Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Int J Oncol ; 65(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38873997

RESUMEN

Non­small cell lung cancer (NSCLC) is one of the major causes of cancer­related death worldwide. Cisplatin is a front­line chemotherapeutic agent in NSCLC. Nevertheless, subsequent harsh side effects and drug resistance limit its further clinical application. Polydatin (PD) induces apoptosis in various cancer cells by generating reactive oxygen species (ROS). However, underlying molecular mechanisms of PD and its effects on cisplatin­mediated antitumor activity in NSCLC remains unknown. MTT, colony formation, wound healing analyses and flow cytometry was employed to investigate the cell phenotypic changes and ROS generation. Relative gene and protein expressions were evaluated by reverse transcription­quantitative PCR and western blot analyses. The antitumor effects of PD, cisplatin and their combination were evaluated by mouse xenograft model. In the present study, it was found that PD in combination with cisplatin synergistically enhances the antitumor activity in NSCLC by stimulating ROS­mediated endoplasmic reticulum stress, and the C­Jun­amino­terminal kinase and p38 mitogen­activated protein kinase signaling pathways. PD treatment elevated ROS generation by promoting expression of NADPH oxidase 5 (NOX5), and NOX5 knockdown attenuated ROS­mediated cytotoxicity of PD in NSCLC cells. Mice xenograft model further confirmed the synergistic antitumor efficacy of combined therapy with PD and cisplatin. The present study exhibited a superior therapeutic strategy for some patients with NSCLC by combining PD and cisplatin.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Sinergismo Farmacológico , Glucósidos , Neoplasias Pulmonares , NADPH Oxidasa 5 , Estrés Oxidativo , Especies Reactivas de Oxígeno , Estilbenos , Ensayos Antitumor por Modelo de Xenoinjerto , Cisplatino/farmacología , Cisplatino/uso terapéutico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Animales , Humanos , Estilbenos/farmacología , Estilbenos/uso terapéutico , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Células A549 , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proliferación Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Masculino
2.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38892326

RESUMEN

The occurrence of ovarian dysfunction is often due to the imbalance between the formation of reactive oxygen species (ROS) and the ineffectiveness of the antioxidative defense mechanisms. Primary sources of ROS are respiratory electron transfer and the activity of NADPH oxidases (NOX) while superoxide dismutases (SOD) are the main key regulators that control the levels of ROS and reactive nitrogen species intra- and extracellularly. Because of their central role SODs are the subject of research on human ovarian dysfunction but sample acquisition is low. The high degree of cellular and molecular similarity between Drosophila melanogaster ovaries and human ovaries provides this model organism with the best conditions for analyzing the role of ROS during ovarian function. In this study we clarify the localization of the ROS-producing enzyme dNox within the ovaries of Drosophila melanogaster and by a tissue-specific knockdown we show that dNox-derived ROS are involved in the chorion hardening process. Furthermore, we analyze the dSod3 localization and show that reduced activity of dSod3 impacts egg-laying behavior but not the chorion hardening process.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Ovario , Especies Reactivas de Oxígeno , Superóxido Dismutasa , Animales , Drosophila melanogaster/genética , Femenino , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ovario/metabolismo , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , Reproducción , NADPH Oxidasa 5/metabolismo , NADPH Oxidasa 5/genética , Oviposición , Corion/metabolismo
3.
Nat Commun ; 15(1): 3994, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734761

RESUMEN

NADPH oxidase 5 (NOX5) catalyzes the production of superoxide free radicals and regulates physiological processes from sperm motility to cardiac rhythm. Overexpression of NOX5 leads to cancers, diabetes, and cardiovascular diseases. NOX5 is activated by intracellular calcium signaling, but the underlying molecular mechanism of which - in particular, how calcium triggers electron transfer from NADPH to FAD - is still unclear. Here we capture motions of full-length human NOX5 upon calcium binding using single-particle cryogenic electron microscopy (cryo-EM). By combining biochemistry, mutagenesis analyses, and molecular dynamics (MD) simulations, we decode the molecular basis of NOX5 activation and electron transfer. We find that calcium binding to the EF-hand domain increases NADPH dynamics, permitting electron transfer between NADPH and FAD and superoxide production. Our structural findings also uncover a zinc-binding motif that is important for NOX5 stability and enzymatic activity, revealing modulation mechanisms of reactive oxygen species (ROS) production.


Asunto(s)
Calcio , Microscopía por Crioelectrón , Simulación de Dinámica Molecular , NADPH Oxidasa 5 , NADP , Humanos , NADPH Oxidasa 5/metabolismo , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/química , Calcio/metabolismo , NADP/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Superóxidos/metabolismo , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Zinc/metabolismo , Transporte de Electrón , Activación Enzimática , Sitios de Unión
4.
J Pharmacol Sci ; 155(2): 52-62, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677786

RESUMEN

The ubiquitin-proteasome system (UPS) is a major proteolytic system that plays an important role in the regulation of various cell processes, such as cell cycle, stress response, and transcriptional regulation, especially in neurons, and dysfunction of UPS is considered to be a cause of neuronal cell death in neurodegenerative diseases. However, the mechanism of neuronal cell death caused by UPS dysfunction has not yet been fully elucidated. In this study, we investigated the mechanism of neuronal cell death induced by proteasome inhibitors using human neuroblastoma SH-SY5Y cells. Z-Leu-D-Leu-Leu-al (MG132), a proteasome inhibitor, induced apoptosis in SH-SY5Y cells in a concentration- and time-dependent manner. Antioxidants N-acetylcysteine and EUK-8 attenuated MG132-induced apoptosis. Apocynin and diphenyleneiodonium, inhibitors of NADPH oxidase (NOX), an enzyme that produces superoxide anions, also attenuated MG132-induced apoptosis. It was also found that MG132 treatment increased the expression of NOX5, a NOX family member, and that siRNA-mediated silencing of NOX5 and BAPTA-AM, which inhibits NOX5 by chelating calcium, suppressed MG132-induced apoptosis and production of reactive oxygen species in SH-SY5Y cells. These results suggest that MG132 induces apoptosis in SH-SY5Y cells through the production of superoxide anion by NOX5.


Asunto(s)
Apoptosis , Leupeptinas , NADPH Oxidasa 5 , NADPH Oxidasas , Neuroblastoma , Inhibidores de Proteasoma , Superóxidos , Humanos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Inhibidores de Proteasoma/farmacología , Superóxidos/metabolismo , Línea Celular Tumoral , Neuroblastoma/patología , Neuroblastoma/metabolismo , Leupeptinas/farmacología , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , Antioxidantes/farmacología , Relación Dosis-Respuesta a Droga , Acetilcisteína/farmacología , Neuronas/metabolismo , Neuronas/efectos de los fármacos
5.
Sci Rep ; 13(1): 17174, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821487

RESUMEN

Members of the NOX/DUOX family of NADPH oxidases are responsible for regulated ROS production in diverse cells and tissues. Detection of NOX/DUOX proteins at the protein level remains an important challenge in the field. Here we report the development and characterization of a novel anti-NOX5 monoclonal antibody, which recognizes the human NOX5 protein in both Western blot, immunocytochemistry, and histochemistry applications. With the help of the antibody we could successfully detect both heterologously and endogenously expressed NOX5 in mammalian cells. Furthermore, we could also detect NOX5 protein in the human spleen, testis, and ovary. Immunohistochemical studies on human testis revealed that NOX5 localized to spermatogenic cells. This expression pattern was also supported by the result of in silico analysis of single-cell RNA sequencing data that indicated that NOX5 protein is present in developing spermatids and spermatocytes. Mature spermatozoa, however, did not contain detectable NOX5. In the human ovary, both immunostaining and single-cell RNA sequencing suggest that NOX5 is expressed in interstitial fibroblasts and theca cells. We also analyzed vascular cells for the presence of NOX5 and we found that NOX5 expression is a fairly specific feature of splenic endothelial cells.


Asunto(s)
Anticuerpos Monoclonales , Proteínas de la Membrana , Animales , Femenino , Humanos , Masculino , NADPH Oxidasa 5 , Proteínas de la Membrana/metabolismo , Células Endoteliales/metabolismo , Bazo/metabolismo , Testículo/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mamíferos/metabolismo
6.
J Physiol Biochem ; 79(4): 787-797, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37566320

RESUMEN

Cardiovascular diseases and the ischemic heart disease specifically constitute the main cause of death worldwide. The ischemic heart disease may lead to myocardial infarction, which in turn triggers numerous mechanisms and pathways involved in cardiac repair and remodeling. Our goal in the present study was to characterize the effect of the NADPH oxidase 5 (NOX5) endothelial expression in healthy and infarcted knock-in mice on diverse signaling pathways. The mechanisms studied in the heart of mice were the redox pathway, metalloproteinases and collagen pathway, signaling factors such as NFκB, AKT or Bcl-2, and adhesion molecules among others. Recent studies support that NOX5 expression in animal models can modify the environment and predisposes organ response to harmful stimuli prior to pathological processes. We found many alterations in the mRNA expression of components involved in cardiac fibrosis as collagen type I or TGF-ß and in key players of cardiac apoptosis such as AKT, Bcl-2, or p53. In the heart of NOX5-expressing mice after chronic myocardial infarction, gene alterations were predominant in the redox pathway (NOX2, NOX4, p22phox, or SOD1), but we also found alterations in VCAM-1 and ß-MHC expression. Our results suggest that NOX5 endothelial expression in mice preconditions the heart, and we propose that NOX5 has a cardioprotective role. The correlation studies performed between echocardiographic parameters and cardiac mRNA expression supported NOX5 protective action.


Asunto(s)
Infarto del Miocardio , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , Especies Reactivas de Oxígeno/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Infarto del Miocardio/genética , ARN Mensajero , Proteínas Proto-Oncogénicas c-bcl-2
7.
Neoplasia ; 39: 100897, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36940556

RESUMEN

Lung cancer is one of the most commonly diagnosed cancers worldwide. Although cisplatin-based chemotherapy regimens serve a pivotal role in non-small cell lung cancer (NSCLC) treatment, drug resistance and serious side effects limited its further clinical application. Regorafenib, a small-molecule multi-kinase inhibitor, was demonstrated to have promising anti-tumor activity in various solid tumors. In the present study, we found that regorafenib markedly enhanced cisplatin-induced cytotoxicity in lung cancer cells by activating reactive oxygen species (ROS)-mediated endoplasmic reticulum stress (ER Stress), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. Regorafenib increased ROS generation by promoting NADPH oxidase 5 (NOX5) expression, and knocking down NOX5 attenuated ROS-mediated cytotoxicity of regorafenib in lung cancer cells. Additionally, mice xenograft model validated that synergistic anti-tumor effects of combined treatment with regorafenib and cisplatin. Our results suggested that combination therapy with regorafenib and cisplatin may serve as a potential therapeutic strategy for some NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cisplatino/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , NADPH Oxidasa 5/farmacología , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Línea Celular Tumoral , Estrés del Retículo Endoplásmico
8.
J Physiol Biochem ; 79(2): 383-395, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905456

RESUMEN

NOX5 is the last member of the NADPH oxidase (NOXs) family to be identified and presents some specific characteristics differing from the rest of the NOXs. It contains four Ca2+ binding domains at the N-terminus and its activity is regulated by the intracellular concentration of Ca2+. NOX5 generates superoxide (O2•-) using NADPH as a substrate, and it modulates functions related to processes in which reactive oxygen species (ROS) are involved. Those functions appear to be detrimental or beneficial depending on the level of ROS produced. For example, the increase in NOX5 activity is related to the development of various oxidative stress-related pathologies such as cancer, cardiovascular, and renal diseases. In this context, pancreatic expression of NOX5 can negatively alter insulin action in high-fat diet-fed transgenic mice. This is consistent with the idea that the expression of NOX5 tends to increase in response to a stimulus or a stressful situation, generally causing a worsening of the pathology. On the other hand, it has also been suggested that it might have a positive role in preparing the body for metabolic stress, for example, by inducing a protective adipose tissue adaptation to the excess of nutrients supplied by a high-fat diet. In this line, its endothelial overexpression can delay lipid accumulation and insulin resistance development in obese transgenic mice by inducing the secretion of IL-6 followed by the expression of thermogenic and lipolytic genes. However, as NOX5 gene is not present in rodents and human NOX5 protein has not been crystallized, its function is still poorly characterized and further extensive research is required.


Asunto(s)
NADPH Oxidasas , Superóxidos , Ratones , Animales , Humanos , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , Especies Reactivas de Oxígeno/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Superóxidos/metabolismo , Ratones Transgénicos
9.
FEBS Lett ; 597(5): 702-713, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36653838

RESUMEN

Six gene splice variants of superoxide-generating NADPH oxidase 5 (Nox5) have been identified in humans, and they differ in the sequence of their N-terminal cytoplasmic domains, which comprise four EF-hand motifs. Here, we demonstrated that the Ca2+ -dependent association and dissociation between the N- and C-terminal cytoplasmic domains of the Nox5ß variant are affected by the alanine substitution of the conserved Ile-113 or Leu-115 at the connecting loop between the third and fourth EF-hand motifs. These substitutions impair the cell surface localization of Nox5ß. In addition, the Nox5ε/S variant, lacking all EF-hand motifs, does not localize to the plasma membrane. Thus, the Ca2+ -sensitive intramolecular interaction determines the Nox5 subcellular localization, that is, whether Nox5 variants generate superoxide in the extracellular or intracellular space.


Asunto(s)
Proteínas de la Membrana , NADPH Oxidasas , Humanos , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , Proteínas de la Membrana/metabolismo , NADPH Oxidasas/metabolismo , Membrana Celular/metabolismo , Superóxidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
Int J Cardiol ; 370: 454-462, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332749

RESUMEN

BACKGROUND: Cardiac injury and inflammation are common findings in COVID-19 patients. Autopsy studies have revealed cardiac microvascular endothelial damage and thrombosis in COVID-19 patients, indicative of microvascular dysfunction in which reactive oxygen species (ROS) may play a role. We explored whether the ROS producing proteins NOX2, NOX4 and NOX5 are involved in COVID-19-induced cardio-microvascular endothelial dysfunction. METHODS: Heart tissue were taken from the left (LV) and right (RV) ventricle of COVID-19 patients (n = 15) and the LV of controls (n = 14) at autopsy. The NOX2-, NOX4-, NOX5- and Nitrotyrosine (NT)-positive intramyocardial blood vessels fractions were quantitatively analyzed using immunohistochemistry. RESULTS: The LV NOX2+, NOX5+ and NT+ blood vessels fractions in COVID-19 patients were significantly higher than in controls. The fraction of NOX4+ blood vessels in COVID-19 patients was comparable with controls. In COVID-19 patients, the fractions of NOX2+, NOX5+ and NT+ vessels did not differ significantly between the LV and RV, and correlated positively between LV and RV in case of NOX5 (r = 0.710; p = 0.006). A negative correlation between NOX5 and NOX2 (r = -0.591; p = 0.029) and between NOX5 and disease time (r = -0.576; p = 0.034) was noted in the LV of COVID-19 patients. CONCLUSION: We show the induction of NOX2 and NOX5 in the cardiac microvascular endothelium in COVID-19 patients, which may contribute to the previously observed cardio-microvascular dysfunction in COVID-19 patients. The exact roles of these NOXes in pathogenesis of COVID-19 however remain to be elucidated.


Asunto(s)
COVID-19 , NADPH Oxidasa 2 , NADPH Oxidasa 5 , Humanos , COVID-19/metabolismo , Endotelio Vascular/metabolismo , Corazón , NADPH Oxidasa 5/metabolismo , Especies Reactivas de Oxígeno/metabolismo , NADPH Oxidasa 2/metabolismo
11.
Sci Rep ; 12(1): 11570, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798762

RESUMEN

Atherosclerosis and its complications are major causes of cardiovascular morbidity and death. Apart from risk factors such as hypercholesterolemia and inflammation, the causal molecular mechanisms are unknown. One proposed causal mechanism involves elevated levels of reactive oxygen species (ROS). Indeed, early expression of the ROS forming NADPH oxidase type 5 (Nox5) in vascular endothelial cells correlates with atherosclerosis and aortic aneurysm. Here we test the pro-atherogenic Nox5 hypothesis using mouse models. Because Nox5 is missing from the mouse genome, a knock-in mouse model expressing human Nox5 in its physiological location of endothelial cells (eNOX5ki/ki) was tested as a possible new humanised mouse atherosclerosis model. However, whether just on a high cholesterol diet or by crossing in aortic atherosclerosis-prone ApoE-/- mice with and without induction of diabetes, Nox5 neither induced on its own nor aggravated aortic atherosclerosis. Surprisingly, however, diabetic ApoE-/- x eNOX5ki/ki mice developed aortic aneurysms more than twice as often correlating with lower vascular collagens, as assessed by trichrome staining, without changes in inflammatory gene expression, suggesting that endothelial Nox5 directly affects extracellular matrix remodelling associated with aneurysm formation in diabetes. Thus Nox5-derived reactive oxygen species are not a new independent mechanism of atherosclerosis but may enhance the frequency of abdominal aortic aneurysms in the context of diabetes. Together with similar clinical findings, our preclinical target validation opens up a first-in-class mechanism-based approach to treat or even prevent abdominal aortic aneurysms.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aterosclerosis , Diabetes Mellitus , NADPH Oxidasa 5 , Animales , Aterosclerosis/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Ratones , Ratones Noqueados para ApoE , NADPH Oxidasa 5/metabolismo , Oxígeno , Especies Reactivas de Oxígeno/metabolismo
12.
Andrologia ; 54(8): e14470, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35679508

RESUMEN

NOX5 is introduced as a new therapeutic target for infertility treatment. This study aimed to compare the basal and stimulated reactive oxygen species (ROS) production and sperm function in human teratozoospermic (n = 15) and normozoospermic (n = 17) semen samples following calcium overload and NOX5 activation. Washed spermatozoa incubated for 1 h under five various conditions: control group, adding a calcium ionophore A23187, phorbol myristate acetate (PMA), A23187 + PMA, and diphenylene iodonium (DPI) + A23187 + PMA. ROS generation was measured immediately after treatment for 30 min. Motility, viability, acrosome reaction, and apoptosis were evaluated after 1-h incubation. ROS production significantly increased when A23187 or PMA was added to the sperm medium. DPI had suppressive effects on ROS generation. Progressive and total motility significantly decreased following calcium elevation and NOX5 activation, which was somewhat returned by DPI. Necrotic and live cells in teratozoospermia was, respectively, higher and lower than normozoospermia samples. Incubation with A23187 significantly increased the percentage of early and late apoptosis. Teratozoosperm are more vulnerable than normal spermatozoa, and produce more basal and stimulated ROS. It seems that calcium overload induces apoptosis in spermatozoa and loss of viability through MPT pore opening and increased intracellular ROS.


Asunto(s)
Calcio , NADPH Oxidasa 5 , Especies Reactivas de Oxígeno , Espermatozoides , Calcimicina/farmacología , Calcio/metabolismo , Humanos , Masculino , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semen/efectos de los fármacos , Semen/metabolismo , Motilidad Espermática/efectos de los fármacos , Motilidad Espermática/genética , Motilidad Espermática/fisiología , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo
13.
Diabetes ; 71(6): 1282-1298, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35275988

RESUMEN

Excessive production of renal reactive oxygen species (ROS) plays a major role in diabetic kidney disease (DKD). Here, we provide key findings demonstrating the predominant pathological role of the pro-oxidant enzyme NADPH oxidase 5 (NOX5) in DKD, independent of the previously characterized NOX4 pathway. In patients with diabetes, we found increased expression of renal NOX5 in association with enhanced ROS formation and upregulation of ROS-sensitive factors early growth response 1 (EGR-1), protein kinase C-α (PKC-α), and a key metabolic gene involved in redox balance, thioredoxin-interacting protein (TXNIP). In preclinical models of DKD, overexpression of NOX5 in Nox4-deficient mice enhances kidney damage by increasing albuminuria and augmenting renal fibrosis and inflammation via enhanced ROS formation and the modulation of EGR1, TXNIP, ERK1/2, PKC-α, and PKC-ε. In addition, the only first-in-class NOX inhibitor, GKT137831, appears to be ineffective in the presence of NOX5 expression in diabetes. In vitro, silencing of NOX5 in human mesangial cells attenuated upregulation of EGR1, PKC-α, and TXNIP induced by high glucose levels, as well as markers of inflammation (TLR4 and MCP-1) and fibrosis (CTGF and collagens I and III) via reduction in ROS formation. Collectively, these findings identify NOX5 as a superior target in human DKD compared with other NOX isoforms such as NOX4, which may have been overinterpreted in previous rodent studies.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Fibrosis , Humanos , Inflamación/metabolismo , Ratones , NADPH Oxidasa 4/genética , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Biomed Pharmacother ; 145: 112460, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34864314

RESUMEN

Familial hypercholesterolemia (FH) is associated with low-grade systemic inflammation, a key driver of premature atherosclerosis. We investigated the effects of inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) function on inflammatory state, endothelial dysfunction and cardiovascular outcomes in patients with FH. Fourteen patients with FH were evaluated before and 8 weeks after administration of a PCSK9 blocking monoclonal antibody (alirocumab, 150 mg/subcutaneous/14 days). In vivo and ex vivo analysis revealed that alirocumab blunted the attachment of leukocytes to TNFα-stimulated human umbilical arterial endothelial cells (HUAEC) and suppressed the activation of platelets and most leukocyte subsets, which was accompanied by the diminished expression of CX3CR1, CXCR6 and CCR2 on several leukocyte subpopulations. By contrast, T-regulatory cell activation was enhanced by alirocumab treatment, which also elevated anti-inflammatory IL-10 plasma levels and lowered circulating pro-inflammatory cytokines. Plasma levels of IFNγ positively correlated with levels of total and LDL-cholesterol, whereas circulating IL-10 levels negatively correlated with these key lipid parameters. In vitro analysis revealed that TNFα stimulation of HUAEC increased the expression of PCSK9, whereas endothelial PCSK9 silencing reduced TNFα-induced mononuclear cell adhesion mediated by Nox5 up-regulation and p38-MAPK/NFκB activation, concomitant with reduced SREBP2 expression. PCSK9 silencing also decreased endothelial CX3CL1 and CXCL16 expression and chemokine generation. In conclusion, PCSK9 inhibition impairs systemic inflammation and endothelial dysfunction by constraining leukocyte-endothelium interactions. PCSK9 blockade may constitute a new therapeutic approach to control the inflammatory state associated with FH, preventing further cardiovascular events in this cardiometabolic disorder.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Células Endoteliales , Hiperlipoproteinemia Tipo II , NADPH Oxidasa 5/metabolismo , Proproteína Convertasa 9/inmunología , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacocinética , Línea Celular , Quimiocina CX3CL1/metabolismo , Quimiocina CXCL16/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Hiperlipoproteinemia Tipo II/inmunología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Inhibidores de PCSK9/administración & dosificación , Inhibidores de PCSK9/farmacología
16.
Cardiovasc Res ; 118(5): 1359-1373, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-34320175

RESUMEN

AIMS: NOX-derived reactive oxygen species (ROS) are mediators of signalling pathways implicated in vascular smooth muscle cell (VSMC) dysfunction in hypertension. Among the numerous redox-sensitive kinases important in VSMC regulation is c-Src. However, mechanisms linking NOX/ROS to c-Src are unclear, especially in the context of oxidative stress in hypertension. Here, we investigated the role of NOX-induced oxidative stress in VSMCs in human hypertension focusing on NOX5, and explored c-Src, as a putative intermediate connecting NOX5-ROS to downstream effector targets underlying VSMC dysfunction. METHODS AND RESULTS: VSMC from arteries from normotensive (NT) and hypertensive (HT) subjects were studied. NOX1,2,4,5 expression, ROS generation, oxidation/phosphorylation of signalling molecules, and actin polymerization and migration were assessed in the absence and presence of NOX5 (melittin) and Src (PP2) inhibitors. NOX5 and p22phox-dependent NOXs (NOX1-4) were down-regulated using NOX5 siRNA and p22phox-siRNA approaches. As proof of concept in intact vessels, vascular function was assessed by myography in transgenic mice expressing human NOX5 in a VSMC-specific manner. In HT VSMCs, NOX5 was up-regulated, with associated oxidative stress, hyperoxidation (c-Src, peroxiredoxin, DJ-1), and hyperphosphorylation (c-Src, PKC, ERK1/2, MLC20) of signalling molecules. NOX5 siRNA reduced ROS generation in NT and HT subjects. NOX5 siRNA, but not p22phox-siRNA, blunted c-Src phosphorylation in HT VSMCs. NOX5 siRNA reduced phosphorylation of MLC20 and FAK in NT and HT. In p22phox- silenced HT VSMCs, Ang II-induced phosphorylation of MLC20 was increased, effects blocked by melittin and PP2. NOX5 and c-Src inhibition attenuated actin polymerization and migration in HT VSMCs. In NOX5 transgenic mice, vascular hypercontractilty was decreased by melittin and PP2. CONCLUSION: We define NOX5/ROS/c-Src as a novel feedforward signalling network in human VSMCs. Amplification of this system in hypertension contributes to VSMC dysfunction. Dampening the NOX5/ROS/c-Src pathway may ameliorate hypertension-associated vascular injury.


Asunto(s)
Hipertensión , Músculo Liso Vascular , Actinas/metabolismo , Angiotensina II/metabolismo , Animales , Células Cultivadas , Humanos , Meliteno/metabolismo , Meliteno/farmacología , Ratones , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , NADPH Oxidasa 5/farmacología , Oxidación-Reducción , Proteínas Tirosina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo
17.
Cardiovasc Res ; 118(9): 2196-2210, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34273166

RESUMEN

AIMS: Smokers are at increased risk of cardiovascular events. However, the exact mechanisms through which smoking influences cardiovascular disease resulting in accelerated atherosclerosis and vascular calcification are unknown. The aim of this study was to investigate effects of nicotine on initiation of vascular smooth muscle cell (VSMC) calcification and to elucidate underlying mechanisms. METHODS AND RESULTS: We assessed vascular calcification of 62 carotid lesions of both smoking and non-smoking patients using ex vivo micro-computed tomography (µCT) scanning. Calcification was present more often in carotid plaques of smokers (n = 22 of 30, 73.3%) compared to non-smokers (n = 11 of 32, 34.3%; P < 0.001), confirming higher atherosclerotic burden. The difference was particularly profound for microcalcifications, which was 17-fold higher in smokers compared to non-smokers. In vitro, nicotine-induced human primary VSMC calcification, and increased osteogenic gene expression (Runx2, Osx, BSP, and OPN) and extracellular vesicle (EV) secretion. The pro-calcifying effects of nicotine were mediated by Ca2+-dependent Nox5. SiRNA knock-down of Nox5 inhibited nicotine-induced EV release and calcification. Moreover, pre-treatment of hVSMCs with vitamin K2 ameliorated nicotine-induced intracellular oxidative stress, EV secretion, and calcification. Using nicotinic acetylcholine receptor (nAChR) blockers α-bungarotoxin and hexamethonium bromide, we found that the effects of nicotine on intracellular Ca2+ and oxidative stress were mediated by α7 and α3 nAChR. Finally, we showed that Nox5 expression was higher in carotid arteries of smokers and correlated with calcification levels in these vessels. CONCLUSION: In this study, we provide evidence that nicotine induces Nox5-mediated pro-calcific processes as novel mechanism of increased atherosclerotic calcification. We identified that activation of α7 and α3 nAChR by nicotine increases intracellular Ca2+ and initiates calcification of hVSMCs through increased Nox5 activity, leading to oxidative stress-mediated EV release. Identifying the role of Nox5-induced oxidative stress opens novel avenues for diagnosis and treatment of smoking-induced cardiovascular disease.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Vesículas Extracelulares , Músculo Liso Vascular , Nicotina , Calcificación Vascular , Aterosclerosis/metabolismo , Calcio/metabolismo , Enfermedades Cardiovasculares/metabolismo , Células Cultivadas , Vesículas Extracelulares/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 5/metabolismo , NADPH Oxidasa 5/farmacología , Nicotina/efectos adversos , Nicotina/metabolismo , Estrés Oxidativo , Calcificación Vascular/inducido químicamente , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Microtomografía por Rayos X
18.
Biochem Biophys Res Commun ; 580: 107-112, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638028

RESUMEN

Peroxynitrite is a reactive intermediate formed in vivo through uncatalysed reaction of superoxide and nitric oxide radicals. Despite significant interest in detecting peroxynitrite in vivo and understanding its production, little attention has been given to the evolutionary origins of peroxynitrite signalling. Herein we focus on two enzymes that are key to the biosynthesis of superoxide and nitric oxide, NADPH oxidase 5 (NOX5) and endothelial nitric oxide synthase (eNOS), respectively. Multiple sequence alignments of both enzymes including homologues from all domains of life, coupled with a phylogenetic analysis of NOX5, suggest eNOS and NOX5 are present in animals as the result of horizontal gene transfer from ancestral cyanobacteria to ancestral eukaryotes. Therefore, biochemical studies from other laboratories on a NOX5 homologue in Cylindrospermum stagnale and an eNOS homologue in Synechococcus sp. PCC 7335 are likely to be of relevance to human NOX5 and eNOS and to the production of superoxide, nitric oxide and peroxynitrite in humans.


Asunto(s)
Ácido Peroxinitroso/metabolismo , Transducción de Señal , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Evolución Molecular , Humanos , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ácido Peroxinitroso/genética , Filogenia , Superóxidos/metabolismo
19.
Clin Transl Med ; 11(8): e472, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34459125

RESUMEN

Activation of cancer-associated fibroblasts (CAFs) is a crucial feature for tumor malignancy. The reciprocal interplay between tumor cells and CAFs not only facilitates tumor progression and metastasis but also sustains the tumor-promoting function of CAFs. Nevertheless, how tumor cells readily adapt to these functional CAFs is still unclear. NADPH oxidase 5 (NOX5) is a strong reactive oxygen species producer overexpressed in esophageal squamous cell carcinoma (ESCC) cells. In this study, we showed that NOX5-positive ESCC cells induced normal fibroblasts (NFs) or adipose-derived mesenchymal stem cells (MSCs) to express the marker of CAFs-α smooth muscle actin. Moreover, these tumor cells reprogrammed the cytokine profile of the activated CAFs, which further stimulated NFs or MSCs to CAFs and induced lymphangiogenesis to facilitate ESCC malignancy. NOX5 activated intratumoral Src/nuclear factor-κB signaling to stimulate secretion of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and lactate from tumor cells. Subsequently, TNF-α, IL-1ß, and lactate activated CAFs, and facilitated the secretion of IL-6, IL-7, IL-8, CCL5, and transforming growth factor-ß1 from CAFs. These CAFs-derived cytokines reciprocally induced the progression of NOX5-positive ESCC cells. Our findings together indicate that NOX5 serves as the driving oncoprotein to provide a niche that is beneficial for tumor malignant progression.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Citocinas/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , NADPH Oxidasa 5/metabolismo , Animales , Citocinas/genética , Modelos Animales de Enfermedad , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Humanos , Ratones , NADPH Oxidasa 5/genética , Transducción de Señal/genética
20.
Clin Sci (Lond) ; 135(15): 1845-1858, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34269800

RESUMEN

OBJECTIVE: The mechanisms involved in NOX5 activation in atherosclerotic processes are not completely understood. The present study tested the hypothesis that lysophosphatidylcholine (LPC), a proatherogenic component of oxLDL, induces endothelial calcium influx, which drives NOX5-dependent reactive oxygen species (ROS) production, oxidative stress, and endothelial cell dysfunction. APPROACH: Human aortic endothelial cells (HAEC) were stimulated with LPC (10-5 M, for different time points). Pharmacological inhibition of NOX5 (Melittin, 10-7 M) and NOX5 gene silencing (siRNA) was used to determine the role of NOX5-dependent ROS production in endothelial oxidative stress induced by LPC. ROS production was determined by lucigenin assay and electron paramagnetic spectroscopy (EPR), calcium transients by Fluo4 fluorimetry, and NOX5 activity and protein expression by pharmacological assays and immunoblotting, respectively. RESULTS: LPC increased ROS generation in endothelial cells at short (15 min) and long (4 h) stimulation times. LPC-induced ROS was abolished by a selective NOX5 inhibitor and by NOX5 siRNA. NOX1/4 dual inhibition and selective NOX1 inhibition only decreased ROS generation at 4 h. LPC increased HAEC intracellular calcium, important for NOX5 activation, and this was blocked by nifedipine and thapsigargin. Bapta-AM, selective Ca2+ chelator, prevented LPC-induced ROS production. NOX5 knockdown decreased LPC-induced ICAM-1 mRNA expression and monocyte adhesion to endothelial cells. CONCLUSION: These results suggest that NOX5, by mechanisms linked to increased intracellular calcium, is key to early LPC-induced endothelial oxidative stress and pro-inflammatory processes. Since these are essential events in the formation and progression of atherosclerotic lesions, the present study highlights an important role for NOX5 in atherosclerosis.


Asunto(s)
Aterosclerosis/enzimología , Células Endoteliales/efectos de los fármacos , Lisofosfatidilcolinas/toxicidad , NADPH Oxidasa 5/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Aterosclerosis/patología , Calcio/metabolismo , Señalización del Calcio , Adhesión Celular , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/enzimología , Células Endoteliales/patología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Monocitos/metabolismo , NADPH Oxidasa 5/antagonistas & inhibidores , NADPH Oxidasa 5/genética , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA