Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.863
Filtrar
1.
Phys Chem Chem Phys ; 26(19): 14228-14243, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690612

RESUMEN

The development of chromophores that absorb in the near-infrared (NIR) region beyond 1000 nm underpins numerous applications in medical and energy sciences, yet also presents substantial challenges to molecular design and chemical synthesis. Here, the core bacteriochlorin chromophore of nature's NIR absorbers, bacteriochlorophylls, has been adapted and tailored by annulation in an effort to achieve absorption in the NIR-II region. The resulting bacteriochlorin, Phen2,1-BC, contains two annulated naphthalene groups spanning meso,ß-positions of the bacteriochlorin and the 1,2-positions of the naphthalene. Phen2,1-BC was prepared via a new synthetic route. Phen2,1-BC is an isomer of previously examined Phen-BC, which differs only in attachment via the 1,8-positions of the naphthalene. Despite identical π-systems, the two bacteriochlorins have distinct spectroscopic and photophysical features. Phen-BC has long-wavelength absorption maximum (912 nm), oscillator strength (1.0), and S1 excited-state lifetime (150 ps) much different than Phen2,1-BC (1292 nm, 0.23, and 0.4 ps, respectively). These two molecules and an analogue with intermediate characteristics bearing annulated phenyl rings have unexpected properties relative to those of non-annulated counterparts. Understanding the distinctions requires extending concepts beyond the four-orbital-model description of tetrapyrrole spectroscopic features. In particular, a reduction in symmetry resulting from annulation results in electronic mixing of x- and y-polarized transitions/states, as well as vibronic coupling that together reduce oscillator strength of the long-wavelength absorption manifold and shorten the S1 excited-state lifetime. Collectively, the results suggest a heuristic for the molecular design of tetrapyrrole chromophores for deep penetration into the relatively unutilized NIR-II region.


Asunto(s)
Porfirinas , Espectroscopía Infrarroja Corta , Porfirinas/química , Naftalenos/química , Estructura Molecular , Bacterioclorofilas/química
2.
Sci Rep ; 14(1): 11608, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773163

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, carcinogenic substances. On soils contaminated with PAHs, crop cultivation, animal husbandry and even the survival of microflora in the soil are greatly perturbed, depending on the degree of contamination. Most microorganisms cannot tolerate PAH-contaminated soils, however, some microbial strains can adapt to these harsh conditions and survive on contaminated soils. Analysis of the metagenomes of contaminated environmental samples may lead to discovery of PAH-degrading enzymes suitable for green biotechnology methodologies ranging from biocatalysis to pollution control. In the present study, our goal was to apply a metagenomic data search to identify efficient novel enzymes in remediation of PAH-contaminated soils. The metagenomic hits were further analyzed using a set of bioinformatics tools to select protein sequences predicted to encode well-folded soluble enzymes. Three novel enzymes (two dioxygenases and one peroxidase) were cloned and used in soil remediation microcosms experiments. The experimental design of the present study aimed at evaluating the effectiveness of the novel enzymes on short-term PAH degradation in the soil microcosmos model. The novel enzymes were found to be efficient for degradation of naphthalene and phenanthrene. Adding the inorganic oxidant CaO2 further increased the degrading potential of the novel enzymes for anthracene and pyrene. We conclude that metagenome mining paired with bioinformatic predictions, structural modelling and functional assays constitutes a powerful approach towards novel enzymes for soil remediation.


Asunto(s)
Biodegradación Ambiental , Metagenómica , Hidrocarburos Policíclicos Aromáticos , Microbiología del Suelo , Contaminantes del Suelo , Metagenómica/métodos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Dioxigenasas/metabolismo , Dioxigenasas/genética , Dioxigenasas/química , Fenantrenos/metabolismo , Naftalenos/metabolismo , Metagenoma
3.
Chemosphere ; 358: 142217, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704043

RESUMEN

Long-term exposure to environmental chemicals can detrimentally impact human health, and understanding the relationship between age distribution and levels of external and internal exposure is crucial. Nonetheless, existing methods for assessing population-wide exposure across age groups are limited. To bridge this research gap, we introduced a modeling approach designed to assess both chronic external and internal exposure to chemicals at the population level. The external and internal exposure assessments were quantified in terms of the average daily dose (ADD) and steady-state blood concentration of the environmental chemical, respectively, which were categorized by age and gender groups. The modeling process was presented within a spreadsheet framework, affording users the capability to execute population-wide exposure analyses across a spectrum of chemicals. Our simulation outcomes underscored a salient trend: younger age groups, particularly infants and children, exhibited markedly higher ADD values and blood concentrations of environmental chemicals compared to their older counterparts. This observation is due to the elevated basal metabolic rate per unit of body weight characteristic of younger individuals, coupled with their diminished biotransformation kinetics of xenobiotics within their livers. These factors collectively contribute to increased intake rates of environmental chemicals per unit of body weight through air and food consumption, along with heightened bioaccumulation of these chemicals within their bodies (e.g., blood). Furthermore, we augmented the precision of the external and internal exposure assessment by incorporating the age distribution across the population. The simulation outcomes unveiled that, to estimate the central tendency of the population's exposure levels, employing the baseline value group (age group 21-30) or the surrogate age of 25 serves as a simple yet dependable approach. However, for comprehensive population protection, our recommendation aligns with conducting exposure assessments for the younger age groups (age group 0-11). Future studies should integrate individual-level exposure assessment, analyze vulnerable population groups, and refine population structures within our developed model.


Asunto(s)
Exposición a Riesgos Ambientales , Contaminantes Ambientales , Naftalenos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , Contaminantes Ambientales/sangre , Niño , Adulto , Preescolar , Naftalenos/sangre , Lactante , Masculino , Femenino , Adulto Joven , Adolescente , Persona de Mediana Edad , Recién Nacido , Anciano
4.
Behav Pharmacol ; 35(4): 161-171, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38660819

RESUMEN

Cannabis is a pharmacologically complex plant consisting of hundreds of potentially active compounds. One class of compounds present in cannabis that has received little attention are terpenes. Traditionally thought to impart aroma and flavor to cannabis, it has become increasingly recognized that terpenes might exert therapeutic effects themselves. Several recent reports have also indicated terpenes might behave as cannabinoid type 1 (CB1) receptor agonists. This study aimed to investigate whether several terpenes present in cannabis produce discriminative stimulus effects similar to or enhance the effects of Δ 9 -tetrahydrocannabinol (THC). Subsequent experiments explored other potential cannabimimetic effects of these terpenes. Rats were trained to discriminate THC from vehicle while responding under a fixed-ratio 10 schedule of food presentation. Substitution testing was performed with the CB receptor agonist JWH-018 and the terpenes linalool, limonene, γ-terpinene and α-humulene alone. Terpenes were also studied in combination with THC. Finally, THC and terpenes were tested in the tetrad assay to screen for CB1-receptor agonist-like effects. THC and JWH-018 dose-dependently produced responding on the THC-paired lever. When administered alone, none of the terpenes produced responding predominantly on the THC-paired lever. When administered in combination with THC, none of the terpenes enhanced the potency of THC, and in the case of α-humulene, decreased the potency of THC to produce responding on the THC-paired lever. While THC produced effects in all four tetrad components, none of the terpenes produced effects in all four components. Therefore, the terpenes examined in this report do not have effects consistent with CB1 receptor agonist properties in the brain.


Asunto(s)
Cannabis , Dronabinol , Terpenos , Animales , Terpenos/farmacología , Ratas , Dronabinol/farmacología , Masculino , Cannabinoides/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Indoles/farmacología , Naftalenos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Ratas Sprague-Dawley , Relación Dosis-Respuesta a Droga , Aprendizaje Discriminativo/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos
5.
Biochemistry (Mosc) ; 89(3): 407-416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648761

RESUMEN

The synthesis of (p)ppGpp alarmones plays a vital role in the regulation of metabolism suppression, growth rate control, virulence, bacterial persistence, and biofilm formation. The (p)ppGpp alarmones are synthesized by proteins of the RelA/SpoT homolog (RSH) superfamily, including long bifunctional RSH proteins and small alarmone synthetases. Here, we investigated enzyme kinetics and dose-dependent enzyme inhibition to elucidate the mechanism of 4-(4,7-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)pentanoic acid (DMNP) action on the (p)ppGpp synthetases RelMsm and RelZ from Mycolicibacterium smegmatis and RelMtb from Mycobacterium tuberculosis. DMNP was found to inhibit the activity of RelMtb. According to the enzyme kinetics analysis, DMNP acts as a noncompetitive inhibitor of RelMsm and RelZ. Based on the results of molecular docking, the DMNP-binding site is located in the proximity of the synthetase domain active site. This study might help in the development of alarmone synthetase inhibitors, which includes relacin and its derivatives, as well as DMNP - a synthetic analog of the marine coral metabolite erogorgiaene. Unlike conventional antibiotics, alarmone synthetase inhibitors target metabolic pathways linked to the bacterial stringent response. Although these pathways are not essential for bacteria, they regulate the development of adaptation mechanisms. Combining conventional antibiotics that target actively growing cells with compounds that impede bacterial adaptation may address challenges associated with antimicrobial resistance and bacterial persistence.


Asunto(s)
Proteínas Bacterianas , Ligasas , Mycobacterium tuberculosis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Cinética , Ligasas/antagonistas & inhibidores , Ligasas/metabolismo , Simulación del Acoplamiento Molecular , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Naftalenos/farmacología , Naftalenos/química , Diterpenos/farmacología
6.
Angew Chem Int Ed Engl ; 63(23): e202401250, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38576254

RESUMEN

A nano-immunomodulator (R-NPT NP) comprising a tumor microenvironment (TME) activable resiquimod (R848) and a π-extended NIR-absorbing naphthophenanthrolinetetraone (NPT) has been engineered for spatiotemporal controlled photothermal immunotherapy. R-NPT NP demonstrated excellent photostability, while R848 promoted synergistic immunity as a toll-like receptor 7/8 (TLR7/8) agonist. Upon accumulation at the tumor site, R-NPT NP released R848 in response to redox metabolite glutathione (GSH), triggering dendritic cell (DC) activation. The photothermal effect endowed by R-NPT NP can ablate tumors directly and trigger immunogenic cell death to augment immunity after photoirradiation. The synergistic effect of GSH-liable TLR7/8 agonist and released immunogenic factors leads to a robust evocation of systematic immunity through promoted DC maturation and T cell infiltration. Thus, R-NPT NP with photoirradiation achieved 99.3 % and 98.2 % growth inhibition against primary and distal tumors, respectively.


Asunto(s)
Imidas , Factores Inmunológicos , Inmunoterapia , Naftalenos , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Humanos , Naftalenos/química , Naftalenos/farmacología , Imidas/química , Imidas/farmacología , Animales , Nanopartículas/química , Ratones , Microambiente Tumoral/efectos de los fármacos , Terapia Fototérmica , Imidazoles/química , Imidazoles/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Línea Celular Tumoral
7.
Angew Chem Int Ed Engl ; 63(23): e202401979, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38581278

RESUMEN

Spirobisnaphthalenes (SBNs) are a class of highly oxygenated, fungal bisnaphthalenes containing a unique spiroketal bridge, that displayed diverse bioactivities. Among the reported SBNs, palmarumycins are the major type, which are precursors for the other type of SBNs structurally. However, the biosynthesis of SBNs is unclear. In this study, we elucidated the biosynthesis of palmarumycins, using gene disruption, heterologous expression, and substrate feeding experiments. The biosynthetic gene cluster for palmarumycins was identified to be distant from the polyketide synthase gene cluster, and included two cytochrome P450s (PalA and PalB), and one short chain dehydrogenase/reductase (PalC) encoding genes as key structural genes. PalA is an unusual, multifunctional P450 that catalyzes the oxidative dimerization of 1,8-dihydroxynaphthalene to generate the spiroketal linkage and 2,3-epoxy group. Chemical synthesis of key intermediate and in vitro biochemical assays proved that the oxidative dimerization proceeded via a binaphthyl ether. PalB installs the C-5 hydroxy group, widely found in SBNs. PalC catalyzes 1-keto reduction, the reverse 1-dehydrogenation, and 2,3-epoxide reduction. Moreover, an FAD-dependent oxidoreductase, encoded by palD, which locates outside the cluster, functions as a 1-dehydrogenase. These results provided the first genetic and biochemical evidence for the biosynthesis of palmarumycin SBNs.


Asunto(s)
Naftalenos , Compuestos de Espiro , Compuestos de Espiro/metabolismo , Compuestos de Espiro/química , Naftalenos/metabolismo , Naftalenos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Familia de Multigenes , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/química
8.
Am J Physiol Renal Physiol ; 326(6): F917-F930, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634131

RESUMEN

Cannabis and synthetic cannabinoid consumption are increasing worldwide. Cannabis contains numerous phytocannabinoids that act on the G protein-coupled cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 expressed throughout the body, including the kidney. Essentially every organ, including the kidney, produces endocannabinoids, which are endogenous ligands to these receptors. Cannabinoids acutely increase urine output in rodents and humans, thus potentially influencing total body water and electrolyte homeostasis. As the kidney collecting duct (CD) regulates total body water, acid/base, and electrolyte balance through specific functions of principal cells (PCs) and intercalated cells (ICs), we examined the cell-specific immunolocalization of CB1R in the mouse CD. Antibodies against either the C-terminus or N-terminus of CB1R consistently labeled aquaporin 2 (AQP2)-negative cells in the cortical and medullary CD and thus presumably ICs. Given the well-established role of ICs in urinary acidification, we used a clearance approach in mice that were acid loaded with 280 mM NH4Cl for 7 days and nonacid-loaded mice treated with the cannabinoid receptor agonist WIN55,212-2 (WIN) or a vehicle control. Although WIN had no effect on urinary acidification, these WIN-treated mice had less apical + subapical AQP2 expression in PCs compared with controls and developed acute diabetes insipidus associated with the excretion of large volumes of dilute urine. Mice maximally concentrated their urine when WIN and 1-desamino-8-d-arginine vasopressin [desmopressin (DDAVP)] were coadministered, consistent with central rather than nephrogenic diabetes insipidus. Although ICs express CB1R, the physiological role of CB1R in this cell type remains to be determined.NEW & NOTEWORTHY The CB1R agonist WIN55,212-2 induces central diabetes insipidus in mice. This research integrates existing knowledge regarding the diuretic effects of cannabinoids and the influence of CB1R on vasopressin secretion while adding new mechanistic insights about total body water homeostasis. Our findings provide a deeper understanding about the potential clinical impact of cannabinoids on human physiology and may help identify targets for novel therapeutics to treat water and electrolyte disorders such as hyponatremia and volume overload.


Asunto(s)
Acuaporina 2 , Benzoxazinas , Diuresis , Túbulos Renales Colectores , Morfolinas , Naftalenos , Receptor Cannabinoide CB1 , Animales , Receptor Cannabinoide CB1/metabolismo , Diuresis/efectos de los fármacos , Benzoxazinas/farmacología , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Acuaporina 2/metabolismo , Morfolinas/farmacología , Naftalenos/farmacología , Masculino , Diabetes Insípida Neurogénica/metabolismo , Diabetes Insípida Neurogénica/fisiopatología , Ratones Endogámicos C57BL , Agonistas de Receptores de Cannabinoides/farmacología , Ratones , Modelos Animales de Enfermedad
9.
Nat Microbiol ; 9(5): 1325-1339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589468

RESUMEN

Drug-resistant fungal infections pose a significant threat to human health. Dual-targeting compounds, which have multiple targets on a single pathogen, offer an effective approach to combat drug-resistant pathogens, although ensuring potent activity and high selectivity remains a challenge. Here we propose a dual-targeting strategy for designing antifungal compounds. We incorporate DNA-binding naphthalene groups as the hydrophobic moieties into the host defence peptide-mimicking poly(2-oxazoline)s. This resulted in a compound, (Gly0.8Nap0.2)20, which targets both the fungal membrane and DNA. This compound kills clinical strains of multidrug-resistant fungi including Candida spp., Cryptococcus neoformans, Cryptococcus gattii and Aspergillus fumigatus. (Gly0.8Nap0.2)20 shows superior performance compared with amphotericin B by showing not only potent antifungal activities but also high antifungal selectivity. The compound also does not induce antimicrobial resistance. Moreover, (Gly0.8Nap0.2)20 exhibits promising in vivo therapeutic activities against drug-resistant Candida albicans in mouse models of skin abrasion, corneal infection and systemic infection. This study shows that dual-targeting antifungal compounds may be effective in combating drug-resistant fungal pathogens and mitigating fungal resistance.


Asunto(s)
Antifúngicos , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/química , Animales , Ratones , Humanos , Farmacorresistencia Fúngica Múltiple , Modelos Animales de Enfermedad , Cryptococcus neoformans/efectos de los fármacos , Aspergillus fumigatus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Naftalenos/farmacología , Naftalenos/química , Oxazoles/farmacología , Oxazoles/química , Candida/efectos de los fármacos , Micosis/tratamiento farmacológico , Micosis/microbiología
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582267

RESUMEN

Choroidal neovascularization (CNV) is the principal driver of blindness in neovascular age-related macular degeneration (nvAMD). Increased activity of telomerase, has been associated with endothelial cell proliferation, survival, migration, and invasion in the context of tumor angiogenesis. Expanding on this knowledge, we investigated the role of telomerase in the development of CNV in mouse model. We observed increased gene expression and activity of telomerase in mouse CNV. Genetic deficiency of the telomerase components, telomerase reverse transcriptase (Tert) and telomerase RNA component (Terc) suppressed laser-induced CNV in mice. Similarly, a small molecule inhibitor of TERT (BIBR 1532), and antisense oligonucleotides (ASOs) targeting Tert and Terc reduced CNV growth. Bone marrow chimera studies suggested that telomerase activity in non-bone marrow-derived cells is crucial for the development of CNV. Comparison of BIBR 1532 with VEGF neutralizing therapeutic strategy in mouse revealed a comparable level of angiosuppressive activity. However, when BIBR and anti-VEGF antibodies were administered as a combination at sub-therapeutic doses, a statistically significant suppression of CNV was observed. These findings underscore the potential benefits of combining sub-therapeutic doses of BIBR and anti-VEGF antibodies for developing newer therapeutic strategies for NV-AMD. Telomerase inhibition with BIBR 1532 suppressed induction of multiple cytokines and growth factors critical for neovascularization. In conclusion, our study identifies telomerase as a promising therapeutic target for treating neovascular disease of the eye and thus provides a proof of principle for further exploration of telomerase inhibition as a novel treatment strategy for nvAMD.


Asunto(s)
Neovascularización Coroidal , Modelos Animales de Enfermedad , Telomerasa , Telomerasa/antagonistas & inhibidores , Telomerasa/genética , Telomerasa/metabolismo , Animales , Neovascularización Coroidal/patología , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/tratamiento farmacológico , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Ratones Endogámicos C57BL , Aminobenzoatos/farmacología , ARN/genética , ARN/metabolismo , Oligonucleótidos Antisentido/farmacología , Naftalenos
11.
Phytochemistry ; 222: 114073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565420

RESUMEN

Two undescribed cladosporol derivatives, cladosporols J-K (1-2), and three previously unreported spirobisnaphthalenes, urnucratins D-F (3-5), as well as eleven known cladosporols (6-16), were characterized from Cladosporium cladosporioides (Cladosporiaceae), a common plant pathogen isolated from the skin of Chinese toad. Cladosporols J-K (1-2) with a single double bond have been rarely reported, while urnucratins D-F (3-5) featured an unusual benzoquinone bisnaphthospiroether skeleton, contributing to an expanding category of undiscovered natural products. Their structures and absolute configurations were determined using extensive spectroscopic methods, including NMR, HRESIMS analyses, X-ray single crystal diffraction, as well as through experimental ECD analyses. Biological assays revealed that compounds 1 and 2 exhibited inhibitory activity against A549 cells, with IC50 values of 30.11 ± 3.29 and 34.32 ± 2.66 µM, respectively.


Asunto(s)
Cladosporium , Naftalenos , Cladosporium/química , Humanos , Naftalenos/química , Naftalenos/aislamiento & purificación , Naftalenos/farmacología , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Células A549 , Compuestos de Espiro/química , Compuestos de Espiro/aislamiento & purificación , Compuestos de Espiro/farmacología , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Proliferación Celular/efectos de los fármacos
12.
J Occup Environ Hyg ; 21(5): 353-364, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38560919

RESUMEN

Structural firefighters are exposed to a complex set of contaminants and combustion byproducts, including volatile organic compounds (VOCs). Additionally, recent studies have found structural firefighters' skin may be exposed to multiple chemical compounds via permeation or penetration of chemical byproducts through or around personal protective equipment (PPE). This mannequin-based study evaluated the effectiveness of four different PPE conditions with varying contamination control measures (incorporating PPE interface design features and particulate blocking materials) to protect against ingress of several VOCs in a smoke exposure chamber. We also investigated the effectiveness of long-sleeve base layer clothing to provide additional protection against skin contamination. Outside gear air concentrations were measured from within the smoke exposure chamber at the breathing zone, abdomen, and thigh heights. Personal air concentrations were collected from mannequins under PPE at the same general heights and under the base layer at abdomen and thigh heights. Sampled contaminants included benzene, toluene, styrene, and naphthalene. Results suggest that VOCs can readily penetrate the ensembles. Workplace protection factors (WPFs) were near one for benzene and toluene and increased with increasing molecular weight of the contaminants. WPFs were generally lower under hoods and jackets compared to under pants. For all PPE conditions, the pants appeared to provide the greatest overall protection against ingress of VOCs, but this may be due in part to the lower air concentrations toward the floor (and cuffs of pants) relative to the thigh-height outside gear concentrations used in calculating the WPFs. Providing added interface control measures and adding particulate-blocking materials appeared to provide a protective benefit against less-volatile chemicals, like naphthalene and styrene.


Asunto(s)
Contaminantes Ocupacionales del Aire , Bomberos , Naftalenos , Exposición Profesional , Ropa de Protección , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Contaminantes Ocupacionales del Aire/análisis , Humanos , Benceno/análisis , Tolueno/análisis , Equipo de Protección Personal , Estireno/análisis , Maniquíes , Humo/análisis , Lugar de Trabajo
13.
Environ Pollut ; 349: 123965, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614426

RESUMEN

Hydrolysis, alcoholysis and ammonolysis are viable routes for the efficient degradation and recycling of polyethylene naphthalate (PEN) plastic waste. Various possible hydrolysis/alcoholysis/ammonolysis reaction pathways for the degradation mechanism of the ethylene naphthalate dimer were investigated using the density functional theory (DFT) B3P86/6-31++G(d,p). To determine the thermodynamic and kinetic parameters, geometric structure optimization and frequency calculation were performed on a range of intermediates, transition states, and products associated with the reaction. The calculation results show that the highest energy barrier of the main element reaction step in hydrolysis is about 169.0 kJ/mol, the lowest is about 151.0 kJ/mol for ammonolysis, and the second is about 155.0 kJ/mol for alcoholysis. The main hydrolysis products of the ethylene naphthalate dimer are 2,6-naphthalenedicarboxylic acid and ethylene glycol; the main products of alcoholysis are dimethyl naphthalene-2,6-dicarboxylate and ethylene glycol, and the main products of ammonolysis are naphthalene-2,6-dicarboxamide and ethylene glycol. Furthermore, in the process of ethylene naphthalate dimer hydrolysis/alcoholysis/ammonolysis, the decomposition reaction in the NH3 atmosphere is better than that in methanol, and the reaction in CH3OH is better than that in the H2O molecular environment, and the increase in reaction temperature can increase its spontaneity. Our study presents the molecular mechanism of PEN hydrolysis/alcoholysis/ammonolysis and provides a reference for studying the degradation of other plastic wastes.


Asunto(s)
Teoría Funcional de la Densidad , Hidrólisis , Naftalenos/química , Cinética , Etilenos/química , Plásticos/química , Termodinámica , Modelos Químicos
14.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38614960

RESUMEN

Polycyclic aromatic hydrocarbon (PAH) contamination in marine environments range from low-diffusive inputs to high loads. The influence of PAH concentration on the expression of functional genes [e.g. those encoding ring-hydroxylating dioxygenases (RHDs)] has been overlooked in PAH biodegradation studies. However, understanding marker-gene expression under different PAH loads can help to monitor and predict bioremediation efficiency. Here, we followed the expression (via RNA sequencing) of Cycloclasticus pugetii strain PS-1 in cell suspension experiments under different naphthalene (100 and 30 mg L-1) concentrations. We identified genes encoding previously uncharacterized RHD subunits, termed rhdPS1α and rhdPS1ß, that were highly transcribed in response to naphthalene-degradation activity. Additionally, we identified six RHD subunit-encoding genes that responded to naphthalene exposure. By contrast, four RHD subunit genes were PAH-independently expressed and three other RHD subunit genes responded to naphthalene starvation. Cycloclasticus spp. could, therefore, use genetic redundancy in key PAH-degradation genes to react to varying PAH loads. This genetic redundancy may restrict the monitoring of environmental hydrocarbon-degradation activity using single-gene expression. For Cycloclasticus pugetii strain PS-1, however, the newly identified rhdPS1α and rhdPS1ß genes might be potential target genes to monitor its environmental naphthalene-degradation activity.


Asunto(s)
Biodegradación Ambiental , Naftalenos , Naftalenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo
15.
Res Vet Sci ; 173: 105271, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631075

RESUMEN

NexGard®PLUS (moxidectin, afoxolaner, and pyrantel pamoate), is an oral combination product for dogs indicated for the prevention of heartworm disease, the treatment and prevention of flea and tick infestations, and the treatment of gastro-intestinal nematode infections. The safety of this product in dogs was evaluated in three studies. Study #1 was a margin-of-safety study conducted in puppies, dosed six times at 28-day intervals at 1X, 3X, or 5X multiples of the maximum exposure dose (equivalent to 24 µg/kg moxidectin, 5 mg/kg afoxolaner, and 10 mg/kg pyrantel). In Study #2, the product was administered to ABCB1-deficient collie dogs at a 1X dose twice at a 28-day interval, and at a 3X or 5X dose once. Study #3 evaluated the safety of the product at 1X and 3X doses administered three times at 4-week intervals, to dogs harboring adult Dirofilaria immitis. In the three studies, the safety was evaluated on the basis of multiple clinical observations and physical examinations, including a complete assessment of toxicity to macrocyclic lactones, and on comprehensive clinical and anatomical pathology evaluations in Study #1. No clinically significant combination product-related effects were observed in any of the three studies. No signs of macrocyclic lactone toxicity were observed in the ABCB1-deficient collie dogs. Some mild and self-resolving instances of emesis or diarrhea were occasionally observed in the 3X and 5X dosed dogs. NexGard® PLUS was demonstrated to be safe following multiple administrations in puppies, in ABCB1-deficient collie dogs, and in microfilaremic dogs infected with adult D. immitis.


Asunto(s)
Enfermedades de los Perros , Combinación de Medicamentos , Macrólidos , Pamoato de Pirantel , Animales , Perros , Macrólidos/administración & dosificación , Macrólidos/uso terapéutico , Macrólidos/efectos adversos , Masculino , Femenino , Enfermedades de los Perros/tratamiento farmacológico , Pamoato de Pirantel/administración & dosificación , Pamoato de Pirantel/uso terapéutico , Pamoato de Pirantel/efectos adversos , Isoxazoles/administración & dosificación , Isoxazoles/uso terapéutico , Administración Oral , Dirofilariasis/tratamiento farmacológico , Dirofilaria immitis/efectos de los fármacos , Naftalenos/administración & dosificación
16.
J Asian Nat Prod Res ; 26(5): 555-561, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38563409

RESUMEN

A newly discovered trihydroxynaphthalenone derivative, epoxynaphthalenone (1) involving the condensation of ortho-hydroxyl groups into an epoxy structure, and a novel pyrone metabolite characterized as pyroneaceacid (2), were extracted from Talaromyces purpurpgenus, an endophytic fungus residing in Rhododendron molle. The structures of these compounds were elucidated through a comprehensive analysis of their NMR and HRESIMS data. The determination of absolute configurations was accomplished using electronic circular dichroism (ECD) calculations and CD spectra. Notably, these recently identified metabolites exhibited a moderate inhibitory activity against xanthine oxidase (XOD).


Asunto(s)
Pironas , Talaromyces , Xantina Oxidasa , Talaromyces/química , Estructura Molecular , Pironas/química , Pironas/farmacología , Pironas/aislamiento & purificación , Xantina Oxidasa/antagonistas & inhibidores , Resonancia Magnética Nuclear Biomolecular , Naftalenos/química , Naftalenos/aislamiento & purificación , Naftalenos/farmacología , Dicroismo Circular
17.
Anal Chem ; 96(16): 6467-6475, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602368

RESUMEN

Room temperature phosphorescence (RTP) nanoprobes play crucial roles in hypoxia imaging due to their high signal-to-background ratio (SBR) in the time domain. However, synthesizing RTP probes in aqueous media with a small size and high quantum yield remains challenging for intracellular hypoxic imaging up to present. Herein, aqueous RTP nanoprobes consisting of naphthalene anhydride derivatives, cucurbit[7]uril (CB[7]), and organosilicon are reported via supermolecular confined methods. Benefiting from the noncovalent confinement of CB[7] and hydrolysis reactions of organosilicon, such small-sized RTP nanoprobes (5-10 nm) exhibit inherent tunable phosphorescence (from 400 to 680 nm) with microsecond second lifetimes (up to ∼158.7 µs) and high quantum yield (up to ∼30%). The as-prepared RTP nanoprobes illustrate excellent intracellular hypoxia responsibility in a broad range from ∼0.1 to 21% oxygen concentrations. Compared to traditional fluorescence mode, the SBR value (∼108.69) of microsecond-range time-resolved in vitro imaging is up to 2.26 times greater in severe hypoxia (<0.1% O2), offering opportunities for precision imaging analysis in a hypoxic environment.


Asunto(s)
Compuestos Heterocíclicos con 2 Anillos , Imidazoles , Imidazolidinas , Compuestos Macrocíclicos , Humanos , Imidazoles/química , Silicio/química , Nanopartículas/química , Hipoxia de la Célula , Hidrocarburos Aromáticos con Puentes/química , Imagen Óptica , Colorantes Fluorescentes/química , Mediciones Luminiscentes , Naftalenos/química , Factores de Tiempo , Células HeLa
18.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612597

RESUMEN

Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.


Asunto(s)
Analgésicos Opioides , Imidazoles , Naftalenos , Nitrocompuestos , Sulfóxidos , Traumatismos del Sistema Nervioso , Humanos , Animales , Ratones , Ratas , Maraviroc , Sistema Nervioso Central , Sistema Nervioso Periférico
19.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612714

RESUMEN

Strigolactones (SLs) are plant hormones that regulate several key agronomic traits, including shoot branching, leaf senescence, and stress tolerance. The artificial regulation of SL biosynthesis and signaling has been considered as a potent strategy in regulating plant architecture and combatting the infection of parasitic weeds to help improve crop yield. DL1b is a previously reported SL receptor inhibitor molecule that significantly promotes shoot branching. Here, we synthesized 18 novel compounds based on the structure of DL1b. We performed rice tillering activity assay and selected a novel small molecule, C6, as a candidate SL receptor inhibitor. In vitro bioassays demonstrated that C6 possesses various regulatory functions as an SL inhibitor, including inhibiting germination of the root parasitic seeds Phelipanche aegyptiaca, delaying leaf senescence and promoting hypocotyl elongation of Arabidopsis. ITC analysis and molecular docking experiments further confirmed that C6 can interact with SL receptor proteins, thereby interfering with the binding of SL to its receptor. Therefore, C6 is considered a novel SL receptor inhibitor with potential applications in plant architecture control and prevention of root parasitic weed infestation.


Asunto(s)
Arabidopsis , Ésteres , Compuestos Heterocíclicos con 3 Anillos , Lactonas , Naftalenos , Simulación del Acoplamiento Molecular , Ácidos Carboxílicos
20.
J Chromatogr A ; 1722: 464866, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581976

RESUMEN

The detection of aromatic aldehydes, considered potential genotoxic impurities, holds significant importance during drug development and production. Current analytical methods necessitate complex pre-treatment processes and exhibit insufficient specificity and sensitivity. This study presents the utilization of naphthalenediimide as a pre-column derivatisation reagent to detect aromatic aldehyde impurities in pharmaceuticals via high-performance liquid chromatography (HPLC). We screened a series of derivatisation reagents through density functional theory (DFT) and investigated the phenomenon of photoinduced electron transfer (PET) for both the derivatisation reagents and the resulting products. Optimal experimental conditions for derivatisation were achieved at 40 °C for 60 min. This approach has been successfully applied to detect residual aromatic aldehyde genotoxic impurities in various pharmaceutical preparations, including 4-Nitrobenzaldehyde, 2-Nitrobenzaldehyde, 1,4-Benzodioxane-6-aldehyde, and 5-Hydroxymethylfurfural. The pre-column derivatisation method significantly enhanced detection sensitivity and reduced the limit of detection (LOD), which ranged from 0.002 to 0.008 µg/ml for the analytes, with relative standard deviations < 3 %. The correlation coefficient (R2) >0.998 demonstrated high quality. In chloramphenicol eye drops, the concentration of 4-Nitrobenzaldehyde was measured to be 8.6 µg/mL below the specified concentration, with recoveries ranging from 90.0 % to 119.2 %. In comparison to existing methods, our work simplifies the pretreatment process, enhances the sensitivity and specificity of the analysis, and offers comprehensive insights into impurity detection in pharmaceutical preparations.


Asunto(s)
Aldehídos , Contaminación de Medicamentos , Imidas , Límite de Detección , Naftalenos , Cromatografía Líquida de Alta Presión/métodos , Naftalenos/química , Naftalenos/análisis , Aldehídos/análisis , Aldehídos/química , Imidas/química , Mutágenos/análisis , Mutágenos/química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/análisis , Benzaldehídos/química , Benzaldehídos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA