Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Clin Neurol Neurosurg ; 244: 108439, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089180

RESUMEN

OBJECTIVE: Parkinson's disease (PD) as a neurodegenerative disorder characterized by a reduction in both the quantity and functionality of dopaminergic neurons. This succinctly highlights the central pathological feature of PD and its association with dopaminergic neuron degeneration, which underlies the motor and non-motor symptoms of the disease. This study aims to elucidate the nuances of apparent diffusion coefficient (ADC) changes in different cerebral regions by after the bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) surgery of PD, as well as to investigate their potential interactions with the motor and neuropsychiatric spectrum. METHODS: Patients who underwent STN-DBS surgery for PD between 2017 and 2019 were included in this study. The results of diffusion magnetic resonance imaging (MRI), Unified Parkinson Disease Rating Scale (UPDRS) III scores, Beck and Hamilton depression tests were recorded before and at the 3rd month of postoperative stimulation. The data obtained were evaluated with the Wilcoxon signed rank test. Result of the statistical tests were within the 95 % confidence interval and p values were significant below 0.05. RESULTS: Our study was conducted with a total of 13 patients, 8 men and 5 women. As a result of measurements made in a total of 32 different regions, especially in the motor and neuropsychiatric areas of the brain, an increase in ADC values was found in all areas. ADC changes of eight localizations such as left corpus callosum, right corona radiata, left corona radiata, hippocampus, right insula, left superior cerebellar peduncle, left caudate nucleus and left putamen were statistically significant. UPDRS III scores improved by 57 % (p <0.05), and Beck and Hamilton depression scores by 25 % and 33 %, respectively (p> 0.05). CONCLUSIONS: This article implicate that bilateral STN-DBS surgery potentially exerts beneficial effects on both motor and neuropsychiatric symptomatology in individuals with PD. We believe that this therapeutic mechanism is hypothesized to involve modulation of diffusion alterations within distinct cerebral tissues.


Asunto(s)
Estimulación Encefálica Profunda , Imagen de Difusión por Resonancia Magnética , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Núcleo Subtalámico/cirugía , Núcleo Subtalámico/diagnóstico por imagen , Persona de Mediana Edad , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/diagnóstico por imagen , Anciano , Resultado del Tratamiento , Adulto
2.
JAMA Neurol ; 81(6): 638-644, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38739377

RESUMEN

Importance: Unilateral magnetic resonance imaging (MRI)-guided focused ultrasound subthalamotomy (FUS-STN) improves cardinal motor features among patients with asymmetrical Parkinson disease (PD). The feasibility of bilateral FUS-STN is as yet unexplored. Objective: To assess the safety and effectiveness of staged bilateral FUS-STN to treat PD. Design, Setting, and Participants: This prospective, open-label, case series study was conducted between June 18, 2019, and November 7, 2023, at HM-CINAC, Puerta del Sur University Hospital, Madrid, Spain, and included 6 patients with PD who had been treated with unilateral FUS-STN contralateral to their most affected body side and whose parkinsonism on the untreated side had progressed and was not optimally controlled with medication. Intervention: Staged bilateral FUS-STN. Main Outcomes and Measures: Primary outcomes were assessed 6 months after the second treatment and included safety (incidence and severity of adverse events after second treatment) and effectiveness in terms of motor change (measured with the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III [MDS-UPDRS III]) in the off-medication state (ie, after at least 12 hours of antiparkinsonian drug withdrawal) compared with baseline (ie, prior to the first side ablation). Secondary outcomes included motor change in patients in the on-medication state (ie, after usual antiparkinsonian medication intake), motor complications (measured with the MDS-UPDRS IV), daily living activities (measured with the MDS-UPDRS I-II), quality of life (measured with the 39-item Parkinson's Disease Questionnaire), change in dopaminergic treatment, patient's global impression of change (measured with the Global Impression of Change [PGI-C] scale), and long-term (24-month) follow-up. Results: Of 45 patients previously treated with unilateral FUS-STN, 7 were lost to follow-up, and 4 were excluded due to adverse events. Of the remaining 34 patients, 6 (median age at first FUS-STN, 52.6 years [IQR, 49.0-57.3 years]; 3 women [50%]) experienced progression of parkinsonism on the untreated body side and were included. At the time of the first FUS-STN, patients' median duration of disease was 5.7 years (IQR, 4.7-7.3 years). The median time between procedures was 3.2 years (IQR, 1.9-3.5 years). After the second FUS-STN, 4 patients presented with contralateral choreic dyskinesia, which resolved by 3 months. Four patients developed speech disturbances, which gradually improved but remained in a mild form for 2 patients at 6 months; 1 patient experienced mild imbalance and dysphagia during the first week after treatment, which subsided by 3 months. No behavioral or cognitive disturbances were found on neuropsychological testing. For patients in the off-medication state, MDS-UPDRS III scores improved by 52.6% between baseline and 6 months after the second FUS-STN (from 37.5 [IQR, 34.2-40.0] to 20.5 [IQR, 8.7-24.0]; median difference, 23.0 [95% CI, 7.0-33.7]; P = .03). The second treated side improved by 64.3% (MDS-UPDRS III score, 17.0 [IQR, 16.0-19.5] prior to the second treatment vs 5.5 [IQR, 3.0-10.2]; median difference, 9.5 [95% CI, 3.2-17.7]; P = .02). After the second procedure, all self-reported PGI-C scores were positive. Conclusions: Findings of this pilot study suggest that staged bilateral FUS-STN was safe and effective for the treatment of PD, although mild but persistent speech-related adverse events were observed among a small number of patients.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/cirugía , Enfermedad de Parkinson/terapia , Femenino , Masculino , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Núcleo Subtalámico/cirugía , Núcleo Subtalámico/diagnóstico por imagen , Imagen por Resonancia Magnética , Resultado del Tratamiento
3.
Neuroimage Clin ; 42: 103617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38749145

RESUMEN

BACKGROUND AND OBJECTIVES: The intricate relationship between deep brain stimulation (DBS) in Parkinson's disease (PD) and cognitive impairment has lately garnered substantial attention. The presented study evaluated pre-DBS structural and microstructural cerebral patterns as possible predictors of future cognitive decline in PD DBS patients. METHODS: Pre-DBS MRI data in 72 PD patients were combined with neuropsychological examinations and follow-up for an average of 2.3 years after DBS implantation procedure using a screening cognitive test validated for diagnosis of mild cognitive impairment in PD in a Czech population - Dementia Rating Scale 2. RESULTS: PD patients who would exhibit post-DBS cognitive decline were found to have, already at the pre-DBS stage, significantly lower cortical thickness and lower microstructural complexity than cognitively stable PD patients. Differences in the regions directly related to cognition as bilateral parietal, insular and cingulate cortices, but also occipital and sensorimotor cortex were detected. Furthermore, hippocampi, putamina, cerebellum and upper brainstem were implicated as well, all despite the absence of pre-DBS differences in cognitive performance and in the position of DBS leads or stimulation parameters between the two groups. CONCLUSIONS: Our findings indicate that the cognitive decline in the presented PD cohort was not attributable primarily to DBS of the subthalamic nucleus but was associated with a clinically silent structural and microstructural predisposition to future cognitive deterioration present already before the DBS system implantation.


Asunto(s)
Disfunción Cognitiva , Estimulación Encefálica Profunda , Imagen por Resonancia Magnética , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/efectos adversos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Masculino , Femenino , Núcleo Subtalámico/diagnóstico por imagen , Persona de Mediana Edad , Disfunción Cognitiva/etiología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/patología , Anciano , Imagen por Resonancia Magnética/métodos , Pruebas Neuropsicológicas
4.
Neuroimage Clin ; 42: 103607, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38643635

RESUMEN

BACKGROUND: Nigrostriatal microstructural integrity has been suggested as a biomarker for levodopa response in Parkinson's disease (PD), which is a strong predictor for motor response to deep brain stimulation (DBS) of the subthalamic nucleus (STN). This study aimed to explore the impact of microstructural integrity of the substantia nigra (SN), STN, and putamen on motor response to STN-DBS using diffusion microstructure imaging. METHODS: Data was collected from 23 PD patients (mean age 63 ± 7, 6 females) who underwent STN-DBS, had preoperative 3 T diffusion magnetic resonance imaging including multishell diffusion-weighted MRI with b-values of 1000 and 2000 s/mm2 and records of motor improvement available. RESULTS: The association between a poorer DBS-response and increased free interstitial fluid showed notable effect sizes (rho > |0.4|) in SN and STN, but not in putamen. However, this did not reach significance after Bonferroni correction and controlling for sex and age. CONCLUSION: Microstructural integrity of SN and STN are potential biomarkers for the prediction of therapy efficacy following STN-DBS, but further studies are required to confirm these associations.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Sustancia Negra , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/patología , Femenino , Masculino , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Persona de Mediana Edad , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/patología , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Resultado del Tratamiento
5.
Mov Disord Clin Pract ; 11(5): 504-514, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38469997

RESUMEN

BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) for treatment of essential tremor (ET) traditionally targets the ventral intermediate (Vim) nucleus. Recent strategies include a secondary lesion to the posterior subthalamic area (PSA). OBJECTIVE: The aim was to compare lesion characteristics, tremor improvement, and adverse events (AE) between patients in whom satisfactory tremor suppression was achieved with lesioning of the Vim alone and patients who required additional lesioning of the PSA. METHODS: Retrospective analysis of data collected from ET patients treated with MRgFUS at St Vincent's Hospital Sydney was performed. Clinical Rating Scale for Tremor (CRST), hand tremor score (HTS), and Quality of Life in Essential Tremor Questionnaire (QUEST) were collected pre- and posttreatment in addition to the prevalence of AEs. The lesion coordinates and overlap with the dentatorubrothalamic tract (DRTT) were evaluated using magnetic resonance imaging. RESULTS: Twenty-one patients were treated in Vim only, and 14 were treated with dual Vim-PSA lesions. Clinical data were available for 29 of the 35 patients (19 single target and 10 dual target). At follow-up (mean: 18.80 months) HTS, CRST, and QUEST in single-target patients improved by 57.97% (P < 0.001), 36.71% (P < 0.001), and 58.26% (P < 0.001), whereas dual-target patients improved by 68.34% (P < 0.001), 35.37% (P < 0.003), and 46.97% (P < 0.005), respectively. The Vim lesion of dual-target patients was further anterior relative to the posterior commissure (PC) (7.84 mm), compared with single-target patients (6.92 mm), with less DRTT involvement (14.85% vs. 23.21%). Dual-target patients exhibited a greater proportion of patients with acute motor AEs (100% vs. 58%); however, motor AE prevalence was similar in both groups at long-term follow-up (33% vs. 38%). CONCLUSION: Posterior placement of lesions targeting the Vim may confer greater tremor suppression. The addition of a PSA lesion, in patients with inadequate tremor control despite Vim lesioning, had a trend toward better long-term tremor suppression; however, this approach was associated with greater prevalence of gait disturbance in the short term.


Asunto(s)
Temblor Esencial , Imagen por Resonancia Magnética , Núcleo Subtalámico , Humanos , Temblor Esencial/terapia , Temblor Esencial/cirugía , Temblor Esencial/diagnóstico por imagen , Femenino , Masculino , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Núcleo Subtalámico/cirugía , Núcleo Subtalámico/diagnóstico por imagen , Resultado del Tratamiento , Núcleos Talámicos Ventrales/diagnóstico por imagen , Núcleos Talámicos Ventrales/cirugía , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Ultrasonido Enfocado de Alta Intensidad de Ablación/efectos adversos , Calidad de Vida , Adulto , Anciano de 80 o más Años
6.
Neuroimage Clin ; 42: 103591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507954

RESUMEN

BACKGROUND: A reduction in stride length is considered a key characteristic of gait kinematics in Parkinson's disease (PD) and has been identified as a predictor of falls. Although low-frequency stimulation (LFS) has been suggested as a method to improve gait characteristics, the underlying structural network is not well understood. OBJECTIVE: This study aims to investigate the structural correlates of changes in stride length during LFS (85 Hz). METHODS: Objective gait performance was retrospectively evaluated in 19 PD patients who underwent deep brain stimulation (DBS) at 85 Hz and 130 Hz. Individual DBS contacts and volumes of activated tissue (VAT) were computed using preoperative magnetic resonance imaging (MRI) and postoperative computed tomography (CT) scans. Structural connectivity profiles to predetermined cortical and mesencephalic areas were estimated using a normative connectome. RESULTS: LFS led to a significant improvement in stride length compared to 130 Hz stimulation. The intersection between VAT and the associative subregion of the subthalamic nucleus (STN) was associated with an improvement in stride length and had structural connections to the supplementary motor area, prefrontal cortex, and pedunculopontine nucleus. Conversely, we found that a lack of improvement was linked to stimulation volumes connected to cortico-diencephalic fibers bypassing the STN dorsolaterally. The robustness of the connectivity model was verified through leave-one-patient-out, 5-, and 10-fold cross cross-validation paradigms. CONCLUSION: These findings offer new insights into the structural connectivity that underlies gait changes following LFS. Targeting the non-motor subregion of the STN with LFS on an individual level may present a potential therapeutic approach for PD patients with gait disorders.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Núcleo Subtalámico/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Marcha/fisiología , Conectoma/métodos , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/terapia
7.
J Neurosurg ; 141(2): 570-580, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489821

RESUMEN

OBJECTIVE: The medial forebrain bundle (MFB) is a novel promising deep brain stimulation (DBS) target in severe affective disorders that courses through the subthalamic region according to tractography studies. Its potential therapeutic role arose in connection with the development of hypomania during stimulation of the subthalamic nucleus (STN) in Parkinson's disease, offering an alternative explanation for the occurrence of this side effect. However, until now its course exclusively described by tractography had not yet been confirmed by any anatomical method. The aim of this study was to fill this gap as well as to provide a detailed description of the fiber tracts surrounding the STN to facilitate a better understanding of the background of side effects occurring during STN DBS. METHODS: Ten human cadaveric brains (20 hemispheres) and 100 healthy subjects (200 hemispheres) from the S500 Release of the Human Connectome Project were involved in this study. Nineteen hemispheres were dissected according to Klingler's method. One additional hemisphere was prepared for histological examinations to validate the macroscopical results and stained with neurofibril silver impregnation according to Krutsay. The authors also aimed to reconstruct the MFB using tractography and correlated the results with their dissections and histological findings. RESULTS: The white matter connections coursing through the subthalamic region were successfully dissected. The ansa lenticularis, lenticular fasciculus, thalamic fasciculus, ipsi- and contralateral cerebellar fibers, and medial lemniscus were revealed as closely related fiber tracts to the STN. However, the existence of a distinct fiber bundle corresponding to the MFB described by tractography could not be identified. Using tractography, the authors showed that the depiction of the streamlines representing the MFB was also strongly dependent on the threshold parameters. CONCLUSIONS: According to this study's findings, the streamlines of the MFB described by tractography arise from the limitations of the diffusion-weighted MRI fiber tracking method and actually correspond to subthalamic fiber bundles, especially the ansa lenticularis and lenticular fasciculus, which erroneously continue in the anterior limb of the internal capsule, toward the prefrontal cortex.


Asunto(s)
Haz Prosencefálico Medial , Núcleo Subtalámico , Humanos , Haz Prosencefálico Medial/anatomía & histología , Haz Prosencefálico Medial/diagnóstico por imagen , Núcleo Subtalámico/anatomía & histología , Núcleo Subtalámico/diagnóstico por imagen , Masculino , Femenino , Cadáver , Adulto , Persona de Mediana Edad , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Estimulación Encefálica Profunda/métodos , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Anciano , Imagen de Difusión Tensora
8.
AJNR Am J Neuroradiol ; 45(8): 1106-1115, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38471785

RESUMEN

BACKGROUND AND PURPOSE: The efficacy of long-term chronic subthalamic nucleus deep brain stimulation (STN-DBS) in treating Parkinson disease (PD) exhibits substantial variability among individuals. The preoperative identification of suitable deep brain stimulation (DBS) candidates through predictive means becomes crucial. Our study aims to investigate the predictive value of characterizing individualized structural covariance networks for long-term efficacy of DBS, offering patients a precise and cost-effective preoperative screening tool. MATERIALS AND METHODS: We included 138 patients with PD and 40 healthy controls. We developed individualized structural covariance networks from T1-weighted images utilizing network template perturbation, and computed the networks' topological characteristics. Patients were categorized according to their long-term motor improvement following STN-DBS. Intergroup analyses were conducted on individual network edges and topological indices, alongside correlation analyses with long-term outcomes for the entire patient cohort. Finally, machine learning algorithms were employed for regression and classification to predict post-DBS motor improvement. RESULTS: Among the patients with PD, 6 edges (left middle frontal and left caudate nucleus, right olfactory and right insula, left superior medial frontal gyrus and right insula, right middle frontal and left paracentral lobule, right middle frontal and cerebellum, left lobule VIIb of the cerebellum and the vermis of the cerebellum) exhibited significant results in intergroup comparisons and correlation analyses. Increased degree centrality and local efficiency of the cerebellum, parahippocampal gyrus, and postcentral gyrus were associated with DBS improvement. A regression model constructed from these 6 edges revealed a significant correlation between predicted and observed changes in the unified PD rating scale (R = 0.671, P < .001) and receiver operating characteristic analysis demonstrated an area under the curve of 0.802, effectively distinguishing between patients with good and moderate improvement post-DBS. CONCLUSIONS: Our findings reveal the link between individual structural covariance network fingerprints in patients with PD and long-term motor outcome following STN-DBS. Additionally, binary and continuous cerebellum-basal ganglia-frontal structural covariance network edges have emerged as potential predictive biomarkers for DBS motor outcome.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/fisiopatología , Persona de Mediana Edad , Resultado del Tratamiento , Anciano , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático
9.
Acta Neurochir (Wien) ; 166(1): 106, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38403814

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces tremor, rigidity, and akinesia. According to the literature, the dentato-rubro-thalamic tract (DRTt) is verified target for DBS in essential tremor; however, its role in the treatment of Parkinson's disease is only vaguely described. The aim of our study was to identify the relationship between symptom alleviation in PD patients and the distance of the DBS electrode electric field (EF) to the DRTt. METHODS: A single-center retrospective analysis of patients (N = 30) with idiopathic Parkinson's disease (PD) who underwent DBS between November 2018 and January 2020 was performed. DRTt and STN were visualized using diffusion-weighted imaging (DWI) and tractography protocol of magnetic resonance (MR). The EF was calculated and compared with STN and course of DRTt. Evaluation of patients before and after surgery was performed with use of UPDRS-III scale. The association between distance from EF to DRTt and clinical outcomes was examined. To confirm the anatomical variation between DRTt and STN observed in tractography, white matter dissection was performed with the Klingler technique on ten human brains. RESULTS: Patients with EF overlapping STN and DRTt benefited from significant motor symptoms improvement. Anatomical findings confirmed the presence of population differences in variability of the DRTt course and were consistent with the DRTt visualized by MR. CONCLUSIONS: DRTt proximity to STN, the main target in PD DBS surgery, confirmed by DWI with tractography protocol of MR combined with proper predefined stimulation parameters may improve efficacy of DBS-STN.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/cirugía , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Estudios Retrospectivos , Tálamo/diagnóstico por imagen , Resultado del Tratamiento
10.
Transl Psychiatry ; 14(1): 117, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38403656

RESUMEN

The substantia nigra (SN), subthalamic nucleus (STN), and red nucleus (RN) have been widely studied as important biomarkers of degenerative diseases. However, how they develop in childhood and adolescence and are affected by emotional behavior has not been studied thus far. This population-based longitudinal cohort study used data from a representative sample followed two to five times. Emotional and behavioral problems were assessed with the Strengths and Difficulties Questionnaire (SDQ). Linear mixed models were used to map developmental trajectories and behavioral regulation. Using an innovative automated image segmentation technique, we quantified the volumes and asymmetries of the SN, STN and RN with 1226 MRI scans of a large longitudinal sample of 667 subjects aged 6-15 years and mapped their developmental trajectories. The results showed that the absolute and relative volumes of the bilateral SN and right STN showed linear increases, while the absolute volume of the right RN and relative volume of the bilateral RN decreased linearly, these effects were not affected by gender. Hyperactivity/inattention weakened the increase in SN volume and reduced the absolute volume of the STN, conduct problems impeded the RN volume from decreasing, and emotional symptoms changed the direction of SN lateralization. This longitudinal cohort study mapped the developmental trajectories of SN, STN, and RN volumes and asymmetries from childhood to adolescence, and found the association of emotional symptoms, conduct problems, and hyperactivity/inattention with these trajectories, providing guidance for preventing and intervening in cognitive and emotional behavioral problems.


Asunto(s)
Problema de Conducta , Núcleo Subtalámico , Humanos , Adolescente , Núcleo Subtalámico/diagnóstico por imagen , Estudios Longitudinales , Núcleo Rojo , Sustancia Negra/diagnóstico por imagen , Estudios de Cohortes
11.
Mov Disord Clin Pract ; 11(4): 373-380, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385792

RESUMEN

BACKGROUND: Identifying the dorsolateral subthalamic nucleus (STN) for deep brain stimulation (DBS) in Parkinson's disease (PD) can be challenging due to the size and double-oblique orientation. Since 2015 we implemented 7-Tesla T2 weighted magnetic resonance imaging (7 T T2) for improving visualization and targeting of the dorsolateral STN. We describe the changes in surgical planning and outcome since implementation of 7 T T2 for DBS in PD. METHODS: By comparing two cohorts of STN DBS patients in different time periods we evaluated the influence of 7 T T2 on STN target planning, the number of microelectrode recording (MER) trajectories, length of STN activity and the postoperative motor (UPDRS) improvement. RESULTS: From February 2007 to January 2014, 1.5 and 3-Tesla T2 guided STN DBS with 3 MER channels was performed in 76 PD patients. Average length of recorded STN activity in the definite electrode trajectory was 3.9 ± 1.5 mm. From January 2015 to January 2022 7 T T2 and MER-guided STN DBS was performed in 182 PD patients. Average length of recorded STN activity in the definite electrode trajectory was 5.1 ± 1.3 mm and used MER channels decreased from 3 to 1. Average UPDRS improvement was comparable. CONCLUSION: Implementation of 7 T T2 for STN DBS enabled a refinement in targeting. Combining classical DBS targeting with dorsolateral STN alignment may be used to determine the optimal trajectory. The improvement in dorsolateral STN visualization can be used for further target refinements, for example adding probabilistic subthalamic connectivity, to enhance clinical outcome of STN DBS.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/diagnóstico por imagen , Imagen por Resonancia Magnética , Microelectrodos
12.
World Neurosurg ; 181: e346-e355, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839566

RESUMEN

BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN-DBS) for Parkinson's disease can be performed with intraoperative neurophysiological and radiographic guidance. Conventional T2-weighted magnetic resonance imaging sequences, however, often fail to provide definitive borders of the STN. Novel magnetic resonance imaging sequences, such as susceptibility-weighted imaging (SWI), might better localize the STN borders and facilitate radiographic targeting. We compared the radiographic location of the dorsal and ventral borders of the STN using SWI with intraoperative microelectrode recording (MER) during awake STN-DBS for Parkinson's disease. METHODS: Thirteen consecutive patients who underwent placement of 24 STN-DBS leads for Parkinson's disease were analyzed retrospectively. Preoperative targeting was performed with SWI, and MER data were obtained from intraoperative electrophysiology records. The boundaries of the STN on SWI were identified by a blinded investigator. RESULTS: The final electrode position differed significantly from the planned coordinates in depth but not in length or width, indicating that MER guided the final electrode depth. When we compared the boundaries of the STN by MER and SWI, SWI accurately predicted the entry into the STN but underestimated the length and ventral boundary of the STN by 1.2 mm. This extent of error approximates the span of a DBS contact and could affect the placement of directional contacts within the STN. CONCLUSIONS: MER might continue to have a role in STN-DBS. This could potentially be mitigated by further refinement of imaging protocols to better image the ventral boundary of the STN.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/cirugía , Núcleo Subtalámico/fisiología , Estimulación Encefálica Profunda/métodos , Microelectrodos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/cirugía , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Electrodos Implantados
13.
J Neurol Neurosurg Psychiatry ; 95(4): 300-308, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37758453

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the globus pallidus interna (GPi) is a highly efficacious treatment for cervical dystonia, but its mechanism of action is not fully understood. Here, we investigate the brain metabolic effects of GPi-DBS in cervical dystonia. METHODS: Eleven patients with GPi-DBS underwent brain 18F-fluorodeoxyglucose positron emission tomography imaging during stimulation on and off. Changes in regional brain glucose metabolism were investigated at the active contact location and across the whole brain. Changes in motor symptom severity were quantified using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS), executive function using trail making test (TMT) and parkinsonism using Unified Parkinson's Disease Rating Scale (UPDRS). RESULTS: The mean (SD) best therapeutic response to DBS during the treatment was 81 (22)%. The TWSTRS score was 3.2 (3.9) points lower DBS on compared with off (p=0.02). At the stimulation site, stimulation was associated with increased metabolism, which correlated with DBS stimulation amplitude (r=0.70, p=0.03) but not with changes in motor symptom severity (p>0.9). In the whole brain analysis, stimulation increased metabolism in the GPi, subthalamic nucleus, putamen, primary sensorimotor cortex (PFDR<0.05). Acute improvement in TWSTRS correlated with metabolic activation in the sensorimotor cortex and overall treatment response in the supplementary motor area. Worsening of TMT-B score was associated with activation of the anterior cingulate cortex and parkinsonism with activation in the putamen. CONCLUSIONS: GPi-DBS increases metabolic activity at the stimulation site and sensorimotor network. The clinical benefit and adverse effects are mediated by modulation of specific networks.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Tortícolis , Humanos , Tortícolis/terapia , Activación Metabólica , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/diagnóstico por imagen , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiología , Resultado del Tratamiento , Enfermedad de Parkinson/terapia
14.
Artículo en Inglés | MEDLINE | ID: mdl-38083396

RESUMEN

Deep Brain Stimulation (DBS) is an established therapy for many movement disorders. DBS entails electrical stimulation of precise brain structures using permanently implanted electrodes. Following implantation, locating the electrodes relative to the target brain structure assists patient outcome optimization. Here we evaluated an open-source automatic algorithm (PaCER) to localize individual electrodes on Computed Tomography imaging (co-registered to Magnetic Resonance Imaging). In a dataset of 111 participants, we found a modified version of the algorithm matched manual-markups with median error less than 0.191 mm (interquartile range 0.698 mm). Given the error is less than the voxel resolution (1 mm3) of the images, we conclude that the automatic algorithm is suitable for DBS electrode localizations.Clinical Relevance- Automated DBS electrode localization identifies the closest electrode to the target brain structure; allowing the neurologist to direct electrical stimulation to maximize patient outcomes. Further, if none of the electrodes are deemed suitable, localization will guide re-implantation.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/cirugía , Núcleo Subtalámico/fisiología , Enfermedad de Parkinson/terapia , Electrodos Implantados , Algoritmos
15.
Clin Neurophysiol ; 156: 196-206, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37972531

RESUMEN

OBJECTIVE: To assess transcranial sonography (TCS) as stand-alone tool and in combination with microelectrode recordings (MER) as a method for the postoperative localization of deep brain stimulation (DBS) electrodes in the subthalamic nucleus (STN). METHODS: Individual dorsal and ventral boundaries of STN (n = 12) were determined on intraoperative MER. Postoperatively, a standardized TCS protocol was applied to measure medio-lateral, anterior-posterior and rostro-caudal electrode position using visualized reference structures (midline, substantia nigra). TCS and combined TCS-MER data were validated using fusion-imaging and clinical outcome data. RESULTS: Test-retest reliability of standard TCS measures of electrode position was excellent. Computed tomography and TCS measures of distance between distal electrode contact and midline agreed well (Pearson correlation; r = 0.86; p < 0.001). Comparing our "gold standard" of rostro-caudal electrode localization relative to STN boundaries, i.e. combining MRI-based stereotaxy and MER data, with the combination of TCS and MER data, the measures differed by 0.32 ± 0.87 (range, -1.35 to 1.25) mm. Combined TCS-MER data identified the clinically preferred electrode contacts for STN-DBS with high accuracy (Cohens kappa, 0.86). CONCLUSIONS: Combined TCS-MER data allow for exact localization of STN-DBS electrodes. SIGNIFICANCE: Our method provides a new option for monitoring of STN-DBS electrode location and guidance of DBS programming in Parkinson's disease.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/cirugía , Microelectrodos , Reproducibilidad de los Resultados , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/cirugía , Núcleo Subtalámico/fisiología , Imagen por Resonancia Magnética/métodos , Electrodos Implantados
16.
Acta Neurochir (Wien) ; 165(11): 3397-3402, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37787840

RESUMEN

PURPOSE: Deep brain stimulation (DBS) relies on precise targeting of key structures such as the subthalamic nucleus (STN) for Parkinson's disease (PD) and the ventro-intermedius nucleus of the thalamus (Vim) for essential tremor (ET). Segmentation software, such as GuideXT© and Suretune©, are commercially available for atlas-based identification of deep brain structures. However, no study has compared the concordance of the segmentation results between the two software. METHODS: We retrospectively compared the concordance of segmentation of GuideXT© and Suretune© software by comparing the position of the segmented key structures with clinically predicted targets obtained using the newly developed RebrAIn© software as a reference. RESULTS: We targeted the STN in 44 MRI from PD patients (88 hemispheres) and the Vim in 31 MRI from ET patients (62 hemispheres) who were elected for DBS. In 22 STN targeting (25%), the target positioning was not correlating between GuideXT© and Suretune©. Regarding the Vim, targets were located in the segmented Vim in 37%, the posterior subthalamic area (PSA) in 60%, and the STN in 3% of the cases using GuideXT©; the proportions were 34%, 60%, and 6%, respectively, using Suretune©. The mean distance from the centre of the RebrAIn© targeting to the segmented Vim by Suretune© was closer (0.64 mm) than with GuideXT© (0.96 mm; p = 0.0004). CONCLUSION: While there is some level of concordance in the segmentation results of key structures for DBS treatment among software models, differences persist. Therefore, such software should still be considered as tools and should not replace clinician experience in DBS planning.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Estudios Retrospectivos , Tálamo , Núcleo Subtalámico/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/terapia , Programas Informáticos
17.
Neurobiol Dis ; 188: 106335, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37890560

RESUMEN

BACKGROUND: Recent animal model studies have suggested that the parafascicular nucleus has the potential to be an effective deep brain stimulation target for Parkinson's disease. However, our knowledge on the role of the parafascicular nucleus in Parkinson's disease patients remains limited. OBJECTIVE: We aimed to investigate the functional alterations of the parafascicular nucleus projections in Parkinson's disease patients. METHODS: We enrolled 72 Parkinson's disease patients and 60 healthy controls, then utilized resting-state functional MRI and spectral dynamic causal modeling to explore the effective connectivity of the bilateral parafascicular nucleus to the dorsal putamen, nucleus accumbens, and subthalamic nucleus. The associations between the effective connectivity of the parafascicular nucleus projections and clinical features were measured with Pearson partial correlations. RESULTS: Compared with controls, the effective connectivity from the parafascicular nucleus to dorsal putamen was significantly increased, while the connectivity to the nucleus accumbens and subthalamic nucleus was significantly reduced in Parkinson's disease patients. There was a significantly positive correlation between the connectivity of parafascicular nucleus-dorsal putamen projection and motor deficits. The connectivity from the parafascicular nucleus to the subthalamic nucleus was negatively correlated with motor deficits and apathy, while the connectivity from the parafascicular nucleus to the nucleus accumbens was negatively associated with depression. CONCLUSION: The present study demonstrates that the parafascicular nucleus-related projections are damaged and associated with clinical symptoms of Parkinson's disease. Our findings provide new insights into the impaired basal ganglia-thalamocortical circuits and give support for the parafascicular nucleus as a potential effective neuromodulating target of the disease.


Asunto(s)
Núcleos Talámicos Intralaminares , Enfermedad de Parkinson , Núcleo Subtalámico , Animales , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Putamen , Ganglios Basales , Núcleo Subtalámico/diagnóstico por imagen
18.
Clin Interv Aging ; 18: 1437-1445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663121

RESUMEN

Background: Anxiety is one of the most common and disturbing non-motor symptoms of Parkinson's disease (PD). However, few studies have explored the relationship between functional connectivity (FC) and the rate of anxiety improvement after subthalamic nucleus deep brain stimulation (STN-DBS). Therefore, in this study, we aimed to explore the correlation between FC and the rate of anxiety improvement in patients with PD who underwent STN-DBS. Methods: The resting-state functional magnetic resonance imaging (rs-fMRI) data of 62 patients with anxious PD (aPD), 68 patients with PD without anxiety (naPD), and 64 healthy controls (HCs) were analyzed according to FC. Intergroup comparison and correlation analyses of anxiety improvement rates were performed. Results: The HC, aPD and naPD groups of zFCs were then used for the ANOVA test, and the results were FDR-corrected. There were 24 significant differences in FCs between the three groups. Post tests were conducted between groups found that 15 significantly different FCs were observed between the naPD and aPD groups. In addition, the two FCs in patients with aPD were significantly correlated with the rate of improvement in anxiety. Conclusion: We found that the two FCs in patients with aPD (olfactory cortex and inferior frontal gyrus [IFG] pars orbitalis; inferior temporal gyrus and posterior orbital gyrus) were significantly correlated with the rate of improvement in anxiety. Our study may help us understand the underlying mechanisms by which STN-DBS improves anxiety in PD patients and identify more effective treatment strategies.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Ansiedad/terapia , Trastornos de Ansiedad
19.
Brain Behav ; 13(8): e3172, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37459244

RESUMEN

INTRODUCTION: Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Subthalamic nucleus (STN) deep brain stimulation (DBS) has been shown to be an effective treatment for PD; however, the effects of this surgery on cerebral metabolism and presynaptic dopamine transporter (DAT) distribution are still being studied. METHODS: In this study, we included 12 PD patients (6 male and 6 female) who underwent STN-DBS surgery and had both 18 F-FDG and 11 C-CFT PET/CT imaging before and 1 year after the surgery. We used paired t-tests to identify changes in cerebral metabolism and calculated PD-related metabolic covariance pattern (PDRP) scores. We also assessed the uptake of 11 C-CFT in the striatum using striatal-to-occipital ratios (SORs). RESULTS: One year after surgery, we observed significant reductions in tremor, rigidity, akinesia, postural instability/gait disturbance, and Unified Parkinson's Disease Rating Scale Part III scores (p < .01, p < .001, p < .001, p < .001, and p < .001, respectively). Hamilton Depression Rating Scale and quality of life (PDQ-39 SI) were also significantly reduced (p < .05 and p < .01, respectively). The mean PDRP score decreased by 37% from 13.0 ± 6.6 to 8.2 ± 7.9 after STN-DBS surgery (p < .05). We observed decreased 18 F-FDG uptake in several areas, including the temporal lobe (BA22), thalamus, putamen, and cingulate gyrus (BA24), whereas it was increased in the supplementary motor area, postcentral gyrus, lingual gyrus, and precuneus (p < .05). SORs of 11 C-CFT in the bilateral caudate nucleus and ipsilateral posterior putamen were significantly decreased compared to preoperative levels (p < .05). CONCLUSION: Our findings suggest that STN-DBS surgery modifies the metabolic network of PD patients and improves motor symptoms, depression, and quality of life. However, it does not prevent the decrease of DAT in striatal areas.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Masculino , Femenino , Núcleo Subtalámico/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Calidad de Vida , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Estimulación Encefálica Profunda/métodos , Resultado del Tratamiento , Glucosa
20.
World Neurosurg ; 178: e472-e479, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506845

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established and effective neurosurgical treatment for relieving motor symptoms in Parkinson disease. The localization of key brain structures is critical to the success of DBS surgery. However, in clinical practice, this process is heavily dependent on the radiologist's experience. METHODS: In this study, we propose an automatic localization method of key structures for STN-DBS surgery via prior-enhanced multi-object magnetic resonance imaging segmentation. We use the U-Net architecture for the multi-object segmentation, including STN, red nucleus, brain sulci, gyri, and ventricles. To address the challenge that only half of the brain sulci and gyri locate in the upper area, potentially causing interference in the lower area, we perform region of interest detection and ensemble joint processing to enhance the segmentation performance of brain sulci and gyri. RESULTS: We evaluate the segmentation accuracy by comparing our method with other state-of-the-art machine learning segmentation methods. The experimental results show that our approach outperforms state-of-the-art methods in terms of segmentation performance. Moreover, our method provides effective visualization of key brain structures from a clinical application perspective and can reduce the segmentation time compared with manual delineation. CONCLUSIONS: Our proposed method uses deep learning to achieve accurate segmentation of the key structures more quickly than and with comparable accuracy to human manual segmentation. Our method has the potential to improve the efficiency of surgical planning for STN-DBS.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/cirugía , Núcleo Subtalámico/patología , Estimulación Encefálica Profunda/métodos , Imagen por Resonancia Magnética/métodos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/cirugía , Procedimientos Neuroquirúrgicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA