Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.047
Filtrar
1.
Nat Commun ; 15(1): 5597, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961064

RESUMEN

Cyclin-dependent kinases 4 and 6 (CDK4/6) play a pivotal role in cell cycle and cancer development. Targeting CDK4/6 has demonstrated promising effects against breast cancer. However, resistance to CDK4/6 inhibitors (CDK4/6i), such as palbociclib, remains a substantial challenge in clinical settings. Using high-throughput combinatorial drug screening and genomic sequencing, we find that the microphthalmia-associated transcription factor (MITF) is activated via O-GlcNAcylation by O-GlcNAc transferase (OGT) in palbociclib-resistant breast cancer cells and tumors. Mechanistically, O-GlcNAcylation of MITF at Serine 49 enhances its interaction with importin α/ß, thus promoting its translocation to nuclei, where it suppresses palbociclib-induced senescence. Inhibition of MITF or its O-GlcNAcylation re-sensitizes resistant cells to palbociclib. Moreover, clinical studies confirm the activation of MITF in tumors from patients who are palbociclib-resistant or undergoing palbociclib treatment. Collectively, our studies shed light on the mechanism regulating palbociclib resistance and present clinical evidence for developing therapeutic approaches to treat CDK4/6i-resistant breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Resistencia a Antineoplásicos , Factor de Transcripción Asociado a Microftalmía , N-Acetilglucosaminiltransferasas , Piperazinas , Piridinas , Humanos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Femenino , Resistencia a Antineoplásicos/efectos de los fármacos , Piperazinas/farmacología , Piridinas/farmacología , Línea Celular Tumoral , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , Animales , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
BMC Gastroenterol ; 24(1): 202, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886669

RESUMEN

BACKGROUND: B3GNT7, a glycosyltransferase of significant importance that is highly expressed in intestinal epithelial cells, plays a pivotal role in intestinal physiological processes. This study elucidates novel insights into the potential role and underlying mechanisms of B3GNT7 in ulcerative colitis (UC). METHODS: An experimental colitis model was induced using DSS in mice to investigate B3GNT7 expression in the colon via transcriptomics and immunohistochemistry. Bioinformatics analysis was employed to delineate the biological functions of B3GNT7. Additionally, the correlation between the transcription levels of B3GNT7 in colonic tissues from patients with UC, sourced from the IBDMDB database, and the severity of colonic inflammation was analyzed to elucidate potential mechanisms. RESULTS: The DSS-induced colitis model was successfully established, and transcriptomic analysis identified a marked downregulation of B3GNT7 expression in the colonic tissues compared to the controls. Functional enrichment analysis indicated B3GNT7's predominant role in mucin O-glycosylation. Protein interaction analysis revealed that B3GNT7 predominantly interacts with members of the mucin MUC family, including MUC2, MUC3, and MUC6. In patients with UC, B3GNT7 transcription levels were significantly reduced, particularly in those with moderate to severe disease activity. The expression level of B3GNT7 exhibited a negative correlation with the endoscopic severity of UC. Gene set enrichment analysis (GSEA) further demonstrated significant enrichment of B3GNT7 in the mucin O-glycosylation synthesis pathway. CONCLUSION: The downregulation of B3GNT7 expression in the colonic tissues of UC patients may contribute to the compromised mucin barrier function and the exacerbation of colitis.


Asunto(s)
Colitis Ulcerosa , Modelos Animales de Enfermedad , Mucinas , Animales , Humanos , Masculino , Ratones , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Colon/metabolismo , Colon/patología , Sulfato de Dextran , Regulación hacia Abajo , Glicosilación , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Mucinas/metabolismo , Mucinas/genética , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética
3.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892474

RESUMEN

Diabetic retinopathy (DR) is a very serious diabetes complication. Changes in the O-linked N-acetylglucosamine (O-GlcNAc) modification are associated with many diseases. However, its role in DR is not fully understood. In this research, we explored the effect of O-GlcNAc modification regulation by activating AMP-activated protein kinase (AMPK) in DR, providing some evidence for clinical DR treatment in the future. Bioinformatics was used to make predictions from the database, which were validated using the serum samples of diabetic patients. As an in vivo model, diabetic mice were induced using streptozotocin (STZ) injection with/without an AMPK agonist (metformin) or an AMPK inhibitor (compound C) treatment. Electroretinogram (ERG) and H&E staining were used to evaluate the retinal functional and morphological changes. In vitro, 661 w cells were exposed to high-glucose conditions, with or without metformin treatment. Apoptosis was evaluated using TUNEL staining. The protein expression was detected using Western blot and immunofluorescence staining. The angiogenesis ability was detected using a tube formation assay. The levels of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in the serum changed in the DR patients in the clinic. In the diabetic mice, the ERG wave amplitude and retinal thickness decreased. In vitro, the apoptotic cell percentage and Bax expression were increased, and Bcl2 expression was decreased in the 661 w cells under high-glucose conditions. The O-GlcNAc modification was increased in DR. In addition, the expression of GFAT/TXNIP O-GlcNAc was also increased in the 661 w cells after the high-glucose treatment. Additionally, the Co-immunoprecipitation(CO-IP) results show that TXNIP interacted with the O-GlcNAc modification. However, AMPK activation ameliorated this effect. We also found that silencing the AMPKα1 subunit reversed this process. In addition, the conditioned medium of the 661 w cells may have affected the tube formation in vitro. Taken together, O-GlcNAc modification was increased in DR with photoreceptor cell degeneration and neovascularization; however, it was reversed after activating AMPK. The underlying mechanism is linked to the GFAT/TXNIP-O-GlcNAc modification signaling axis. Therefore, the AMPKα1 subunit plays a vital role in the process.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Acetilglucosamina , Diabetes Mellitus Experimental , Retinopatía Diabética , N-Acetilglucosaminiltransferasas , Retinopatía Diabética/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/patología , Animales , Ratones , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Apoptosis/efectos de los fármacos , Metformina/farmacología , beta-N-Acetilhexosaminidasas/metabolismo , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , Retina/metabolismo , Retina/patología , Retina/efectos de los fármacos , Ratones Endogámicos C57BL , Línea Celular
4.
Biochem Biophys Res Commun ; 724: 150198, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852504

RESUMEN

Autophagy is a critical catabolic pathway that enables cells to survive and adapt to stressful conditions, especially nutrient deprivation. The fusion of autophagic vacuoles with lysosomes is the final step of autophagy, which degrades the engulfed contents into metabolic precursors for re-use by the cell. O-GlcNAc transferase (OGT) plays a crucial role in regulating autophagy flux in response to nutrient stress, particularly by targeting key proteins involved in autophagosome-lysosome fusion. However, the role of OGT in basal autophagy, which occurs at a low and constitutive levels under growth conditions, remains poorly understood. Silencing or inhibition of OGT was used to compare the effect of OGT downregulation on autophagy flux in the non-cancerous CCD841CoN and cancerous HCT116 human colon cell lines under nutrient-rich conditions. We provide evidence that the reduction of OGT activity impairs the maturation of autophagosomes, thereby blocking the completion of basal autophagy in both cell lines. Additionally, OGT inhibition results in the accumulation of lysosomes and enlarged late endosomes in the perinuclear region, as demonstrated by confocal imaging. This is associated with a defect in the localization of the small GTPase Rab7 to these organelles. The regulation of transport and fusion events between the endosomal and lysosomal compartments is crucial for maintaining the autophagic flux. These findings suggest an interplay between OGT and the homeostasis of the endolysosomal network in human cells.


Asunto(s)
Autofagia , Regulación hacia Abajo , Endosomas , Lisosomas , N-Acetilglucosaminiltransferasas , Nutrientes , Proteínas de Unión a GTP rab7 , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Endosomas/metabolismo , Lisosomas/metabolismo , Nutrientes/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Colon/metabolismo , Colon/patología , Células HCT116 , Autofagosomas/metabolismo
5.
JCI Insight ; 9(12)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38912584

RESUMEN

The regulated glycosylation of the proteome has widespread effects on biological processes that cancer cells can exploit. Expression of N-acetylglucosaminyltransferase V (encoded by Mgat5 or GnT-V), which catalyzes the addition of ß1,6-linked N-acetylglucosamine to form complex N-glycans, has been linked to tumor growth and metastasis across tumor types. Using a panel of murine pancreatic ductal adenocarcinoma (PDAC) clonal cell lines that recapitulate the immune heterogeneity of PDAC, we found that Mgat5 is required for tumor growth in vivo but not in vitro. Loss of Mgat5 results in tumor clearance that is dependent on T cells and dendritic cells, with NK cells playing an early role. Analysis of extrinsic cell death pathways revealed Mgat5-deficient cells have increased sensitivity to cell death mediated by the TNF superfamily, a property that was shared with other non-PDAC Mgat5-deficient cell lines. Finally, Mgat5 knockout in an immunotherapy-resistant PDAC line significantly decreased tumor growth and increased survival upon immune checkpoint blockade. These findings demonstrate a role for N-glycosylation in regulating the sensitivity of cancer cells to T cell killing through classical cell death pathways.


Asunto(s)
Carcinoma Ductal Pancreático , N-Acetilglucosaminiltransferasas , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glicosilación , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones Noqueados , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo
6.
Sci Rep ; 14(1): 10669, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724577

RESUMEN

Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.


Asunto(s)
Isoflurano , Ketamina , Ratas Wistar , Xilazina , Animales , Masculino , Ratas , Isoflurano/farmacología , Ketamina/farmacología , Xilazina/farmacología , Anestesia , Acetilglucosamina/metabolismo , Procesamiento Proteico-Postraduccional , Encéfalo/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Pulmón/metabolismo , Anestésicos/farmacología , Presión Sanguínea/efectos de los fármacos , Hemodinámica
7.
Toxicol Lett ; 397: 67-78, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734222

RESUMEN

Impairment of the insulin signaling pathway is a key contributor to insulin resistance under arsenic exposure. Specifically, O-GlcNAcylation, an important post-translational modification, plays a crucial role in insulin resistance. Nevertheless, the concrete effect and mechanism of O-GlcNAcylation in arsenic-induced impairment of the insulin signaling pathway remain elusive. Herein, C57BL/6 mice were continuously fed arsenic-containing food, with a total arsenic concentration of 30 mg/kg. We observed that the IRS/Akt/GSK-3ß insulin signaling pathway was impaired, and autophagy was activated in mouse livers and HepG2 cells exposed to arsenic. Additionally, O-GlcNAcylation expression in mouse livers and HepG2 cells was elevated, and the key O-GlcNAcylation homeostasis enzyme, O-GlcNAc transferase (OGT), was upregulated. In vitro, non-targeted metabolomic analysis showed that metabolic disorder was induced, and inhibition of O-GlcNAcylation restored the metabolic profile of HepG2 cells exposed to arsenic. In addition, we found that the compromised insulin signaling pathway was dependent on AMPK activation. Inhibition of AMPK mitigated autophagy activation and impairment of insulin signaling pathway under arsenic exposure. Furthermore, down-regulation of O-GlcNAcylation inhibited AMPK activation, thereby suppressing autophagy activation, and improving the impaired insulin signaling pathway. Collectively, our findings indicate that arsenic can impair the insulin signaling pathway by regulating O-GlcNAcylation homeostasis. Importantly, O-GlcNAcylation inhibition alleviated the impaired insulin signaling pathway by suppressing the AMPK/mTOR-autophagy pathway. This indicates that regulating O-GlcNAcylation may be a potential intervention for the impaired insulin signaling pathway induced by arsenic.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Arsénico , Autofagia , Regulación hacia Abajo , Insulina , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Humanos , Autofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Hep G2 , Serina-Treonina Quinasas TOR/metabolismo , Insulina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Arsénico/toxicidad , Masculino , Resistencia a la Insulina , Ratones , Hígado/efectos de los fármacos , Hígado/metabolismo
8.
Cells ; 13(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38786029

RESUMEN

O-linked-ß-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.


Asunto(s)
Acetilglucosamina , Hepatopatías , N-Acetilglucosaminiltransferasas , Humanos , Hepatopatías/metabolismo , Hepatopatías/patología , Glicosilación , Animales , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo , Hígado/metabolismo , Hígado/patología , Estrés Fisiológico , Procesamiento Proteico-Postraduccional , Transducción de Señal
9.
Virus Genes ; 60(4): 347-356, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38739247

RESUMEN

O-Glycan synthesis enzyme glucosaminyl (N-acetyl) transferase 3 (GCNT3) is closely related to the occurrence and development of various cancers. However, the regulatory mechanism and function of GCNT3 in nasopharyngeal carcinoma (NPC) are still poorly understood. This study aims to explore the regulatory mechanism of EBV-encoded latent membrane protein 2A (LMP2A) on GCNT3 and the biological role of GCNT3 in NPC. The results show that LMP2A can activate GCNT3 through the mTORC1 pathway, and there is a positive feedback between the mTORC1 and GCNT3. GCNT3 regulates EMT progression by forming a complex with ZEB1 to promote cell migration. GCNT3 can also promote cell proliferation. These findings indicate that targeting the LMP2A-mTORC1-GCNT3 axis may represent a novel therapeutic target in NPC.


Asunto(s)
Movimiento Celular , Proliferación Celular , N-Acetilglucosaminiltransferasas , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas de la Matriz Viral , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/virología , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virología , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Regulación Neoplásica de la Expresión Génica , Herpesvirus Humano 4/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Transición Epitelial-Mesenquimal/genética
10.
Proc Natl Acad Sci U S A ; 121(22): e2401729121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768345

RESUMEN

O-GlcNAc transferase (OGT) is an essential mammalian enzyme that glycosylates myriad intracellular proteins and cleaves the transcriptional coregulator Host Cell Factor 1 to regulate cell cycle processes. Via these catalytic activities as well as noncatalytic protein-protein interactions, OGT maintains cell homeostasis. OGT's tetratricopeptide repeat (TPR) domain is important in substrate recognition, but there is little information on how changing the TPR domain impacts its cellular functions. Here, we investigate how altering OGT's TPR domain impacts cell growth after the endogenous enzyme is deleted. We find that disrupting the TPR residues required for OGT dimerization leads to faster cell growth, whereas truncating the TPR domain slows cell growth. We also find that OGT requires eight of its 13 TPRs to sustain cell viability. OGT-8, like the nonviable shorter OGT variants, is mislocalized and has reduced Ser/Thr glycosylation activity; moreover, its interactions with most of wild-type OGT's binding partners are broadly attenuated. Therefore, although OGT's five N-terminal TPRs are not essential for cell viability, they are required for proper subcellular localization and for mediating many of OGT's protein-protein interactions. Because the viable OGT truncation variant we have identified preserves OGT's essential functions, it may facilitate their identification.


Asunto(s)
N-Acetilglucosaminiltransferasas , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Humanos , Repeticiones de Tetratricopéptidos , Glicosilación , Factor C1 de la Célula Huésped/metabolismo , Factor C1 de la Célula Huésped/genética , Células HEK293 , Dominios Proteicos , Proliferación Celular , Supervivencia Celular , Animales , Unión Proteica
11.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732103

RESUMEN

Fatty acid synthesis has been extensively investigated as a therapeutic target in cancers, including colorectal cancer (CRC). Fatty acid synthase (FASN), a key enzyme of de novo lipid synthesis, is significantly upregulated in CRC, and therapeutic approaches of targeting this enzyme are currently being tested in multiple clinical trials. However, the mechanisms behind the pro-oncogenic action of FASN are still not completely understood. Here, for the first time, we show that overexpression of FASN increases the expression of glutamine-fructose-6-phosphate transaminase 1 (GFPT1) and O-linked N-acetylglucosamine transferase (OGT), enzymes involved in hexosamine metabolism, and the level of O-GlcNAcylation in vitro and in vivo. Consistently, expression of FASN significantly correlates with expression of GFPT1 and OGT in human CRC tissues. shRNA-mediated downregulation of GFPT1 and OGT inhibits cellular proliferation and the level of protein O-GlcNAcylation in vitro, and knockdown of GFPT1 leads to a significant decrease in tumor growth and metastasis in vivo. Pharmacological inhibition of GFPT1 and OGT leads to significant inhibition of cellular proliferation and colony formation in CRC cells. In summary, our results show that overexpression of FASN increases the expression of GFPT1 and OGT as well as the level of protein O-GlcNAcylation to promote progression of CRC; targeting the hexosamine biosynthesis pathway could be a therapeutic approach for this disease.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora) , N-Acetilglucosaminiltransferasas , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Glicosilación , Animales , Ratones , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Regulación hacia Arriba , Ratones Desnudos , Acido Graso Sintasa Tipo I
12.
Mol Genet Metab ; 142(2): 108492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759397

RESUMEN

Pathogenic variants in the O-GlcNAc transferase gene (OGT) have been associated with a congenital disorder of glycosylation (OGT-CDG), presenting with intellectual disability which may be of neuroectodermal origin. To test the hypothesis that pathology is linked to defects in differentiation during early embryogenesis, we developed an OGT-CDG induced pluripotent stem cell line together with isogenic control generated by CRISPR/Cas9 gene-editing. Although the OGT-CDG variant leads to a significant decrease in OGT and O-GlcNAcase protein levels, there were no changes in differentiation potential or stemness. However, differentiation into ectoderm resulted in significant differences in O-GlcNAc homeostasis. Further differentiation to neuronal stem cells revealed differences in morphology between patient and control lines, accompanied by disruption of the O-GlcNAc pathway. This suggests a critical role for O-GlcNAcylation in early neuroectoderm architecture, with robust compensatory mechanisms in the earliest stages of stem cell differentiation.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual , N-Acetilglucosaminiltransferasas , Placa Neural , Fenotipo , Humanos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Placa Neural/metabolismo , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Trastornos Congénitos de Glicosilación/metabolismo , Sistemas CRISPR-Cas , Glicosilación , Edición Génica , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología
13.
Cell Commun Signal ; 22(1): 279, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773637

RESUMEN

O-linked N-acetylglucosamine (O-GlcNAc) protein modification (O-GlcNAcylation) is a critical post-translational modification (PTM) of cytoplasmic and nuclear proteins. O-GlcNAcylation levels are regulated by the activity of two enzymes, O-GlcNAc transferase (OGT) and O­GlcNAcase (OGA). While OGT attaches O-GlcNAc to proteins, OGA removes O-GlcNAc from proteins. Since its discovery, researchers have demonstrated O-GlcNAcylation on thousands of proteins implicated in numerous different biological processes. Moreover, dysregulation of O-GlcNAcylation has been associated with several pathologies, including cancers, ischemia-reperfusion injury, and neurodegenerative diseases. In this review, we focus on progress in our understanding of the role of O-GlcNAcylation in bone pathophysiology, and we discuss the potential molecular mechanisms of O-GlcNAcylation modulation of bone-related diseases. In addition, we explore significant advances in the identification of O-GlcNAcylation-related regulators as potential therapeutic targets, providing novel therapeutic strategies for the treatment of bone-related disorders.


Asunto(s)
Acetilglucosamina , N-Acetilglucosaminiltransferasas , Humanos , Animales , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo , Huesos/metabolismo , Procesamiento Proteico-Postraduccional , Enfermedades Óseas/metabolismo
14.
Biochemistry ; 63(12): 1513-1533, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38788673

RESUMEN

Glycogen synthase kinase 3 (GSK3) plays a pivotal role in signaling pathways involved in insulin metabolism and the pathogenesis of neurodegenerative disorders. In particular, the GSK3ß isoform is implicated in Alzheimer's disease (AD) as one of the key kinases involved in the hyperphosphorylation of tau protein, one of the neuropathological hallmarks of AD. As a constitutively active serine/threonine kinase, GSK3 is inactivated by Akt/PKB-mediated phosphorylation of Ser9 in the N-terminal disordered domain, and for most of its substrates, requires priming (prephosphorylation) by another kinase that targets the substrate to a phosphate-specific pocket near the active site. GSK3 has also been shown to be post-translationally modified by O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation), with still unknown functions. Here, we have found that binding of Akt inhibits GSK3ß kinase activity on both primed and unprimed tau substrates. Akt-mediated Ser9 phosphorylation restores the GSK3ß kinase activity only on primed tau, thereby selectively inactivating GSK3ß toward unprimed tau protein. Additionally, we have shown that GSK3ß is highly O-GlcNAcylated at multiple sites within the kinase domain and the disordered N- and C-terminal domains, including Ser9. In contrast to Akt-mediated regulation, neither the O-GlcNAc transferase nor O-GlcNAcylation significantly alters GSK3ß kinase activity, but high O-GlcNAc levels reduce Ser9 phosphorylation by Akt. Reciprocally, Akt phosphorylation downregulates the overall O-GlcNAcylation of GSK3ß, indicating a crosstalk between both post-translational modifications. Our results indicate that specific O-GlcNAc profiles may be involved in the phosphorylation-dependent Akt-mediated regulation of GSK3ß kinase activity.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Proteínas Proto-Oncogénicas c-akt , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Fosforilación , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Procesamiento Proteico-Postraduccional , Glucógeno Sintasa Quinasa 3/metabolismo , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/química , Glicosilación , Animales
15.
J Am Chem Soc ; 146(14): 9779-9789, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38561350

RESUMEN

Protein O-linked ß-N-acetylglucosamine modification (O-GlcNAcylation) plays a crucial role in regulating essential cellular processes. The disruption of the homeostasis of O-GlcNAcylation has been linked to various human diseases, including cancer, diabetes, and neurodegeneration. However, there are limited chemical tools for protein- and site-specific O-GlcNAc modification, rendering the precise study of the O-GlcNAcylation challenging. To address this, we have developed heterobifunctional small molecules, named O-GlcNAcylation TArgeting Chimeras (OGTACs), which enable protein-specific O-GlcNAcylation in living cells. OGTACs promote O-GlcNAcylation of proteins such as BRD4, CK2α, and EZH2 in cellulo by recruiting FKBP12F36V-fused O-GlcNAc transferase (OGT), with temporal, magnitude, and reversible control. Overall, the OGTACs represent a promising approach for inducing protein-specific O-GlcNAcylation, thus enabling functional dissection and offering new directions for O-GlcNAc-targeting therapeutic development.


Asunto(s)
Neoplasias , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Procesamiento Proteico-Postraduccional , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/metabolismo
16.
Cell Death Dis ; 15(4): 287, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654003

RESUMEN

This study aimed to elucidate the role of O-GlcNAc cycling in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD)-like neurodegeneration and the underlying mechanisms. We observed dose-dependent downregulation of O-GlcNAcylation, accompanied by an increase in O-GlcNAcase following 6-OHDA treatment in both mouse brain and Neuro2a cells. Interestingly, elevating O-GlcNAcylation through glucosamine (GlcN) injection provided protection against PD pathogenesis induced by 6-OHDA. At the behavioral level, GlcN mitigated motor deficits induced by 6-OHDA, as determined using the pole, cylinder, and apomorphine rotation tests. Furthermore, GlcN attenuated 6-OHDA-induced neuroinflammation and mitochondrial dysfunction. Notably, augmented O-GlcNAcylation, achieved through O-GlcNAc transferase (OGT) overexpression in mouse brain, conferred protection against 6-OHDA-induced PD pathology, encompassing neuronal cell death, motor deficits, neuroinflammation, and mitochondrial dysfunction. These collective findings suggest that O-GlcNAcylation plays a crucial role in the normal functioning of dopamine neurons. Moreover, enhancing O-GlcNAcylation through genetic and pharmacological means could effectively ameliorate neurodegeneration and motor impairment in an animal model of PD. These results propose a potential strategy for safeguarding against the deterioration of dopamine neurons implicated in PD pathogenesis.


Asunto(s)
Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas , Oxidopamina , Enfermedad de Parkinson , Animales , Oxidopamina/farmacología , Ratones , N-Acetilglucosaminiltransferasas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Masculino , Glucosamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , beta-N-Acetilhexosaminidasas/metabolismo , Modelos Animales de Enfermedad
17.
Leukemia ; 38(5): 1032-1045, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609495

RESUMEN

TNF receptor associated factor 6 (TRAF6) is an E3 ubiquitin ligase that has been implicated in myeloid malignancies. Although altered TRAF6 expression is observed in human acute myeloid leukemia (AML), its role in the AML pathogenesis remains elusive. In this study, we showed that the loss of TRAF6 in AML cells significantly impairs leukemic function in vitro and in vivo, indicating its functional importance in AML subsets. Loss of TRAF6 induces metabolic alterations, such as changes in glycolysis, TCA cycle, and nucleic acid metabolism as well as impaired mitochondrial membrane potential and respiratory capacity. In leukemic cells, TRAF6 expression shows a positive correlation with the expression of O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT), which catalyzes the addition of O-GlcNAc to target proteins involved in metabolic regulation. The restoration of growth capacity and metabolic activity in leukemic cells with TRAF6 loss, achieved through either forced expression of OGT or pharmacological inhibition of O-GlcNAcase (OGA) that removes O-GlcNAc, indicates the significant role of O-GlcNAc modification in the TRAF6-related cellular and metabolic dynamics. Our findings highlight the oncogenic function of TRAF6 in leukemia and illuminate the novel TRAF6/OGT/O-GlcNAc axis as a potential regulator of metabolic reprogramming in leukemogenesis.


Asunto(s)
Progresión de la Enfermedad , Péptidos y Proteínas de Señalización Intracelular , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Animales , Ratones , Factor 6 Asociado a Receptor de TNF/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Glucólisis , Línea Celular Tumoral , Reprogramación Metabólica
18.
Front Immunol ; 15: 1387197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665916

RESUMEN

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary disease that is characterized by an excessive accumulation of extracellular matrix (ECM) proteins (e.g. collagens) in the parenchyma, which ultimately leads to respiratory failure and death. While current therapies exist to slow the progression, no therapies are available to resolve fibrosis. Methods: We characterized the O-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT)/O-GlcNAc axis in IPF using single-cell RNA-sequencing (scRNA-seq) data and human lung sections and isolated fibroblasts from IPF and non-IPF donors. The underlying mechanism(s) of IPF were further investigated using multiple experimental models to modulate collagen expression and accumulation by genetically and pharmacologically targeting OGT. Furthermore, we hone in on the transforming growth factor-beta (TGF-ß) effector molecule, Smad3, by co-expressing it with OGT to determine if it is modified and its subsequent effect on Smad3 activation. Results: We found that OGT and O-GlcNAc levels are upregulated in patients with IPF compared to non-IPF. We report that the OGT regulates collagen deposition and fibrosis resolution, which is an evolutionarily conserved process demonstrated across multiple species. Co-expression of OGT and Smad3 showed that Smad3 is O-GlcNAc modified. Blocking OGT activity resulted in decreased phosphorylation at Ser-423/425 of Smad3 attenuating the effects of TGF-ß1 induced collagen expression/deposition. Conclusion: OGT inhibition or knockdown successfully blocked and reversed collagen expression and accumulation, respectively. Smad3 is discovered to be a substrate of OGT and its O-GlcNAc modification(s) directly affects its phosphorylation state. These data identify OGT as a potential target in pulmonary fibrosis resolution, as well as other diseases that might have aberrant ECM/collagen accumulation.


Asunto(s)
Colágeno , Fibrosis Pulmonar Idiopática , N-Acetilglucosaminiltransferasas , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Colágeno/metabolismo , Animales , Ratones , Proteína smad3/metabolismo , Fibroblastos/metabolismo , Pulmón/patología , Pulmón/metabolismo , Masculino , Células Cultivadas
19.
Cell Rep ; 43(5): 114163, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678556

RESUMEN

Dysregulation of O-GlcNAcylation has emerged as a potential biomarker for several diseases, particularly cancer. The role of OGT (O-GlcNAc transferase) in maintaining O-GlcNAc homeostasis has been extensively studied; nevertheless, the regulation of OGA (O-GlcNAcase) in cancer remains elusive. Here, we demonstrated that the multifunctional protein RBM14 is a regulator of cellular O-GlcNAcylation. By investigating the correlation between elevated O-GlcNAcylation and increased RBM14 expression in lung cancer cells, we discovered that RBM14 promotes ubiquitin-dependent proteasomal degradation of OGA, ultimately mediating cellular O-GlcNAcylation levels. In addition, RBM14 itself is O-GlcNAcylated at serine 521, regulating its interaction with the E3 ligase TRIM33, consequently affecting OGA protein stability. Moreover, we demonstrated that mutation of serine 521 to alanine abrogated the oncogenic properties of RBM14. Collectively, our findings reveal a previously unknown mechanism for the regulation of OGA and suggest a potential therapeutic target for the treatment of cancers with dysregulated O-GlcNAcylation.


Asunto(s)
Estabilidad Proteica , Proteínas de Unión al ARN , Humanos , Acetilglucosamina/metabolismo , Antígenos de Neoplasias , beta-N-Acetilhexosaminidasas/metabolismo , Línea Celular Tumoral , Glicosilación , Células HEK293 , Histona Acetiltransferasas , Hialuronoglucosaminidasa , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , N-Acetilglucosaminiltransferasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo
20.
Dis Model Mech ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38566589

RESUMEN

The addition of O-linked ß-N-acetylglucosamine (O-GlcNAc) to proteins (referred to as O-GlcNAcylation) is a modification that is crucial for vertebrate development. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). Missense variants of OGT have recently been shown to segregate with an X-linked syndromic form of intellectual disability, OGT-linked congenital disorder of glycosylation (OGT-CDG). Although the existence of OGT-CDG suggests that O-GlcNAcylation is crucial for neurodevelopment and/or cognitive function, the underlying pathophysiologic mechanisms remain unknown. Here we report a mouse line that carries a catalytically impaired OGT-CDG variant. These mice show altered O-GlcNAc homeostasis with decreased global O-GlcNAcylation and reduced levels of OGT and OGA in the brain. Phenotypic characterization of the mice revealed lower body weight associated with reduced body fat mass, short stature and microcephaly. This mouse model will serve as an important tool to study genotype-phenotype correlations in OGT-CDG in vivo and for the development of possible treatment avenues for this disorder.


Asunto(s)
Modelos Animales de Enfermedad , Discapacidad Intelectual , N-Acetilglucosaminiltransferasas , Animales , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/deficiencia , Discapacidad Intelectual/genética , Encéfalo/patología , Encéfalo/metabolismo , Fenotipo , Ratones , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/enzimología , beta-N-Acetilhexosaminidasas/metabolismo , Glicosilación , Peso Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA