Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochemistry ; 61(1): 1-9, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34928138

RESUMEN

Cryo-EM structures of the KMT2A/MLL1 core complex bound on nucleosome core particles (NCPs) suggest unusual rotational dynamics of the MLL1 complex approaching its physiological substrate. However, the functional implication of such dynamics remains unclear. Here, we show that the MLL1 core complex also shows high rotational dynamics bound on the NCP carrying the catalytically inert histone H3 lysine 4 to methionine (K4M) mutation. There are two major binding modes of the MLL1 complex on the NCPK4M. Importantly, disruption of only one of the binding modes compromised the overall MLL1 activity in an NCP-specific manner. We propose that the MLL1 core complex probably exists in an equilibrium of poised and active binding modes. The high rotational dynamics of the MLL1 complex on the NCP is a feature that can be exploited for loci-specific regulation of H3K4 methylation in higher eukaryotes.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Nucleosomas/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/ultraestructura , Histonas/metabolismo , Humanos , Metilación , Modelos Moleculares , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/ultraestructura , Unión Proteica , Conformación Proteica
2.
Nature ; 590(7846): 498-503, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33361816

RESUMEN

Histone methyltransferases of the nuclear receptor-binding SET domain protein (NSD) family, including NSD1, NSD2 and NSD3, have crucial roles in chromatin regulation and are implicated in oncogenesis1,2. NSD enzymes exhibit an autoinhibitory state that is relieved by binding to nucleosomes, enabling dimethylation of histone H3 at Lys36 (H3K36)3-7. However, the molecular basis that underlies this mechanism is largely unknown. Here we solve the cryo-electron microscopy structures of NSD2 and NSD3 bound to mononucleosomes. We find that binding of NSD2 and NSD3 to mononucleosomes causes DNA near the linker region to unwrap, which facilitates insertion of the catalytic core between the histone octamer and the unwrapped segment of DNA. A network of DNA- and histone-specific contacts between NSD2 or NSD3 and the nucleosome precisely defines the position of the enzyme on the nucleosome, explaining the specificity of methylation to H3K36. Intermolecular contacts between NSD proteins and nucleosomes are altered by several recurrent cancer-associated mutations in NSD2 and NSD3. NSDs that contain these mutations are catalytically hyperactive in vitro and in cells, and their ectopic expression promotes the proliferation of cancer cells and the growth of xenograft tumours. Together, our research provides molecular insights into the nucleosome-based recognition and histone-modification mechanisms of NSD2 and NSD3, which could lead to strategies for therapeutic targeting of proteins of the NSD family.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Proteínas Represoras/metabolismo , Sitios de Unión , Biocatálisis , Línea Celular Tumoral , Proliferación Celular , Microscopía por Crioelectrón , Xenoinjertos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/ultraestructura , Histonas/ultraestructura , Humanos , Metilación , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Mutación , Trasplante de Neoplasias , Neoplasias/genética , Neoplasias/patología , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Nucleosomas/ultraestructura , Fenotipo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/ultraestructura
3.
J Comput Aided Mol Des ; 34(6): 659-669, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32060676

RESUMEN

In this work, we analyze the structure-activity relationships (SAR) of epigenetic inhibitors (lysine mimetics) against lysine methyltransferase (G9a or EHMT2) using a combined activity landscape, molecular docking and molecular dynamics approach. The study was based on a set of 251 G9a inhibitors with reported experimental activity. The activity landscape analysis rapidly led to the identification of activity cliffs, scaffolds hops and other active an inactive molecules with distinct SAR. Structure-based analysis of activity cliffs, scaffold hops and other selected active and inactive G9a inhibitors by means of docking followed by molecular dynamics simulations led to the identification of interactions with key residues involved in activity against G9a, for instance with ASP 1083, LEU 1086, ASP 1088, TYR 1154 and PHE 1158. The outcome of this work is expected to further advance the development of G9a inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Antígenos de Histocompatibilidad/química , N-Metiltransferasa de Histona-Lisina/química , Relación Estructura-Actividad , Antígenos de Histocompatibilidad/ultraestructura , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/ultraestructura , Humanos , Lisina/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica/efectos de los fármacos , Quinazolinas/química
4.
Nat Commun ; 10(1): 5759, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848333

RESUMEN

PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.


Asunto(s)
Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Sondas Moleculares/farmacología , Cristalografía por Rayos X , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/química , Células HEK293 , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/ultraestructura , Histonas/metabolismo , Humanos , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Sondas Moleculares/química , Dominios Proteicos , S-Adenosilmetionina/metabolismo
5.
Nat Commun ; 10(1): 5540, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804488

RESUMEN

Mixed lineage leukemia (MLL) family histone methyltransferases are enzymes that deposit histone H3 Lys4 (K4) mono-/di-/tri-methylation and regulate gene expression in mammals. Despite extensive structural and biochemical studies, the molecular mechanisms whereby the MLL complexes recognize histone H3K4 within nucleosome core particles (NCPs) remain unclear. Here we report the single-particle cryo-electron microscopy (cryo-EM) structure of the NCP-bound human MLL1 core complex. We show that the MLL1 core complex anchors to the NCP via the conserved RbBP5 and ASH2L, which interact extensively with nucleosomal DNA and the surface close to the N-terminal tail of histone H4. Concurrent interactions of RbBP5 and ASH2L with the NCP uniquely align the catalytic MLL1SET domain at the nucleosome dyad, thereby facilitating symmetrical access to both H3K4 substrates within the NCP. Our study sheds light on how the MLL1 complex engages chromatin and how chromatin binding promotes MLL1 tri-methylation activity.


Asunto(s)
Microscopía por Crioelectrón/métodos , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Nucleosomas/metabolismo , Animales , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/ultraestructura , Humanos , Lisina/metabolismo , Metilación , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/ultraestructura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/ultraestructura , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xenopus laevis
6.
Nucleic Acids Res ; 47(19): 10426-10438, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31544921

RESUMEN

The Mixed Lineage Leukemia protein 1 (MLL1) plays an essential role in the maintenance of the histone H3 lysine 4 (H3K4) methylation status for gene expression during differentiation and development. The methyltransferase activity of MLL1 is regulated by three conserved core subunits, WDR5, RBBP5 and ASH2L. Here, we determined the structure of human RBBP5 and demonstrated its role in the assembly and regulation of the MLL1 complex. We identified an internal interaction between the WD40 propeller and the C-terminal distal region in RBBP5, which assisted the maintenance of the compact conformation of the MLL1 complex. We also discovered a vertebrate-specific motif in the C-terminal distal region of RBBP5 that contributed to nucleosome recognition and methylation of nucleosomes by the MLL1 complex. Our results provide new insights into functional conservation and evolutionary plasticity of the scaffold protein RBBP5 in the regulation of KMT2-family methyltransferase complexes.


Asunto(s)
Proteínas de Unión al ADN/ultraestructura , N-Metiltransferasa de Histona-Lisina/ultraestructura , Complejos Multiproteicos/ultraestructura , Proteína de la Leucemia Mieloide-Linfoide/ultraestructura , Factores de Transcripción/genética , Diferenciación Celular/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Conformación Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/genética , Unión Proteica/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Factores de Transcripción/química
7.
Cell ; 176(6): 1490-1501.e12, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30765112

RESUMEN

Methylation of histone H3 K79 by Dot1L is a hallmark of actively transcribed genes that depends on monoubiquitination of H2B K120 (H2B-Ub) and is an example of histone modification cross-talk that is conserved from yeast to humans. We report here cryo-EM structures of Dot1L bound to ubiquitinated nucleosome that show how H2B-Ub stimulates Dot1L activity and reveal a role for the histone H4 tail in positioning Dot1L. We find that contacts mediated by Dot1L and the H4 tail induce a conformational change in the globular core of histone H3 that reorients K79 from an inaccessible position, thus enabling this side chain to insert into the active site in a position primed for catalysis. Our study provides a comprehensive mechanism of cross-talk between histone ubiquitination and methylation and reveals structural plasticity in histones that makes it possible for histone-modifying enzymes to access residues within the nucleosome core.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Animales , Dominio Catalítico , Cromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/ultraestructura , Histonas/química , Histonas/genética , Humanos , Metilación , Modelos Moleculares , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Receptor Cross-Talk , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación , Xenopus laevis
8.
Proc Natl Acad Sci U S A ; 106(9): 3160-5, 2009 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19208805

RESUMEN

SET domain protein lysine methyltransferases (PKMT) are a structurally unique class of enzymes that catalyze the specific methylation of lysine residues in a number of different substrates. Especially histone-specific SET domain PKMTs have received widespread attention because of their roles in the regulation of epigenetic gene expression and the development of some cancers. Rubisco large subunit methyltransferase (RLSMT) is a chloroplast-localized SET domain PKMT responsible for the formation of trimethyl-lysine-14 in the large subunit of Rubisco, an essential photosynthetic enzyme. Here, we have used cryoelectron microscopy to produce an 11-A density map of the Rubisco-RLSMT complex. The atomic model of the complex, obtained by fitting crystal structures of Rubisco and RLSMT into the density map, shows that the extensive contact regions between the 2 proteins are mainly mediated by hydrophobic residues and leucine-rich repeats. It further provides insights into potential conformational changes that may occur during substrate binding and catalysis. This study presents the first structural analysis of a SET domain PKMT in complex with its intact polypeptide substrate.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Cristalografía por Rayos X , N-Metiltransferasa de Histona-Lisina/ultraestructura , Cinética , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribulosa-Bifosfato Carboxilasa/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA