Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.198
Filtrar
1.
Nat Commun ; 15(1): 7937, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261529

RESUMEN

To withstand their internal turgor pressure and external threats, most bacteria have a protective peptidoglycan (PG) cell wall. The growth of this PG polymer relies on autolysins, enzymes that create space within the structure. Despite extensive research, the regulatory mechanisms governing these PG-degrading enzymes remain poorly understood. Here, we unveil a novel and widespread control mechanism of lytic transglycosylases (LTs), a type of autolysin responsible for breaking down PG glycan chains. Specifically, we show that LD-crosslinks within the PG sacculus act as an inhibitor of LT activity. Moreover, we demonstrate that this regulation controls the release of immunogenic PG fragments and provides resistance against predatory LTs of both bacterial and viral origin. Our findings address a critical gap in understanding the physiological role of the LD-crosslinking mode in PG homeostasis, highlighting how bacteria can enhance their resilience against environmental threats, including phage attacks, through a single structural PG modification.


Asunto(s)
Pared Celular , N-Acetil Muramoil-L-Alanina Amidasa , Peptidoglicano , Peptidoglicano/metabolismo , Pared Celular/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Escherichia coli/metabolismo , Glicosiltransferasas/metabolismo , Bacillus subtilis/metabolismo
2.
Int J Med Microbiol ; 316: 151632, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39142057

RESUMEN

The bacterial pathogen Staphylococcus aureus employs a thick cell wall for protection against physical and chemical insults. This wall requires continuous maintenance to ensure strength and barrier integrity, but also to permit bacterial growth and division. The main cell wall component is peptidoglycan. Accordingly, the bacteria produce so-called peptidoglycan hydrolases (PGHs) that cleave glycan strands to facilitate growth, cell wall remodelling, separation of divided cells and release of exported proteins into the extracellular milieu. A special class of PGHs contains so-called 'cysteine, histidine-dependent amidohydrolase/peptidase' (CHAP) domains. In the present study, we profiled the roles of 11 CHAP PGHs encoded by the core genome of S. aureus USA300 LAC. Mutant strains lacking individual CHAP PGHs were analysed for growth, cell morphology, autolysis, and invasion and replication inside human lung epithelial cells. The results show that several investigated CHAP PGHs contribute to different extents to extracellular and intracellular growth and replication of S. aureus, septation of dividing cells, daughter cell separation once the division process is completed, autolysis and biofilm formation. In particular, the CHAP PGHs Sle1 and SAUSA300_2253 control intracellular staphylococcal replication and the resistance to ß-lactam antibiotics like oxacillin. This makes the S. aureus PGHs in general, and the Sle1 and SAUSA300_2253 proteins in particular, attractive targets for future prophylactic or therapeutic anti-staphylococcal interventions. Alternatively, these cell surface-exposed enzymes, or particular domains of these enzymes, could be applied in innovative anti-staphylococcal therapies.


Asunto(s)
Proteínas Bacterianas , Pared Celular , N-Acetil Muramoil-L-Alanina Amidasa , Staphylococcus aureus , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Humanos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Peptidoglicano/metabolismo , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Células Epiteliales/microbiología
3.
J Am Chem Soc ; 146(33): 23449-23456, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39133525

RESUMEN

Natural products are important precursors for antibiotic drug design. These chemical scaffolds serve as synthetic inspiration for chemists who leverage their structures to develop novel antibacterials and chemical probes. We have previously studied carolacton, a natural product macrolactone fromSorangium cellulosum, and discovered a simplified derivative, A2, that maintained apparent biofilm inhibitory activity, although the biological target was unknown. Herein, we utilize affinity-based protein profiling (AfBPP) in situ during biofilm formation to identify the protein target using a photoexcitable cross-linking derivative of A2. From these studies, we identified glucan binding protein B (GbpB), a peptidoglycan hydrolase, as the primary target of A2. Further characterization of the interaction between A2 and GbpB, as well as PcsB, a closely related homologue from the more pathogenic S. pneumoniae, revealed binding to the catalytic CHAP (cysteine, histidine, aminopeptidase) domain. To the best of our knowledge, this is the first report of a small-molecule binder of a conserved and essential bacterial CHAP hydrolase, revealing its potential as an antibiotic target. This work also highlights A2 as a useful tool compound for streptococci and as an initial scaffold for the design of more potent CHAP binders.


Asunto(s)
Biopelículas , Biopelículas/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Antibacterianos/farmacología , Antibacterianos/química , Sondas Moleculares/química , Sondas Moleculares/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacología , Hidrolasas/metabolismo , Hidrolasas/química , Hidrolasas/antagonistas & inhibidores
4.
J Bacteriol ; 206(8): e0013324, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39012109

RESUMEN

The peptidoglycan hydrolases responsible for the cell separation of Bacillus subtilis cells are collectively referred to as autolysins. However, the role of each autolysin in the cell separation of B. subtilis is not fully understood. In this study, we constructed a series of cell separation-associated autolysin deficient strains and strains overexpressing the transcription factors SlrR and SinR, and the morphological changes of these strains in liquid culture were observed. The results showed that the absence of D,L-endopeptidases CwlS and LytF only increased the cell chain length in the early exponential phase. The absence of D,L-endopeptidase LytE or N-acetylmuramyl-L-alanine amidase LytC can cause cells to form chains throughout the growth of B. subtilis, although the cell chain length was significantly shortened during the stationary phase. However, the absence of peptidoglycan N-acetylglucosaminidase LytD only caused minor defect in cell separation. Therefore, we concluded that LytE and LytC were the major autolysins that ensure the timely separation of B. subtilis daughter cells, whereas CwlS, LytF, and LytD were the minor autolysins. In addition, overexpression of the transcription factors SinR and SlrR in the cwlS lytF lytC lytE mutant enabled B. subtilis cells to form ultra-long chains in the vegetative phase, and its biomass level was basically the same as that of the wild type. This led to the conclusion that besides inhibiting the expression of lytC and lytF, the SinR-SlrR complex also has other potential mechanisms to inhibit cell separation.IMPORTANCEIn this study, the effects of CwlS, LytC, LytD, LytF, LytE, and SinR-SlrR complex on the cell separation of Bacillus subtilis at different growth phases were studied, and an ultra-long-chained B. subtilis strain was constructed. In microbial fermentation, due to its large cell size, this ultra-long-chained B. subtilis strain may be more likely to be precipitated or intercepted during the removal of bacterial process with centrifugation and membrane filtration as the main methods, which is crucial to improve the purity of the product.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , N-Acetil Muramoil-L-Alanina Amidasa , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/citología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , División Celular , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
5.
Mol Microbiol ; 122(2): 213-229, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38922761

RESUMEN

In the model organism Bacillus subtilis, a signaling protease produced in the forespore, SpoIVB, is essential for the activation of the sigma factor σK, which is produced in the mother cell as an inactive pro-protein, pro-σK. SpoIVB has a second function essential to sporulation, most likely during cortex synthesis. The cortex is composed of peptidoglycan (PG) and is essential for the spore's heat resistance and dormancy. Surprisingly, the genome of the intestinal pathogen Clostridioides difficile, in which σK is produced without a pro-sequence, encodes two SpoIVB paralogs, SpoIVB1 and SpoIVB2. Here, we show that spoIVB1 is dispensable for sporulation, while a spoIVB2 in-frame deletion mutant fails to produce heat-resistant spores. The spoIVB2 mutant enters sporulation, undergoes asymmetric division, and completes engulfment of the forespore by the mother cell but fails to synthesize the spore cortex. We show that SpoIIP, a PG hydrolase and part of the engulfasome, the machinery essential for engulfment, is cleaved by SpoIVB2 into an inactive form. Within the engulfasome, the SpoIIP amidase activity generates the substrates for the SpoIID lytic transglycosylase. Thus, following engulfment completion, the cleavage and inactivation of SpoIIP by SpoIVB2 curtails the engulfasome hydrolytic activity, at a time when synthesis of the spore cortex peptidoglycan begins. SpoIVB2 is also required for normal late gene expression in the forespore by a currently unknown mechanism. Together, these observations suggest a role for SpoIVB2 in coordinating late morphological and gene expression events between the forespore and the mother cell.


Asunto(s)
Proteínas Bacterianas , Clostridioides difficile , N-Acetil Muramoil-L-Alanina Amidasa , Peptidoglicano , Esporas Bacterianas , Esporas Bacterianas/metabolismo , Esporas Bacterianas/genética , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Clostridioides difficile/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Peptidoglicano/metabolismo , Regulación Bacteriana de la Expresión Génica , Factor sigma/metabolismo , Factor sigma/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimología , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética
6.
Elife ; 132024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857064

RESUMEN

Enterococcus faecium is a microbiota species in humans that can modulate host immunity (Griffin and Hang, 2022), but has also acquired antibiotic resistance and is a major cause of hospital-associated infections (Van Tyne and Gilmore, 2014). Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity (Rangan et al., 2016; Pedicord et al., 2016; Kim et al., 2019) and immune checkpoint inhibitor antitumor activity (Griffin et al., 2021). However, the functions of SagA in E. faecium were unknown. Here, we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, ΔsagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, the plasmid-based expression of SagA, but not its catalytically inactive mutant, restored ΔsagA growth, production of active muropeptides, and NOD2 activation. SagA is, therefore, essential for E. faecium growth, stress resistance, and activation of host immunity.


Asunto(s)
Proteínas Bacterianas , Enterococcus faecium , Inhibidores de Puntos de Control Inmunológico , N-Acetil Muramoil-L-Alanina Amidasa , Animales , Humanos , Ratones , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Enterococcus faecium/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Peptidoglicano/metabolismo
7.
Microbiol Spectr ; 12(6): e0354623, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38695664

RESUMEN

Antimicrobial resistance poses a significant global threat, reaching dangerously high levels as reported by the World Health Organization. The emergence and rapid spread of new resistance mechanisms, coupled with the absence of effective treatments in recent decades, have led to thousands of deaths annually from infections caused by drug-resistant microorganisms. Consequently, there is an urgent need for the development of new compounds capable of combating antibiotic-resistant bacteria. A promising class of molecules exhibiting potent bactericidal effects is peptidoglycan hydrolases. Previously, we cloned and characterized the biochemical properties of the M23 catalytic domain of the EnpA (EnpACD) protein from Enterococcus faecalis. Unlike other enzymes within the M23 family, EnpACD demonstrates broad specificity. However, its activity is constrained under low ionic strength conditions. In this study, we present the engineering of three chimeric enzymes comprising EnpACD fused with three distinct SH3b cell wall-binding domains. These chimeras exhibit enhanced tolerance to environmental conditions and sustained activity in bovine and human serum. Furthermore, our findings demonstrate that the addition of SH3b domains influences the activity of the chimeric enzymes, thereby expanding their potential applications in combating antimicrobial resistance.IMPORTANCEThese studies demonstrate that the addition of the SH3b-binding domain to the EnpACD results in generation of chimeras with a broader tolerance to ionic strength and pH values, enabling them to remain active over a wider range of conditions. Such approach offers a relatively straightforward method for obtaining antibacterial enzymes with tailored properties and emphasizes the potential for proteins' engineering with enhanced functionality, contributing to the ongoing efforts to address antimicrobial resistance effectively.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Enterococcus faecalis , Ingeniería de Proteínas , Concentración Osmolar , Enterococcus faecalis/genética , Enterococcus faecalis/enzimología , Enterococcus faecalis/efectos de los fármacos , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Antibacterianos/farmacología , Antibacterianos/metabolismo , Animales , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química , Bovinos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Pared Celular/metabolismo , Pared Celular/genética , Dominio Catalítico/genética , Farmacorresistencia Bacteriana/genética
8.
PLoS Biol ; 22(5): e3002628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814940

RESUMEN

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Asunto(s)
Adenosina Trifosfato , División Celular , Proteínas de Escherichia coli , Escherichia coli , Peptidoglicano , Peptidoglicano/metabolismo , Hidrólisis , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/genética , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Pared Celular/metabolismo , Conformación Proteica , Modelos Moleculares , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Proteínas de la Membrana Bacteriana Externa , Transportadoras de Casetes de Unión a ATP , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Lipoproteínas , Proteínas de Ciclo Celular
9.
World J Microbiol Biotechnol ; 40(6): 186, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683213

RESUMEN

The ability of most opportunistic bacteria to form biofilms, coupled with antimicrobial resistance, hinder the efforts to control widespread infections, resulting in high risks of negative outcomes and economic costs. Endolysins are promising compounds that efficiently combat bacteria, including multidrug-resistant strains and biofilms, without a low probability of subsequent emergence of stable endolysin-resistant phenotypes. However, the details of antibiofilm effects of these enzymes are poorly understood. To elucidate the interactions of bacteriophage endolysins LysAm24, LysAp22, LysECD7, and LysSi3 with bacterial films formed by Gram-negative species, we estimated their composition and assessed the endolysins' effects on the most abundant exopolymers in vitro. The obtained data suggests a pronounced efficiency of these lysins against biofilms with high (Klebsiella pneumoniae) and low (Acinetobacter baumannii) matrix contents, or dual-species biofilms, resulting in at least a twofold loss of the biomass. These peptidoglycan hydrolases interacted diversely with protective compounds of biofilms such as extracellular DNA and polyanionic carbohydrates, indicating a spectrum of biofilm-disrupting effects for bacteriolytic phage enzymes. Specifically, we detected disruption of acid exopolysaccharides by LysAp22, strong DNA-binding capacity of LysAm24, both of these interactions for LysECD7, and neither of them for LysSi3.


Asunto(s)
Bacteriófagos , Biopelículas , Endopeptidasas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Endopeptidasas/metabolismo , Endopeptidasas/farmacología , Endopeptidasas/química , Bacteriófagos/enzimología , Acinetobacter baumannii/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Proteínas Virales/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química
10.
J Mol Diagn ; 26(7): 552-562, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677549

RESUMEN

Community-acquired pneumonia and complications, such as bacteremia and meningitis due to Streptococcus pneumoniae infection, still occur in at-risk populations, despite the availability of effective vaccines. Laboratory confirmation of S. pneumoniae remains challenging despite advances in blood culture techniques and the availability of nucleic acid-amplification tests. The goal of this study was to determine the performance characteristics of a molecular assay designed as a diagnostic test using primary clinical specimens for invasive pneumococcal disease. The molecular assay adapted for the Luminex Aries instrument targets an S. pneumoniae-specific gene (autolysin, lytA) in clinical specimens. Using real-time PCR MultiCode technology, four different clinical specimen types were evaluated. Specimen types included bronchoalveolar lavage, whole blood, cerebrospinal fluid, and urine to cover the various presentations and appropriate specimen types for invasive pneumococcal infections. The lower limit of detection in urine was 10 colony forming units (CFU)/mL, while in bronchoalveolar lavage, cerebrospinal fluid, and whole blood, it was 100 CFU/mL. Accuracy and specificity were both 100%, and all specimen types were stable for 8 days at 4°C. Finally, 38 clinical specimens were tested to further evaluate the assay. The performance characteristics met Clinical Laboratory Improvement Amendments standards for a clinical diagnostic assay, and the assay offers a sensitive and specific real-time PCR test for direct detection of S. pneumoniae in relevant clinical specimens.


Asunto(s)
Infecciones Neumocócicas , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Infecciones Neumocócicas/diagnóstico , Infecciones Neumocócicas/microbiología , Líquido del Lavado Bronquioalveolar/microbiología , Adulto , Persona de Mediana Edad , N-Acetil Muramoil-L-Alanina Amidasa/genética , ADN Bacteriano/genética , Reproducibilidad de los Resultados , Femenino , Niño , Anciano , Masculino
11.
BMC Microbiol ; 24(1): 101, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532329

RESUMEN

BACKGROUND: N-acetylmuramyl-L-alanine amidases are cell wall modifying enzymes that cleave the amide bond between the sugar residues and stem peptide in peptidoglycan. Amidases play a vital role in septal cell wall cleavage and help separate daughter cells during cell division. Most amidases are zinc metalloenzymes, and E. coli cells lacking amidases grow as chains with daughter cells attached to each other. In this study, we have characterized two amidase enzymes from Deinococcus indicus DR1. D. indicus DR1 is known for its high arsenic tolerance and unique cell envelope. However, details of their cell wall biogenesis remain largely unexplored. RESULTS: We have characterized two amidases Ami1Di and Ami2Di from D. indicus DR1. Both Ami1Di and Ami2Di suppress cell separation defects in E. coli amidase mutants, suggesting that these enzymes are able to cleave septal cell wall. Ami1Di and Ami2Di proteins possess the Amidase_3 catalytic domain with conserved -GHGG- motif and Zn2+ binding sites. Zn2+- binding in Ami1Di is crucial for amidase activity. AlphaFold2 structures of both Ami1Di and Ami2Di were predicted, and Ami1Di was a closer homolog to AmiA of E. coli. CONCLUSION: Our results indicate that Ami1Di and Ami2Di enzymes can cleave peptidoglycan, and structural prediction studies revealed insights into the activity and regulation of these enzymes in D. indicus DR1.


Asunto(s)
Deinococcus , Escherichia coli , N-Acetil Muramoil-L-Alanina Amidasa , Escherichia coli/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Alanina , Peptidoglicano/metabolismo , Amidohidrolasas/metabolismo
12.
BMC Microbiol ; 24(1): 77, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459514

RESUMEN

BACKGROUND: Autolysis by cellular peptidoglycan hydrolases (PGH) is a well-known phenomenon in bacteria. During food fermentation, autolysis of starter cultures can exert an accelerating effect, as described in many studies on cheese ripening. In contrast, very little is known about autolysis of starter cultures used in other fermentations. Staphylococcus (S.) carnosus is often used in raw sausage fermentations, contributing to nitrate reduction and flavor formation. In this study, we analyzed the influence of PGHs of the strains S. carnosus TMW 2.146 and S. carnosus TMW 2.2525 on their autolytic behavior. The staphylococcal major autolysin (Atl), a bifunctional enzyme with an N-acetylmuramoyl-L-alanine amidase and a glucosaminidase as an active site, is assumed to be the enzyme by which autolysis is mainly mediated. RESULTS: AtlC mutant strains showed impaired growth and almost no autolysis compared to their respective wild-type strains. Light microscopy and scanning electron microscopy showed that the mutants could no longer appropriately separate from each other during cell division, resulting in the formation of cell clusters. The surface of the mutants appeared rough with an irregular morphology compared to the smooth cell surfaces of the wild-types. Moreover, zymograms showed that eight lytic bands of S. carnosus, with a molecular mass between 140 and 35 kDa, are processed intermediates of AtlC. It was noticed that additional bands were found that had not been described in detail before and that the banding pattern changes over time. Some bands disappear entirely, while others become stronger or are newly formed. This suggests that AtlC is degraded into smaller fragments over time. A second knockout was generated for the gene encoding a N-acetylmuramoyl-L-alanine amidase domain-containing protein. Still, no phenotypic differences could be detected in this mutant compared to the wild-type, implying that the autolytic activity of S. carnosus is mediated by AtlC. CONCLUSIONS: In this study, two knockout mutants of S. carnosus were generated. The atlC mutant showed a significantly altered phenotype compared to the wild-type, revealing AtlC as a key factor in staphylococcal autolysis. Furthermore, we show that Atl is degraded into smaller fragments, which are still cell wall lytic active.


Asunto(s)
N-Acetil Muramoil-L-Alanina Amidasa , Staphylococcus , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Staphylococcus/genética , Staphylococcus/metabolismo
13.
Indian J Med Microbiol ; 48: 100575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38537871

RESUMEN

PURPOSE: Quantitative LAMP (qLAMP) assay is one of the recent and emerging diagnostic tests for infectious diseases. Only a few studies exist comparing this assay with quantitative real-time PCR (qPCR) for the diagnosis of invasive pneumococcal disease (IPD). AIM: To compare the diagnostic performance of qLAMP assay with qPCR targeting autolysin gene for the diagnosis of invasive pneumococcal disease. METHODS: Ninety six blood samples and 73 CSF samples from patients clinically suspected with community acquired pneumonia and acute meningitis were tested by qPCR and qLAMP assays using previously published primers and protocols. The qPCR was considered as the gold standard test and the diagnostic performance was assessed by calculating sensitivity, specificity, positive and negative predictive values, and kappa coefficient for the level of agreement between the tests. Chi-squared/Fisher exact test was used to compare categorical variables (positive/negative). RESULTS: Thirty two blood samples and 22 CSF samples were positive by qPCR while 24 and 20 samples were positive by qLAMP assay respectively. The sensitivity of qLAMP assay was only 86.4% and 75% when tested on CSF and blood samples respectively. However, the qLAMP assay was in substantial to almost perfect agreement when compared with qPCR. The results were statistically significant in both sample types (P < 0.001). CONCLUSIONS: The performance of qLAMP assay can vary based on the specimen type. It has very high specificity and had substantial to almost perfect agreement, and thus may be an alternative to qPCR for the diagnosis of IPD.


Asunto(s)
Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Streptococcus pneumoniae , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/aislamiento & purificación , Infecciones Neumocócicas/diagnóstico , Infecciones Neumocócicas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Anciano , Niño , Adulto Joven , Adolescente , N-Acetil Muramoil-L-Alanina Amidasa/genética , Preescolar
14.
J Bacteriol ; 206(3): e0045623, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38426722

RESUMEN

Actinoplanes missouriensis is a filamentous bacterium that differentiates into terminal sporangia, each containing a few hundred spores. Previously, we reported that a cell wall-hydrolyzing N-acetylglucosaminidase, GsmA, is required for the maturation process of sporangiospores in A. missouriensis; sporangia of the gsmA null mutant (ΔgsmA) strain released chains of 2-20 spores under sporangium dehiscence-inducing conditions. In this study, we identified and characterized a putative cell wall hydrolase (AsmA) that is also involved in sporangiospore maturation. AsmA was predicted to have a signal peptide for the general secretion pathway and an N-acetylmuramoyl-l-alanine amidase domain. The transcript level of asmA increased during the early stages of sporangium formation. The asmA null mutant (ΔasmA) strain showed phenotypes similar to those of the wild-type strain, but sporangia of the ΔgsmAΔasmA double mutant released longer spore chains than those from the ΔgsmA sporangia. Furthermore, a weak interaction between AsmA and GsmA was detected in a bacterial two-hybrid assay using Escherichia coli as the host. Based on these results, we propose that AsmA is an enzyme that hydrolyzes peptidoglycan at septum-forming sites to separate adjacent spores during sporangiospore maturation in cooperation with GsmA in A. missouriensis.IMPORTANCEActinoplanes missouriensis produces sporangiospores as dormant cells. The spores inside the sporangia are assumed to be formed from prespores generated by the compartmentalization of intrasporangium hyphae via septation. Previously, we identified GsmA as a cell wall hydrolase responsible for the separation of adjacent spores inside sporangia. However, we predicted that an additional cell wall hydrolase(s) is inevitably involved in the maturation process of sporangiospores because the sporangia of the gsmA null mutant strain released not only tandemly connected spore chains (2-20 spores) but also single spores. In this study, we successfully identified a putative cell wall hydrolase (AsmA) that is involved in sporangiospore maturation in A. missouriensis.


Asunto(s)
Actinoplanes , N-Acetil Muramoil-L-Alanina Amidasa , Esporas , Hidrolasas , Pared Celular
15.
Vaccine ; 42(8): 1941-1952, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38368223

RESUMEN

Given that individuals with latent tuberculosis (TB) infection represent the major reservoir of TB infection, latency-associated antigens may be promising options for development of improved multi-antigenic TB subunit vaccine. Thus, we selected RipA, a peptidoglycan hydrolase required for efficient cell division of Mycobacterium tuberculosis (Mtb), as vaccine candidate. We found that RipA elicited activation of dendritic cells (DCs) by induction of phenotypic maturation, increased production of inflammatory cytokines, and prompt stimulation of MAPK and NF-κB signaling pathways. In addition, RipA-treated DCs promoted Th1-polarzied immune responses of naïve CD4+ T cells with increased proliferation and activated T cells from Mtb-infected mice, which conferred enhanced control of mycobacterial growth inside macrophages. Moreover, mice immunized with RipA formulated in GLA-SE adjuvant displayed remarkable generation of Ag-specific polyfunctional CD4+ T cells in both lung and spleen. Following an either conventional or ultra-low dose aerosol challenges with 2 Mtb Beijing clinical strains, RipA/GLA-SE-immunization was not inferior to BCG by mediating protection as single Ag. Collectively, our findings highlighted that RipA could be a novel candidate as a component of multi-antigenic TB subunit vaccines.


Asunto(s)
Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Animales , Ratones , N-Acetil Muramoil-L-Alanina Amidasa , Beijing , Tuberculosis/prevención & control , Brotes de Enfermedades , Antígenos Bacterianos , Vacuna BCG
16.
Immunol Res ; 72(3): 490-502, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38383811

RESUMEN

To increase the effectiveness of methicillin-resistant Staphylococcus aureus vaccines (MRSA), a new generation of immune system stimulating adjuvants is necessary, along with other adjuvants. In some vaccines, monophosphoryl lipid A (MPLA) as a toll-like receptor 4 agonist is currently used as an adjuvant or co-adjuvant. MPLA could increase the immune response and vaccine immunogenicity. The current investigation assessed the immunogenicity and anti-MRSA efficacy of recombinant autolysin formulated in MPLA and Alum as co-adjuvant/adjuvant. r-Autolysin was expressed and purified by Ni-NTA affinity chromatography and characterized by SDS-PAGE. Then, the vaccine candidate formulation in MPLAs and Alum was prepared. To investigate the immunogenic responses, total IgG, isotype (IgG1 and IgG2a) levels, and cytokines (IL-4, IL-12, TNF-α, and IFN-γ) profiles were evaluated by ELISA. Also, the bacterial burden in internal organs, opsonophagocytosis, survival rate, and pathobiology changes was compared among the groups. Results demonstrated that mice immunized with the r-Autolysin + Alum + MPLA Synthetic and r-Autolysin + Alum + MPLA Biologic led to increased levels of opsonic antibodies, IgG1, IgG2a isotype as well as increased levels of cytokines profiles, as compared with other experimental groups. More importantly, mice immunized with MPLA and r-Autolysin exhibited a decrease in mortality and bacterial burden, as compared with the control group. The highest level of survival was seen in the r-Autolysin + Alum + MPLA Synthetic group. We concluded that both MPLA forms, synthetic and biological, are reliable candidates for immune response improvement against MRSA infection.


Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Antibacterianos , Modelos Animales de Enfermedad , Inmunoglobulina G , Lípido A , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Vacunas Estafilocócicas , Animales , Lípido A/análogos & derivados , Lípido A/inmunología , Lípido A/administración & dosificación , Lípido A/farmacología , Ratones , Staphylococcus aureus Resistente a Meticilina/inmunología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/prevención & control , Vacunas Estafilocócicas/inmunología , Vacunas Estafilocócicas/administración & dosificación , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Femenino , Citocinas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/inmunología , Desarrollo de Vacunas , Compuestos de Alumbre/administración & dosificación , Ratones Endogámicos BALB C , Adyuvantes de Vacunas , Humanos
17.
Mol Biol Cell ; 35(4): ar55, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381561

RESUMEN

The bacterial cell wall is a meshwork of crosslinked peptidoglycan strands, with a thickness of up to 50 nm in Firmicutes. Little is known about how proteins move through the cell wall to find sites of enzymatic activity. Cell wall synthesis for cell elongation involves the integration of new peptidoglycan strands by integral membrane proteins, as well as the degradation of existing strands by so-called autolysins, soluble proteins that are secreted through the cell membrane. Autolysins comprise different classes of proteases and glucanases and mostly contain cell-wall binding domains in addition to their catalytic domain. We have studied dynamics of Bacillus subtilis autolysins LytC, a major endopeptidase required for lateral cell wall growth, and LytF, a peptidase acting at the newly formed division site in order to achieve separation of daughter cells. We show that both proteins, fused to moxVenus are present as three distinct populations of different diffusion constants. The fastest population is compatible with free diffusion in a crowded liquid environment, that is similar to that of cytosolic enzymes, likely reflecting autolysins diffusing through the periplasm. The medium mobile fraction can be explained by constrained motion through a polymeric substance, indicating mobility of autolysins through the wall similar to that of DNA-binding proteins within the nucleoid. The slow-mobile fraction are most likely autolysins bound to their specific substrate sites. We show that LytF is more static during exponential phase, while LytC appears to be more active during the transition to stationary phase. Both autolysins became more static in backgrounds lacking redundant other autolysins, suggesting stochastic competition for binding sites. On the other hand, lack of inhibitor IseA or autolysin CwlS lead to an altered preference for polar localization of LytF within the cell wall, revealing that inhibitors and autolysins also affect each other's pattern of localization, in addition to their activity.


Asunto(s)
Proteínas Portadoras , N-Acetil Muramoil-L-Alanina Amidasa , N-Acetil Muramoil-L-Alanina Amidasa/análisis , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Proteínas Portadoras/metabolismo , Bacillus subtilis/metabolismo , Peptidoglicano/análisis , Peptidoglicano/metabolismo , Pared Celular/metabolismo , Endopeptidasas/metabolismo , Proteínas Bacterianas/metabolismo
18.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397110

RESUMEN

Various chimeric lysins have been developed as efficacious antibiotics against multidrug-resistant bacteria, but direct comparisons of their antibacterial activities have been difficult due to the preparation of multiple recombinant chimeric lysins. Previously, we reported an Escherichia coli cell-free expression method to better screen chimeric lysins against Staphylococcus aureus, but we still needed to increase the amounts of expressed proteins enough to be able to detect them non-isotopically for quantity comparisons. In this study, we improved the previous cell-free expression system by adding a previously reported artificial T7 terminator and reversing the different nucleotides between the T7 promoter and start codon to those of the T7 phage. The new method increased the expressed amount of chimeric lysins enough for us to detect them using Western blotting. Therefore, the qualitative comparison of activity between different chimeric lysins has become possible via the adjustment of the number of variables between samples without protein purification. We applied this method to select more active chimeric lysins derived from our previously reported chimeric lysin (ALS2). Finally, we compared the antibacterial activities of our selected chimeric lysins with reported chimeric lysins (ClyC and ClyO) and lysostaphin and determined the rank orders of antibacterial activities on different Staphylococcus aureus strains in our experimental conditions.


Asunto(s)
Antibacterianos , Bacteriófagos , Antibacterianos/farmacología , Staphylococcus aureus/metabolismo , Lisostafina , N-Acetil Muramoil-L-Alanina Amidasa , Bacteriófagos/metabolismo
19.
Atherosclerosis ; 389: 117436, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277990

RESUMEN

BACKGROUNDS AND AIMS: The role of inflammation in driving atherosclerosis is well-established. It exerts systemic effects beyond the local site of plaque formation. In the context of coronary artery disease (CAD), the proteins that show altered levels in the plasma, are potentially important for understanding the key regulatory mechanism in the pathogenesis of atherosclerosis. A case-control study revealed that plasma soluble Peptidoglycan Recognition Protein 2 (PGLYRP2) primarily produced by the liver, is increased in subjects with CAD. Furthermore, the concentration of PGLYRP2 in the blood correlates with the severity of coronary artery disease. Thus, it raises interest in understanding the exact role of the protein in aortic inflammation and plaque progression. METHODS: We evaluated the plasma concentration of PGLYRP2 in three distinct groups: patients with CAD (N = 68), asymptomatic individuals (N = 34), and healthy volunteers (N = 20). Furthermore, we investigated the correlation between disease severity and PGLYRP2 levels in CAD patients. To identify potential binding partners of PGLYRP2, we employed computational analysis. We verified the PGLYRP2-NOD2 interaction in macrophage cells and elucidated the inflammatory pathways activated by PGLYRP2 within these cells. To assess the impact of PGLYRP2, we examined its effects in the atherosclerotic mice model (ApoE-/-). RESULTS: In this study, we report for the first time that Nucleotide-binding Oligomerization domain 2 (NOD2) which is expressed on the surface of macrophages, is a receptor of PGLYRP2. The N-terminal domain of PGLYRP2 directly binds to NOD2 and activates the NOD2-RIP2-NFκB cascade that promotes the secretion of proinflammatory cytokines like TNFα, IL1ß, and IL-8. In the atherosclerotic mice model (ApoE-/-) we demonstrate that elevated PGLYRP2 level is parallel with increased proinflammatory cytokines in the plasma when fed a High Cholesterol Diet (HCD). Immunohistochemical analysis reveals that PGLYRP2 is co-localized with NOD2 on the macrophages at the site of the lesion. CONCLUSIONS: Taken together, our data demonstrate that NOD2 acts as a receptor of PGLYRP2 on macrophages, which mediates the activation of the NOD2-RIP2-NFκB pathway and promotes inflammation, thus significantly contributing to the development and progression of atherosclerosis.


Asunto(s)
Proteínas Portadoras , Enfermedad de la Arteria Coronaria , N-Acetil Muramoil-L-Alanina Amidasa , Animales , Humanos , Ratones , Apolipoproteínas E/metabolismo , Aterosclerosis/patología , Proteínas Portadoras/metabolismo , Estudios de Casos y Controles , Citocinas/metabolismo , Inflamación/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo
20.
mBio ; 15(2): e0254023, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38275913

RESUMEN

Bacterial infections are a growing global healthcare concern, as an estimated annual 4.95 million deaths are associated with antimicrobial resistance (AMR). Methicillin-resistant Staphylococcus aureus is one of the deadliest pathogens and a high-priority pathogen according to the World Health Organization. Peptidoglycan hydrolases (PGHs) of phage origin have been postulated as a new class of antimicrobials for the treatment of bacterial infections, with a novel mechanism of action and no known resistances. The modular architecture of PGHs permits the creation of chimeric PGH libraries. In this study, the chimeric enzyme MEndoB was selected from a library of staphylococcal PGHs based on its rapid and sustained activity against staphylococci in human serum. The benefit of the presented screening approach was illustrated by the superiority of MEndoB in a head-to-head comparison with other PGHs intended for use against staphylococcal bacteremia. MEndoB displayed synergy with antibiotics and rapid killing in human whole blood with complete inhibition of re-growth over 24 h at low doses. Successful treatment of S. aureus-infected zebrafish larvae with MEndoB provided evidence for its in vivo effectiveness. This was further confirmed in a lethal systemic mouse infection model in which MEndoB significantly reduced S. aureus loads and tumor necrosis factor alpha levels in blood in a dose-dependent manner, which led to increased survival of the animals. Thus, the thorough lead candidate selection of MEndoB resulted in an outstanding second-generation PGH with in vitro, ex vivo, and in vivo results supporting further development.IMPORTANCEOne of the most pressing challenges of our era is the rising occurrence of bacteria that are resistant to antibiotics. Staphylococci are prominent pathogens in humans, which have developed multiple strategies to evade the effects of antibiotics. Infections caused by these bacteria have resulted in a high burden on the health care system and a significant loss of lives. In this study, we have successfully engineered lytic enzymes that exhibit an extraordinary ability to eradicate staphylococci. Our findings substantiate the importance of meticulous lead candidate selection to identify therapeutically promising peptidoglycan hydrolases with unprecedented activity. Hence, they offer a promising new avenue for treating staphylococcal infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Sepsis , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Staphylococcus aureus , Peptidoglicano , Pez Cebra , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Staphylococcus , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/uso terapéutico , Sepsis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA