Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.272
Filtrar
1.
Ecotoxicol Environ Saf ; 281: 116659, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964060

RESUMEN

Chronic Kidney Disease (CKD), closely linked to environmental factors, poses a significant public health challenge. This study, based on 529 triple-repeated measures from key national environmental pollution area and multiple gene-related public databases, employs various epidemiological and bioinformatics models to assess the impact of combined heavy metal exposure (Chromium [Cr], Cadmium [Cd], and Lead [Pb]) on early renal injury and CKD in the elderly. Introducing the novel Enviro-Target Mendelian Randomization method, our research explores the causal relationship between metals and CKD. The findings indicate a positive correlation between increased levels of metal and renal injury, with combined exposure caused renal damage more significantly than individual exposure. The study reveals that metals primarily influence CKD development through oxidative stress and metal ion resistance pathways, focusing on three related genes (SOD2, MPO, NQO1) and a transcription factor (NFE2L2). Metals were found to regulate oxidative stress levels in the body by increasing the expression of SOD2, MPO, NQO1, and decreasing NFE2L2, leading to CKD onset. Our research establishes a new causal inference framework linking environmental pollutants-pathways-genes-CKD, assessing the impact and mechanisms of metal exposure on CKD. Future studies with more extensive in vitro evidence and larger population are needed to validate.


Asunto(s)
Cadmio , Contaminantes Ambientales , Análisis de la Aleatorización Mendeliana , Metales Pesados , Estrés Oxidativo , Insuficiencia Renal Crónica , Humanos , Metales Pesados/toxicidad , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/epidemiología , Estrés Oxidativo/efectos de los fármacos , Anciano , Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Plomo/toxicidad , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , Factor 2 Relacionado con NF-E2/genética , Exposición a Riesgos Ambientales/efectos adversos , Masculino , Femenino , Cromo/toxicidad , Riñón/efectos de los fármacos
2.
J Pathol Clin Res ; 10(4): e12390, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38992928

RESUMEN

Oxidative stress and the immune microenvironment both contribute to the pathogenesis of esophageal squamous cell carcinoma (ESCC). However, their interrelationships remain poorly understood. We aimed to examine the status of key molecules involved in oxidative stress and the immune microenvironment, as well as their relationships with each other and with clinicopathological features and prognosis in ESCC. The expression of programmed death-ligand 1 (PD-L1), CD8, nuclear factor erythroid-2 related factor-2 (NRF2), and NAD(P)H quinone oxidoreductase 1 (NQO1) was detected using immunohistochemistry in tissue samples from 176 patients with ESCC. We employed both combined positive score (CPS) and tumor proportion score (TPS) to evaluate PD-L1 expression and found a positive correlation between CPS and TPS. Notably, PD-L1 expression, as assessed by either CPS or TPS, was positively correlated with both NRF2 nuclear score and NQO1 score in stage II-IV ESCC. We also observed a positive correlation between the density of CD8+ T cells and PD-L1 expression. Furthermore, high levels of PD-L1 CPS, but not TPS, were associated with advanced TNM stage and lymph node metastases. Moreover, both PD-L1 CPS and the nuclear expression of NRF2 were found to be predictive of shorter overall survival in stage II-IV ESCC. By using the Mandard-tumor regression grading (TRG) system to evaluate the pathological response of tumors to neoadjuvant chemotherapy (NACT), we found that the TRG-5 group had higher NRF2 nuclear score, PD-L1 CPS, and TPS in pre-NACT biopsy samples compared with the TRG-3 + 4 group. The NQO1 scores of post-NACT surgical specimens were significantly higher in the TRG-5 group than in the TRG 3 + 4 group. In conclusion, the expression of PD-L1 is associated with aberrant NRF2 signaling pathway, advanced TNM stage, lymph node metastases, and unfavorable prognosis. The dysregulation of PD-L1 and aberrant activation of the NRF2 signaling pathway are implicated in resistance to NACT. Our findings shed light on the complex interrelationships between oxidative stress and the immune microenvironment in ESCC, which may have implications for personalized therapies and improved patient outcomes.


Asunto(s)
Antígeno B7-H1 , Linfocitos T CD8-positivos , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , NAD(P)H Deshidrogenasa (Quinona) , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Microambiente Tumoral , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Antígeno B7-H1/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Masculino , Femenino , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/metabolismo , Persona de Mediana Edad , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/mortalidad , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidad , Anciano , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Adulto , Estadificación de Neoplasias , Linfocitos Infiltrantes de Tumor/patología , Linfocitos Infiltrantes de Tumor/inmunología , Pronóstico , Inmunohistoquímica
3.
Nutrients ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999824

RESUMEN

Parkinson's disease (PD) is a degenerative neurological disorder defined by the deterioration and loss of dopamine-producing neurons in the substantia nigra, leading to a range of motor impairments and non-motor symptoms. The underlying mechanism of this neurodegeneration remains unclear. This research examined the neuroprotective properties of Ecklonia cava polyphenols (ECPs) in mitigating neuronal damage induced by rotenone via the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Using human neuroblastoma SH-SY5Y cells and PD model mice, we found that ECP, rich in the antioxidant polyphenol phlorotannin, boosted the gene expression and functionality of the antioxidant enzyme NAD(P)H quinone oxidoreductase-1. ECP also promoted Nrf2 nuclear translocation and increased p62 expression, suggesting that p62 helps sustain Nrf2 activation via a positive feedback loop. The neuroprotective effect of ECP was significantly reduced by Compound C (CC), an AMP-activated protein kinase (AMPK) inhibitor, which also suppressed Nrf2 nuclear translocation. In PD model mice, ECPs improved motor functions impaired by rotenone, as assessed by the pole test and wire-hanging test, and restored intestinal motor function and colon tissue morphology. Additionally, ECPs increased tyrosine hydroxylase expression in the substantia nigra, indicating a protective effect on dopaminergic neurons. These findings suggest that ECP has a preventative effect on PD.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Enfermedad de Parkinson , Polifenoles , Rotenona , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Polifenoles/farmacología , Humanos , Fármacos Neuroprotectores/farmacología , Ratones , Masculino , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/prevención & control , Enfermedad de Parkinson/tratamiento farmacológico , Elementos de Respuesta Antioxidante/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Línea Celular Tumoral , Antioxidantes/farmacología , Ratones Endogámicos C57BL , Extractos Vegetales/farmacología , NAD(P)H Deshidrogenasa (Quinona)/metabolismo
4.
Mol Genet Genomic Med ; 12(6): e2470, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38860482

RESUMEN

BACKGROUND: Subacute myelo-optico-neuropathy (SMON) is a neurological disorder associated with the administration of clioquinol, particularly at very high doses. Although clioquinol has been used worldwide, there was an outbreak of SMON in the 1950s-1970s in which the majority of cases were in Japan, prompting speculation that the unique genetic background of the Japanese population may have contributed to the development of SMON. Recently, a possible association between loss-of-function polymorphisms in NQO1 and the development of SMON has been reported. In this study, we analyzed the relationship between NQO1 polymorphisms and SMON in Japan. METHODS: We analyzed 125 Japanese patients with SMON. NQO1 loss-of-function polymorphisms (rs1800566, rs10517, rs689452, and rs689456) were evaluated. The allele frequency distribution of each polymorphism was compared between the patients and the healthy Japanese individuals (Human Genomic Variation Database and Integrative Japanese Genome Variation Database), as well as our in-house healthy controls. RESULTS: The frequencies of the loss-of-function NQO1 alleles in patients with SMON and the normal control group did not differ significantly. CONCLUSION: We conclude that known NQO1 polymorphisms are not associated with the development of SMON.


Asunto(s)
NAD(P)H Deshidrogenasa (Quinona) , Polimorfismo de Nucleótido Simple , Humanos , NAD(P)H Deshidrogenasa (Quinona)/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Frecuencia de los Genes , Mutación con Pérdida de Función , Japón
5.
Oncoimmunology ; 13(1): 2363000, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846085

RESUMEN

NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in most solid cancers, emerging as a promising target for tumor-selective killing. ß-Lapachone (ß-Lap), an NQO1 bioactivatable drug, exhibits significant antitumor effects on NQO1-positive cancer cells by inducing immunogenic cell death (ICD) and enhancing tumor immunogenicity. However, the interaction between ß-Lap-mediated antitumor immune responses and neutrophils, novel antigen-presenting cells (APCs), remains unknown. This study demonstrates that ß-Lap selectively kills NQO1-positive murine tumor cells by significantly increasing intracellular ROS formation and inducing DNA double strand breaks (DSBs), resulting in DNA damage. Treatment with ß-Lap efficiently eradicates immunocompetent murine tumors and significantly increases the infiltration of tumor-associated neutrophils (TANs) into the tumor microenvironment (TME), which plays a crucial role in the drug's therapeutic efficacy. Further, the presence of ß-Lap-induced antigen medium leads bone marrow-derived neutrophils (BMNs) to directly kill murine tumor cells, aiding in dendritic cells (DCs) recruitment and significantly enhancing CD8+ T cell proliferation. ß-Lap treatment also drives the polarization of TANs toward an antitumor N1 phenotype, characterized by elevated IFN-ß expression and reduced TGF-ß cytokine expression, along with increased CD95 and CD54 surface markers. ß-Lap treatment also induces N1 TAN-mediated T cell cross-priming. The HMGB1/TLR4/MyD88 signaling cascade influences neutrophil infiltration into ß-Lap-treated tumors. Blocking this cascade or depleting neutrophil infiltration abolishes the antigen-specific T cell response induced by ß-Lap treatment. Overall, this study provides comprehensive insights into the role of tumor-infiltrating neutrophils in the ß-Lap-induced antitumor activity against NQO1-positive murine tumors.


Asunto(s)
NAD(P)H Deshidrogenasa (Quinona) , Naftoquinonas , Neutrófilos , Microambiente Tumoral , Animales , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/inmunología , Ratones , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Ratones Endogámicos C57BL , Línea Celular Tumoral , Infiltración Neutrófila/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Femenino , Fenotipo
6.
Chem Res Toxicol ; 37(6): 1044-1052, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38833663

RESUMEN

The aim of the present study was to evaluate the cardiotoxic effects of alcohol and its potential toxic mechanism on ferroptosis in mice and H9c2 cells. Mice were intragastrically treated with three different concentrations of alcohol, 7, 14, and 28%, each day for 14 days. Body weight and electrocardiography (ECG) were recorded over the 14 day period. Serum creatine kinase (CK), lactic dehydrogenase (LDH), MDA, tissue iron, and GSH levels were measured. Cardiac tissues were examined histologically, and ferroptosis was assessed. In H9c2 cardiomyocytes, cell viability, reactive oxygen species (ROS), labile iron pool (LIP), and mitochondrial membrane potential (MMP) were measured. The proteins of ferroptosis were evaluated by the western blot technique in vivo and in vitro. The results showed that serum CK, LDH, MDA, and tissue iron levels significantly increased in the alcohol treatment group in a dose-dependent manner. The content of GSH decreased after alcohol treatment. ECG and histological examinations showed that alcohol impaired cardiac function and structure. In addition, the levels of ROS and LIP increased, and MMP levels decreased after alcohol treatment. Ferrostatin-1 (Fer-1) protected cells from lipid peroxidation. Western blotting analysis showed that alcohol downregulated the expression of Nrf2, NQO1, HO-1, and GPX4. The expressions of P53 and TfR were upregulated in vivo and in vitro. Fer-1 significantly alleviated alcohol-induced ferroptosis. In conclusion, the study showed that Nrf2/NQO1-dependent ferroptosis played a vital role in the cardiotoxicity induced by alcohol.


Asunto(s)
Cardiotoxicidad , Etanol , Ferroptosis , NAD(P)H Deshidrogenasa (Quinona) , Factor 2 Relacionado con NF-E2 , Animales , Ferroptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Ratones , Cardiotoxicidad/metabolismo , Cardiotoxicidad/etiología , Masculino , Especies Reactivas de Oxígeno/metabolismo , Ratas , Ratones Endogámicos C57BL , Supervivencia Celular/efectos de los fármacos
7.
Free Radic Biol Med ; 221: 181-187, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772511

RESUMEN

Sulforaphane (SFN), found in cruciferous vegetables, is a known activator of NRF2 (master regulator of cellular antioxidant responses). Patients with chronic kidney disease (CKD) present an imbalance in the redox state, presenting reduced expression of NRF2 and increased expression of NF-κB. Therefore, this study aimed to evaluate the effects of SFN on the mRNA expression of NRF2, NF-κB and markers of oxidative stress in patients with CKD. Here, we observed a significant increase in the mRNA expression of NRF2 (p = 0.02) and NQO1 (p = 0.04) in the group that received 400 µg/day of SFN for 1 month. Furthermore, we observed an improvement in the levels of phosphate (p = 0.02), glucose (p = 0.05) and triglycerides (p = 0.02) also in this group. On the other hand, plasma levels of LDL-c (p = 0.04) and total cholesterol (p = 0.03) increased in the placebo group during the study period. In conclusion, 400 µg/day of SFN for one month improves the antioxidant system and serum glucose and phosphate levels in non-dialysis CKD patients.


Asunto(s)
Isotiocianatos , NAD(P)H Deshidrogenasa (Quinona) , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , ARN Mensajero , Insuficiencia Renal Crónica , Sulfóxidos , Humanos , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Masculino , Persona de Mediana Edad , Femenino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Triglicéridos/sangre , Triglicéridos/metabolismo , Glucemia/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Adulto , Anciano , FN-kappa B/metabolismo , FN-kappa B/genética
8.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2316-2325, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812132

RESUMEN

This study aimed to investigate the intervention effect of tetramethylpyrazine(TMP) combined with transplantation of neural stem cells(NSCs) on middle cerebral artery occlusion(MCAO) rat model and to explore the mechanism of TMP combined with NSCs transplantation on ischemic stroke based on the regulation of stem cell biological behavior. MCAO rats were randomly divided into a model group, a TMP group, an NSCs transplantation group, and a TMP combined with NSCs transplantation group according to neurological function scores. A sham group was set up at the same time. The neurological function score was used to evaluate the improvement of neurological function in MCAO rats after TMP combined with NSCs transplantation. The proliferation, migration, and differentiation of NSCs were evaluated by BrdU, BrdU/DCX, BrdU/NeuN, and BrdU/GFAP immunofluorescence labeling. The protein expression of stromal cell-derived factor 1(SDF-1), C-X-C motif chemokine receptor 4(CXCR4), as well as oxidative stress pathway proteins nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(KEAP1), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1) was detected by Western blot to study the migration mechanism of TMP combined with NSCs. The results showed that TMP combined with NSCs transplantation significantly improved the neurological function score in MCAO rats. Immunofluorescence staining showed a significant increase in the number of BrdU~+, BrdU~+/DCX~+, BrdU~+/NeuN~+, and BrdU~+/GFAP~+ cells in the TMP, NSCs transplantation, and combined treatment groups, with the combined treatment group showing the most significant increase. Further Western blot analysis revealed significantly elevated expression of CXCR4 protein in the TMP, NSCs transplantation, and combined treatment groups, along with up-regulated protein expression of Nrf2, HO-1, and NQO1, and decreased KEAP1 protein expression. This study showed that both TMP and NSCs transplantation can promote the recovery of neurological function by promoting the proliferation, migration, and differentiation of NSCs, and the effect of TMP combined with NSCs transplantation is superior. The mechanism of action may be related to the activation of the Nrf2/HO-1/CXCR4 pathway.


Asunto(s)
Isquemia Encefálica , Proteína Doblecortina , Factor 2 Relacionado con NF-E2 , Células-Madre Neurales , Pirazinas , Ratas Sprague-Dawley , Receptores CXCR4 , Animales , Pirazinas/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/trasplante , Células-Madre Neurales/metabolismo , Ratas , Masculino , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Trasplante de Células Madre/métodos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Humanos , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media/terapia , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética
9.
Life Sci ; 349: 122714, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735366

RESUMEN

AIMS: Non-alcoholic fatty liver disease (NAFLD) has risen as a significant global public health issue, for which vertical sleeve gastrectomy (VSG) has become an effective treatment method. The study sought to elucidate the processes through which PIM1 mitigates the advancement of NAFLD. The Pro-viral integration site for Moloney murine leukemia virus 1 (PIM1) functions as a serine/threonine kinase. Bioinformatics analysis revealed that reduced PIM1 expression in NAFLD. METHODS: To further prove the role of PIM1 in NAFLD, an in-depth in vivo experiment was performed, in which male C57BL/6 mice were randomly grouped to receive a normal or high-fat diet for 24 weeks. They were operated or delivered the loaded adeno-associated virus which the PIM1 was overexpressed (AAV-PIM1). In an in vitro experiment, AML12 cells were treated with palmitic acid to induce hepatic steatosis. KEY FINDINGS: The results revealed that the VSG surgery and virus delivery of mice alleviated oxidative stress, and apoptosis in vivo. For AML12 cells, the levels of oxidative stress, apoptosis, and lipid metabolism were reduced via PIM1 upregulation. Moreover, ML385 treatment resulted in the downregulation of the NRF2/HO-1/NQO1 signaling cascade, indicating that PIM1 mitigates NAFLD by targeting this pathway. SIGNIFICANCE: PIM1 alleviated mice liver oxidative stress and NAFLD induced by high-fat diet by regulating the NRF2/HO-1/NQO1 signaling Pathway.


Asunto(s)
Hemo-Oxigenasa 1 , Ratones Endogámicos C57BL , NAD(P)H Deshidrogenasa (Quinona) , Factor 2 Relacionado con NF-E2 , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-pim-1 , Animales , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Masculino , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Hemo-Oxigenasa 1/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Hígado/patología , Transducción de Señal , Apoptosis , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
10.
Sci Rep ; 14(1): 10696, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730068

RESUMEN

COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.


Asunto(s)
Antiinflamatorios , Antioxidantes , Antivirales , Tratamiento Farmacológico de COVID-19 , Curcumina , SARS-CoV-2 , Humanos , Curcumina/farmacología , Curcumina/análogos & derivados , Antioxidantes/farmacología , Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Antiinflamatorios/farmacología , Línea Celular Tumoral , Curcuma/química , Serina Endopeptidasas/metabolismo , COVID-19/virología , COVID-19/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/farmacología , Citocinas/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/virología
11.
Talanta ; 274: 126018, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593645

RESUMEN

Colorectum cancer has become one of the most fatal cancer diseases, in which NAD(P)H: quinone oxidoreductase 1 (NQO1) plays a role in intracellular free radical reduction and detoxification and has been linked to colorectum cancer and chemotherapy resistance. Therefore, rational design of optical probe for NQO1 detection is urgent for the early diagnosis of colorectum cancer. Herein, we have developed a novel two-photon fluorescent probe, WHFD, which is capable of selectively detecting of intracellular NQO1 with two-photon (TP) absorption (800 nm) and near-infrared emission (620 nm). Combination with a substantial Stokes shift (175 nm) and biocompatibility, we have assessed its suitability for in vivo imaging of endogenous NQO1 activities from HepG2 tumor-bearing live animals with high tissue penetration up to 300 µm. Particularly, we for the first time used the probe to image NQO1 activities from human colorectum cancer samples by using TP microscopy, and proving our probe possesses reliable diagnostic performance to directly in situ imaging of cancer biomarker and can clearly distinguish the boundary between human colorectum cancer tissue and their surrounding normal tissue, which shows great potential for the intraoperative navigation.


Asunto(s)
Neoplasias Colorrectales , Colorantes Fluorescentes , NAD(P)H Deshidrogenasa (Quinona) , Fotones , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/análisis , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Animales , Células Hep G2 , Imagen Óptica , Rayos Infrarrojos , Ratones , Ratones Desnudos
12.
J Pharm Pharmacol ; 76(7): 851-860, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38625054

RESUMEN

OBJECTIVES: The study aimed to investigate the protective effects of dexmedetomidine (DEX) on renal injury caused by acute stress in rats and explore the protective pathways of DEX on rat kidneys in terms of oxidative stress. METHODS: An acute restraint stress model was utilized, where rats were restrained for 3 hours after a 15-minute swim. Biochemical tests and histopathological sections were conducted to evaluate renal function, along with the measurement of oxidative stress and related pathway proteins. KEY FINDINGS: The open-field experiments validated the successful establishment of the acute stress model. Acute stress-induced renal injury led to increased NADPH oxidase 4 (NOX4) protein expression and decreased expression levels of nuclear transcription factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO1). Following DEX treatment, there was a significant reduction in renal NOX4 expression. The DEX-treated group exhibited normalized renal biochemical results and less damage observed in pathological sections compared to the acute stress group. CONCLUSIONS: The findings suggest that DEX treatment during acute stress can impact the NOX4/Nrf2/HO-1/NQO1 signaling pathway and inhibit oxidative stress, thereby preventing acute stress-induced kidney injury. Additionally, DEX shows promise for clinical applications in stress syndromes.


Asunto(s)
Antioxidantes , Dexmedetomidina , Riñón , NAD(P)H Deshidrogenasa (Quinona) , NADPH Oxidasa 4 , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Ratas Sprague-Dawley , Transducción de Señal , Animales , NADPH Oxidasa 4/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Dexmedetomidina/farmacología , Estrés Oxidativo/efectos de los fármacos , Masculino , Antioxidantes/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratas , Transducción de Señal/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Hemo-Oxigenasa 1/metabolismo , Modelos Animales de Enfermedad , Hemo Oxigenasa (Desciclizante)
13.
Redox Rep ; 29(1): 2332038, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38563333

RESUMEN

OBJECTIVES: Gentamicin is one of the most common ototoxic drugs that can lower patients' quality of life. Oxidative stress is a key factors inducing sensory hair cell death during gentamicin administration. So far, there are no effective drugs to prevent or treat gentamicin- induced hearing loss. A recent study found cystic fibrosis transmembrane conductance regulator (CFTR) as a new target to modulate cellular oxidative balance. The objective of this study was to estimate the effect of the CFTR activator ivacaftor on gentamicin-induced ototoxicity and determine its mechanism. METHODS: The hair cell count was analyzed by Myosin 7a staining. Apoptosis was analyzed by TUNEL Apoptosis Kit. Cellular reactive oxygen species (ROS) level was detected by DCFH-DA probes. The Nrf2 related proteins expression levels were analyzed by western blot. RESULTS: An in vitro cochlear explant model showed that gentamicin caused ROS accumulation in sensory hair cells and induced apoptosis, and this effect was alleviated by pretreatment with ivacaftor. Western blotting showed that ivacaftor administration markedly increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO1), and NAD(P)H:quinone oxidoreductase 1 (NQO1). The protective effect of ivacaftor was abolished by the Nrf2 inhibitor ML385. DISCUSSION: Our results indicate the protective role of the CFTR-Nrf2-HO1/NQO1 pathway in gentamicin-induced ototoxicity. Ivacaftor may be repositioned or repurposed towards aminoglycosides-induced hearing loss.


Asunto(s)
Aminofenoles , Pérdida Auditiva , Ototoxicidad , Quinolonas , Humanos , Gentamicinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/farmacología , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Calidad de Vida , Estrés Oxidativo , Apoptosis , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/farmacología
14.
Biosci Trends ; 18(2): 153-164, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38599881

RESUMEN

NAD(P)H-quinone oxidoreductase 1 (NQO1) is an essential redox enzyme responsible for redox balance and energy metabolism. Despite of its importance, the brain contains high capacity of polyunsaturated fatty acids and maintains low levels of NQO1 expression. In this study, we examined how levels of NQO1 expression affects cell survival in response to toxic insults causing mitochondrial dysfunction and ferroptosis, and whether NQO1 has a potential as a biomarker in different stressed conditions. Following treatment with rotenone, overexpressed NQO1 in SH-SY5Y cells improved cell survival by reducing mitochondrial reductive stress via increased NAD+ supply without mitochondrial biogenesis. However, NQO1 overexpression boosted lipid peroxidation following treatment with RSL3 and erastin. A lipid droplet staining assay showed increased lipid droplets in cells overexpressing NQO1. In contrast, NQO1 knockdown protected cells against ferroptosis by increasing GPX4, xCT, and the GSH/GSSG system. Also, NQO1 knockdown showed lower iron contents and lipid droplets than non-transfectants and cells overexpressing NQO1, even though it could not attenuate cell death when exposed to rotenone. In summary, our study suggests that different NQO1 levels may have advantages and disadvantages depending on the surrounding environments. Thus, regulating NQO1 expression could be a potential supplementary tool when treating neuronal diseases.


Asunto(s)
Ferroptosis , Mitocondrias , NAD(P)H Deshidrogenasa (Quinona) , Rotenona , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Ferroptosis/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Rotenona/toxicidad , Rotenona/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Piperazinas/farmacología , Carbolinas
15.
Gene ; 919: 148510, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38679184

RESUMEN

BACKGROUND: Genetic background of healthy or pathological styles of aging and human lifespan is determined by joint gene interactions. Lucky combinations of antioxidant gene polymorphisms can result in a highly adaptive phenotype, providing a successful way to interact with external triggers. Our purpose was to identify the polygenic markers of survival and longevity in the antioxidant genes among elderly people with physiological and pathological aging. METHODS: In a 20-year follow-up study of 2350 individuals aged 18-114 years residing in the Volga-Ural region of Russia, sex-adjusted association analyses of MTHFR rs1801133, MSRA rs10098474, PON1 rs662, PON2 rs7493, SOD1 rs2070424, NQO1 rs1131341 and CAT rs1001179 polymorphic loci with longevity were carried out. Survival analysis was subsequently performed using the established single genes and gene-gene combinations as cofactors. RESULTS: The PON1 rs662*G allele was defined as the main longevity marker in women (OR = 1.44, p = 3E-04 in the log-additive model; HR = 0.77, p = 1.9E-04 in the Cox-survival model). The polymorphisms in the MTHFR, MSRA, PON2, SOD1, and CAT genes had an additive effect on longevity. A strong protective effect of combined MTHFR rs1801133*C, MSRA rs10098474*T, PON1 rs662*G, and PON2 rs7493*C alleles against mortality was obtained in women (HR = 0.81, p = 5E-03). The PON1 rs662*A allele had a meaningful impact on mortality for both long-lived men with cerebrovascular accidents (HR = 1.76, p = 0.027 for the PON1 rs662*AG genotype) and women with cardiovascular diseases (HR = 1.43, p = 0.002 for PON1 rs662*AA genotype). The MTHFR rs1801133*TT (HR = 1.91, p = 0.036), CAT rs1001179*TT (HR = 2.83, p = 0.031) and SOD1 rs2070424*AG (HR = 1.58, p = 0.018) genotypes were associated with the cancer mortality. CONCLUSION: In our longitudinal 20-year study, we found the combinations of functional polymorphisms in antioxidant genes involved in longevity and survival in certain clinical phenotypes in the advanced age.


Asunto(s)
Arildialquilfosfatasa , Longevidad , Metilenotetrahidrofolato Reductasa (NADPH2) , NAD(P)H Deshidrogenasa (Quinona) , Polimorfismo de Nucleótido Simple , Superóxido Dismutasa-1 , Humanos , Femenino , Masculino , Arildialquilfosfatasa/genética , Longevidad/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , Estudios de Seguimiento , Adulto , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Persona de Mediana Edad , Adolescente , Anciano , Superóxido Dismutasa-1/genética , Catalasa/genética , Anciano de 80 o más Años , Federación de Rusia , Adulto Joven , Antioxidantes/metabolismo
16.
Toxicon ; 243: 107709, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38615996

RESUMEN

Deoxynivalenol is a widespread feed contaminant that leads to vomit, which results in serious symptom such as increased intestinal permeability and even intestinal mucosal necrosis. Recent studies have reported the role of quercetin in alleviating deoxynivalenol-induced intestinal injury; however, the mechanisms and targets remain unclear. Thus, we aimed to identify the mechanisms of action by using a combination of network pharmacology and molecular docking. We identified 151 quercetin targets, 235 deoxynivalenol targets and 47 porcine intestinal injury targets by searching compound database and PubMed database, among which there were two common targets. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The PPI network showed that the key proteins involved were NQO1 and PPARG. GO analysis found that genes were enriched primarily in response to oxidative stress. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The genes are enriched primarily in response to oxidative stress. KEGG analysis showed enrichment of the HIF, reactive oxygen species and other signaling pathways. The molecular docking results indicated key binding activity between NQO1-quercetin and PPAR-γ-quercetin. By using network pharmacology, we have revealed the potential molecular mechanisms by which quercetin alleviates deoxynivalenol-induced porcine intestinal injury, which lays the foundation for the development of drugs to treat deoxynivalenol-induced intestinal injury in pigs.


Asunto(s)
Simulación del Acoplamiento Molecular , Farmacología en Red , PPAR gamma , Quercetina , Tricotecenos , Quercetina/farmacología , Animales , Tricotecenos/toxicidad , Porcinos , PPAR gamma/metabolismo , Estrés Oxidativo/efectos de los fármacos , Intestinos/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo
17.
Anticancer Res ; 44(5): 1915-1924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677747

RESUMEN

BACKGROUND/AIM: NAD(P)H dehydrogenase [quinone] 1 (NQO1), an antioxidant enzyme, confers resistance to anticancer agents. NQO1 C609T is a single-nucleotide polymorphism associated with reduced protein expression in the non-neoplastic esophageal squamous epithelium (ESE). This study aimed to investigate immunohistochemical NQO1 expression in non-neoplastic ESE and to elucidate its prognostic significance in patients with esophageal squamous cell carcinoma (ESCC) undergoing neoadjuvant therapy followed by esophagectomy. MATERIALS AND METHODS: NQO1 expression in non-neoplastic ESE was determined in surgical specimens from 83 patients with ESCC using immunohistochemistry. The association between NQO1 expression and clinicopathological factors, and the prognostic significance of NQO1 expression for relapse-free survival (RFS) were statistically evaluated. RESULTS: Patients with complete loss or weak NQO1 expression and patients with moderate or strong NQO1 expression were classified into the NQO1-negative (n=29) and NQO1-positive (n=54) groups, respectively. The downstaging of T classification status after neoadjuvant therapy was significantly more frequent in the NQO1-negative group than in the NQO1-positive group (59% vs. 33%; p=0.036). The NQO1-negative group had significantly more favorable RFS than the NQO1-positive group (p=0.035). Multivariate survival analysis demonstrated that NQO1 negative expression had a favorable prognostic impact on RFS (HR=0.332; 95%CI=0.136-0.812; p=0.016). CONCLUSION: Immunohistochemical evaluation of NQO1 expression in non-neoplastic ESE has clinical utility for predicting patient prognosis after neoadjuvant therapy followed by esophagectomy and might be helpful for selecting candidates for adjuvant therapy to treat ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , NAD(P)H Deshidrogenasa (Quinona) , Humanos , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidad , Femenino , Masculino , Persona de Mediana Edad , Pronóstico , Anciano , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Esofagectomía , Terapia Neoadyuvante , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Adulto , Inmunohistoquímica , Supervivencia sin Enfermedad , Anciano de 80 o más Años
18.
Eur J Pharmacol ; 973: 176511, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604545

RESUMEN

Lung cancer is one of the most lethal cancers with high incidence worldwide. The prevention of lung cancer is of great significance to reducing the social harm caused by this disease. An in-depth understanding of the molecular changes underlying precancerous lesions is essential for the targeted chemoprevention against lung cancer. Here, we discovered an increased NQO1 level over time within pulmonary premalignant lesions in both the KrasG12D-driven and nicotine-derived nitrosamine ketone (NNK)-induced mouse models of lung cancer, as well as in KrasG12D-driven and NNK-induced malignant transformed human bronchial epithelial cells (BEAS-2B and 16HBE). This suggests a potential correlation between the NQO1 expression and lung carcinogenesis. Based on this finding, we utilized ß-Lapachone (ß-Lap), an NQO1 bioactivatable drug, to suppress lung tumorigenesis. In this study, the efficacy and safety of low-dose ß-Lap were demonstrated in preventing lung tumorigenesis in vivo. In conclusion, our study suggests that long-term consumption of low-dose ß-Lap could potentially be an effective therapeutic strategy for the prevention of lung premalignant lesions. However, further studies and clinical trials are necessary to validate our findings, determine the safety of long-term ß-Lap usage in humans, and promote the use of ß-Lap in high-risk populations.


Asunto(s)
Neoplasias Pulmonares , NAD(P)H Deshidrogenasa (Quinona) , Naftoquinonas , Animales , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/metabolismo , Humanos , Ratones , Carcinogénesis/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , Femenino , Línea Celular
19.
Redox Biol ; 72: 103130, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522110

RESUMEN

Redox-responsive hydropersulfide prodrugs are designed to enable a more controllable and efficient hydropersulfide (RSSH) supply and to thoroughly explore their biological and therapeutic applications in oxidative damage. To obtain novel activation patterns triggered by redox signaling, we focused on NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1), a canonical antioxidant enzyme, and designed NQO1-activated RSSH prodrugs. We also performed a head-to-head comparison of two mainstream structural scaffolds with solid quantitative analysis of prodrugs, RSSH, and metabolic by-products by LC-MS/MS, confirming that the perthiocarbamate scaffold was more effective in intracellular prodrug uptake and RSSH production. The prodrug was highly potent in oxidative stress management against cisplatin-induced nephrotoxicity. Strikingly, this prodrug possessed potential feedback activation properties by which the delivered RSSH can further escalate the prodrug activation via NQO1 upregulation. Our strategy pushed RSSH prodrugs one step further in the pursuit of efficient release in biological matrices and improved druggability against oxidative stress.


Asunto(s)
NAD(P)H Deshidrogenasa (Quinona) , Oxidación-Reducción , Estrés Oxidativo , Profármacos , Sulfuros , Profármacos/farmacología , Profármacos/química , Estrés Oxidativo/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Oxidación-Reducción/efectos de los fármacos , Sulfuros/química , Sulfuros/farmacología , Humanos , Animales , Espectrometría de Masas en Tándem , Cisplatino/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Ratones
20.
Protein Sci ; 33(4): e4957, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501509

RESUMEN

The human NQO1 (hNQO1) is a flavin adenine nucleotide (FAD)-dependent oxidoreductase that catalyzes the two-electron reduction of quinones to hydroquinones, being essential for the antioxidant defense system, stabilization of tumor suppressors, and activation of quinone-based chemotherapeutics. Moreover, it is overexpressed in several tumors, which makes it an attractive cancer drug target. To decipher new structural insights into the flavin reductive half-reaction of the catalytic mechanism of hNQO1, we have carried serial crystallography experiments at new ID29 beamline of the ESRF to determine, to the best of our knowledge, the first structure of the hNQO1 in complex with NADH. We have also performed molecular dynamics simulations of free hNQO1 and in complex with NADH. This is the first structural evidence that the hNQO1 functional cooperativity is driven by structural communication between the active sites through long-range propagation of cooperative effects across the hNQO1 structure. Both structural results and MD simulations have supported that the binding of NADH significantly decreases protein dynamics and stabilizes hNQO1 especially at the dimer core and interface. Altogether, these results pave the way for future time-resolved studies, both at x-ray free-electron lasers and synchrotrons, of the dynamics of hNQO1 upon binding to NADH as well as during the FAD cofactor reductive half-reaction. This knowledge will allow us to reveal unprecedented structural information of the relevance of the dynamics during the catalytic function of hNQO1.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Cristalografía , Temperatura , NAD , Antineoplásicos/química , Flavinas , Cristalografía por Rayos X , NAD(P)H Deshidrogenasa (Quinona)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA