina , Núcleo Subtalámico , Animales , Oxidopamina/farmacología , Masculino , Conducta Animal/fisiología , Trastornos Parkinsonianos/terapia , Trastornos Parkinsonianos/fisiopatología , Ansiedad/etiología , Ansiedad/fisiopatología , Ratas , Ratas Sprague-Dawley , Reacción de Prevención/fisiología , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología
16.
J Parkinsons Dis ; 14(3): 575-587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427498

RESUMEN

Background: Conventional deep brain stimulation (DBS) programming via trial-and-error warrants improvement to ensure swift achievement of optimal outcomes. The definition of a sweet spot for subthalamic DBS in Parkinson's disease (PD-STN-DBS) may offer such advancement. Objective: This investigation examines the association of long-term motor outcomes with contact selection during monopolar review and different strategies for anatomically informed contact selection in a retrospective real-life cohort of PD-STN-DBS. Methods: We compared contact selection based on a monopolar review (MPR) to multiple anatomically informed contact selection strategies in a cohort of 28 PD patients with STN-DBS. We employed a commercial software package for contact selection based on visual assessment of individual anatomy following two predefined strategies and two algorithmic approaches with automatic targeting of either the sensorimotor STN or our previously published sweet spot. Similarity indices between chronic stimulation and contact selection strategies were correlated to motor outcomes at 12 months follow-up. Results: Lateralized motor outcomes of chronic DBS were correlated to the similarity between chronic stimulation and visual contact selection targeting the dorsal part of the posterior STN (rho = 0.36, p = 0.007). Similar relationships could not be established for MPR or any of the other investigated strategies. Conclusions: Our data demonstrates that a visual contact selection following a predefined strategy can be linked to beneficial long-term motor outcomes in PD-STN-DBS. Since similar correlations could not be observed for the other approaches to anatomically informed contact selection, we conclude that clear definitions and prospective validation of any approach to imaging-based DBS-programming is warranted.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios de Seguimiento
17.
Clin Neurophysiol ; 162: 41-52, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555666

RESUMEN

OBJECTIVE: We aimed to gain further insight into previously reported beneficial effects of subthalamic nucleus deep brain stimulation (STN-DBS) on visually-guided saccades by examining the effects of unilateral compared to bilateral stimulation, paradigm, and target eccentricity on saccades in individuals with Parkinson's disease (PD). METHODS: Eleven participants with PD and STN-DBS completed the visually-guided saccade paradigms with OFF, RIGHT, LEFT, and BOTH stimulation. Rightward saccade performance was evaluated for three paradigms and two target eccentricities. RESULTS: First, we found that BOTH and LEFT increased gain, peak velocity, and duration compared to OFF stimulation. Second, we found that BOTH and LEFT stimulation decreased latency during the gap and step paradigms but had no effect on latency during the overlap paradigm. Third, we found that RIGHT was not different compared to OFF at benefiting rightward saccade performance. CONCLUSIONS: Left unilateral and bilateral stimulation both improve the motor outcomes of rightward visually-guided saccades. Additionally, both improve latency, a cognitive-motor outcome, but only in paradigms when attention does not require disengagement from a present stimulus. SIGNIFICANCE: STN-DBS primarily benefits motor and cognitive-motor aspects of visually-guided saccades related to reflexive attentional shifting, with the latter only evident when the fixation-related attentional system is not engaged.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Movimientos Sacádicos , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Movimientos Sacádicos/fisiología , Núcleo Subtalámico/fisiopatología , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estimulación Luminosa/métodos
18.
Mov Disord Clin Pract ; 11(5): 504-514, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38469997

RESUMEN

BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) for treatment of essential tremor (ET) traditionally targets the ventral intermediate (Vim) nucleus. Recent strategies include a secondary lesion to the posterior subthalamic area (PSA). OBJECTIVE: The aim was to compare lesion characteristics, tremor improvement, and adverse events (AE) between patients in whom satisfactory tremor suppression was achieved with lesioning of the Vim alone and patients who required additional lesioning of the PSA. METHODS: Retrospective analysis of data collected from ET patients treated with MRgFUS at St Vincent's Hospital Sydney was performed. Clinical Rating Scale for Tremor (CRST), hand tremor score (HTS), and Quality of Life in Essential Tremor Questionnaire (QUEST) were collected pre- and posttreatment in addition to the prevalence of AEs. The lesion coordinates and overlap with the dentatorubrothalamic tract (DRTT) were evaluated using magnetic resonance imaging. RESULTS: Twenty-one patients were treated in Vim only, and 14 were treated with dual Vim-PSA lesions. Clinical data were available for 29 of the 35 patients (19 single target and 10 dual target). At follow-up (mean: 18.80 months) HTS, CRST, and QUEST in single-target patients improved by 57.97% (P < 0.001), 36.71% (P < 0.001), and 58.26% (P < 0.001), whereas dual-target patients improved by 68.34% (P < 0.001), 35.37% (P < 0.003), and 46.97% (P < 0.005), respectively. The Vim lesion of dual-target patients was further anterior relative to the posterior commissure (PC) (7.84 mm), compared with single-target patients (6.92 mm), with less DRTT involvement (14.85% vs. 23.21%). Dual-target patients exhibited a greater proportion of patients with acute motor AEs (100% vs. 58%); however, motor AE prevalence was similar in both groups at long-term follow-up (33% vs. 38%). CONCLUSION: Posterior placement of lesions targeting the Vim may confer greater tremor suppression. The addition of a PSA lesion, in patients with inadequate tremor control despite Vim lesioning, had a trend toward better long-term tremor suppression; however, this approach was associated with greater prevalence of gait disturbance in the short term.


Asunto(s)
Temblor Esencial , Imagen por Resonancia Magnética , Núcleo Subtalámico , Humanos , Temblor Esencial/terapia , Temblor Esencial/cirugía , Temblor Esencial/diagnóstico por imagen , Femenino , Masculino , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Núcleo Subtalámico/cirugía , Núcleo Subtalámico/diagnóstico por imagen , Resultado del Tratamiento , Núcleos Talámicos Ventrales/diagnóstico por imagen , Núcleos Talámicos Ventrales/cirugía , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Ultrasonido Enfocado de Alta Intensidad de Ablación/efectos adversos , Calidad de Vida , Adulto , Anciano de 80 o más Años
19.
Sci Rep ; 14(1): 6674, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509158

RESUMEN

Analysis of coupling between the phases and amplitudes of neural oscillations has gained increasing attention as an important mechanism for large-scale brain network dynamics. In Parkinson's disease (PD), preliminary evidence indicates abnormal beta-phase coupling to gamma-amplitude in different brain areas, including the subthalamic nucleus (STN). We analyzed bilateral STN local field potentials (LFPs) in eight subjects with PD chronically implanted with deep brain stimulation electrodes during upright quiet standing and unperturbed walking. Phase-amplitude coupling (PAC) was computed using the Kullback-Liebler method, based on the modulation index. Neurophysiological recordings were correlated with clinical and kinematic measurements and individual molecular brain imaging studies ([123I]FP-CIT and single-photon emission computed tomography). We showed a dopamine-related increase in subthalamic beta-gamma PAC from standing to walking. Patients with poor PAC modulation and low PAC during walking spent significantly more time in the stance and double support phase of the gait cycle. Our results provide new insights into the subthalamic contribution to human gait and suggest cross-frequency coupling as a gateway mechanism to convey patient-specific information of motor control for human locomotion.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Marcha/fisiología , Caminata
20.
Acta Neurochir (Wien) ; 166(1): 124, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457027

RESUMEN

BACKGROUND: In advanced Parkinson's disease (PD), axial symptoms are common and can be debilitating. Although deep brain stimulation (DBS) significantly improves motor symptoms, conventional high-frequency stimulation (HFS) has limited effectiveness in improving axial symptoms. In this study, we investigated the effects on multiple axial symptoms after DBS surgery with three different frequency programming paradigms comprising HFS, low-frequency stimulation (LFS), and variable-frequency stimulation (VFS). METHODS: This study involved PD patients who had significant preoperative axial symptoms and underwent bilateral subthalamic nucleus (STN) DBS. Axial symptoms, motor symptoms, medications, and quality of life were evaluated preoperatively (baseline). One month after surgery, HFS was applied. At 6 months post-surgery, HFS assessments were performed, and HFS was switched to LFS. A further month later, we conducted LFS assessments and switched LFS to VFS. At 8 months after surgery, VFS assessments were performed. RESULTS: Of the 21 PD patients initially enrolled, 16 patients were ultimately included in this study. Regarding HFS, all axial symptoms except for the Berg Balance Scale (p < 0.0001) did not improve compared with the baseline (all p > 0.05). As for LFS and VFS, all axial symptoms improved significantly compared with both the baseline and HFS (all p < 0.05). Moreover, motor symptoms and medications were significantly better than the baseline (all p < 0.05) after using LFS and VFS. Additionally, the quality of life of the PD patients after receiving LFS and VFS was significantly better than at the baseline and with HFS (all p < 0.0001). CONCLUSION: Our findings indicate that HFS is ineffective at improving the majority of axial symptoms in advanced PD. However, both the LFS and VFS programming paradigms exhibit significant improvements in various axial symptoms.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Enfermedad de Parkinson/terapia , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA