Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.095
Filtrar
1.
J Phys Chem Lett ; 15(19): 5120-5129, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38709198

RESUMEN

In the past few decades, nanometer-scale pores have been employed as powerful tools for sensing biological molecules. Owing to its unique structure and properties, solid-state nanopores provide interesting opportunities for the development of DNA sequencing technology. Controlling DNA translocation in nanopores is an important means of improving the accuracy of sequencing. Here we present a proof of principle study of accelerating DNA captured across targeted graphene nanopores using surface charge density and find the intrinsic mechanism of the combination of electroosmotic flow induced by charges of nanopore and electrostatic attraction/repulsion between the nanopore and ssDNA. The theoretical study performed here provides a new means for controlling DNA transport dynamics and makes better and cheaper application of graphene in molecular sequencing.


Asunto(s)
ADN , Grafito , Nanoporos , Electricidad Estática , Grafito/química , ADN/química , ADN de Cadena Simple/química , Electroósmosis , Análisis de Secuencia de ADN/métodos
2.
J Phys Chem A ; 128(19): 3926-3933, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38712508

RESUMEN

Nanopore field-effect transistor (NP-FET) devices hold great promise as sensitive single-molecule sensors, which provide CMOS-based on-chip readout and are also highly amenable to parallelization. A plethora of applications will therefore benefit from NP-FET technology, such as large-scale molecular analysis (e.g., proteomics). Due to its potential for parallelization, the NP-FET looks particularly well-suited for the high-throughput readout of DNA-based barcodes. However, to date, no study exists that unravels the bit-rate capabilities of NP-FET devices. In this paper, we design DNA-based barcodes by labeling a piece of double-stranded DNA with dumbbell-like DNA structures. We explore the impact of both the size of the dumbbells and their spacing on achievable bit-rates. The conformational fluctuations of this DNA-origami, as observed by molecular dynamics (MD) simulation, are accounted for when selecting label sizes. An experimentally informed 3D continuum nanofluidic-nanoelectronic device model subsequently predicts both the ionic current and FET signals. We present a barcode design for a conceptually generic NP-FET, with a 14 nm diameter pore, operating in conditions corresponding to experiments. By adjusting the spacing between the labels to half the length of the pore, we show that a bit-rate of 78 kbit·s-1 is achievable. This lies well beyond the state-of-the-art of ≈40 kbit·s-1, with significant headroom for further optimizations. We also highlight the advantages of NP-FET readout based on the larger signal size and sinusoidal signal shape.


Asunto(s)
ADN , Simulación de Dinámica Molecular , Nanoporos , Transistores Electrónicos , ADN/química
3.
ACS Nano ; 18(19): 12412-12426, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38693619

RESUMEN

Glycans play vital roles in nearly all life processes of multicellular organisms, and understanding these activities is inseparable from elucidating the biological significance of glycans. However, glycan research has lagged behind that of DNA and protein due to the challenges posed by structural heterogeneity and isomerism (i.e., structures with equal molecular weights) the lack of high-efficiency structural analysis techniques. Nanopore technology has emerged as a sensitive single-molecule biosensor, shining a light on glycan analysis. However, a significant number of glycans are small and uncharged, making it challenging to elicit identifiable nanopore signals. Here we introduce a R-binaphthyl tag into glycans, which enhances the cation-π interaction between the derivatized glycan molecules and the nanopore interface, enabling the detection of neutral glycans with an aerolysin nanopore. This approach allows for the distinction of di-, tri-, and tetrasaccharides with monosaccharide resolution and has the potential for group discrimination, the monitoring of enzymatic transglycosylation reactions. Notably, the aerolysin mutant T240R achieves unambiguous identification of six disaccharide isomers, trisaccharide and tetrasaccharide linkage isomers. Molecular docking simulations reveal that multiple noncovalent interactions occur between residues R282, K238, and R240 and the glycans and R-binaphthyl tag, significantly slowing down their translocation across the nanopore. Importantly, we provide a demonstration of the kinetic translocation process of neutral glycan isomers, establishing a solid theoretical foundation for glycan nanopore analysis. The development of our technology could promote the analysis of glycan structural isomers and has the potential for nanopore-based glycan structural determination and sequencing.


Asunto(s)
Toxinas Bacterianas , Nanoporos , Polisacáridos , Proteínas Citotóxicas Formadoras de Poros , Polisacáridos/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Simulación del Acoplamiento Molecular , Mutación
4.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38758523

RESUMEN

2´-O-methylation (Nm) is one of the most abundant modifications found in both mRNAs and noncoding RNAs. It contributes to many biological processes, such as the normal functioning of tRNA, the protection of mRNA against degradation by the decapping and exoribonuclease (DXO) protein, and the biogenesis and specificity of rRNA. Recent advancements in single-molecule sequencing techniques for long read RNA sequencing data offered by Oxford Nanopore technologies have enabled the direct detection of RNA modifications from sequencing data. In this study, we propose a bio-computational framework, Nm-Nano, for predicting the presence of Nm sites in direct RNA sequencing data generated from two human cell lines. The Nm-Nano framework integrates two supervised machine learning (ML) models for predicting Nm sites: Extreme Gradient Boosting (XGBoost) and Random Forest (RF) with K-mer embedding. Evaluation on benchmark datasets from direct RNA sequecing of HeLa and HEK293 cell lines, demonstrates high accuracy (99% with XGBoost and 92% with RF) in identifying Nm sites. Deploying Nm-Nano on HeLa and HEK293 cell lines reveals genes that are frequently modified with Nm. In HeLa cell lines, 125 genes are identified as frequently Nm-modified, showing enrichment in 30 ontologies related to immune response and cellular processes. In HEK293 cell lines, 61 genes are identified as frequently Nm-modified, with enrichment in processes like glycolysis and protein localization. These findings underscore the diverse regulatory roles of Nm modifications in metabolic pathways, protein degradation, and cellular processes. The source code of Nm-Nano can be freely accessed at https://github.com/Janga-Lab/Nm-Nano.


Asunto(s)
Aprendizaje Automático , Análisis de Secuencia de ARN , Transcriptoma , Humanos , Metilación , Análisis de Secuencia de ARN/métodos , Células HeLa , Secuenciación de Nanoporos/métodos , Células HEK293 , Biología Computacional/métodos , Procesamiento Postranscripcional del ARN , Nanoporos , Programas Informáticos , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Nat Commun ; 15(1): 4049, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744925

RESUMEN

Nanopore direct RNA sequencing (DRS) has emerged as a powerful tool for RNA modification identification. However, concurrently detecting multiple types of modifications in a single DRS sample remains a challenge. Here, we develop TandemMod, a transferable deep learning framework capable of detecting multiple types of RNA modifications in single DRS data. To train high-performance TandemMod models, we generate in vitro epitranscriptome datasets from cDNA libraries, containing thousands of transcripts labeled with various types of RNA modifications. We validate the performance of TandemMod on both in vitro transcripts and in vivo human cell lines, confirming its high accuracy for profiling m6A and m5C modification sites. Furthermore, we perform transfer learning for identifying other modifications such as m7G, Ψ, and inosine, significantly reducing training data size and running time without compromising performance. Finally, we apply TandemMod to identify 3 types of RNA modifications in rice grown in different environments, demonstrating its applicability across species and conditions. In summary, we provide a resource with ground-truth labels that can serve as benchmark datasets for nanopore-based modification identification methods, and TandemMod for identifying diverse RNA modifications using a single DRS sample.


Asunto(s)
Oryza , Análisis de Secuencia de ARN , Humanos , Análisis de Secuencia de ARN/métodos , Oryza/genética , Procesamiento Postranscripcional del ARN , Nanoporos , ARN/genética , ARN/metabolismo , Secuenciación de Nanoporos/métodos , Aprendizaje Profundo , Inosina/metabolismo , Inosina/genética , Transcriptoma/genética
6.
Nanotechnology ; 35(32)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38692268

RESUMEN

An ion detection device that combines a DNA-origami nanopore and a field-effect transistor (FET) was designed and modeled to determine sensitivity of the nanodevice to the local cellular environment. Such devices could be integrated into a live cell, creating an abiotic-biotic interface integrated with semiconductor electronics. A continuum model is used to describe the behavior of ions in an electrolyte solution. The drift-diffusion equations are employed to model the ion distribution, taking into account the electric fields and concentration gradients. This was matched to the results from electric double layer theory to verify applicability of the model to a bio-sensing environment. The FET device combined with the nanopore is shown to have high sensitivity to ion concentration and nanopore geometry, with the electrical double layer behavior governing the device characteristics. A logarithmic relationship was found between ion concentration and a single FET current, generating up to 200 nA of current difference with a small applied bias.


Asunto(s)
ADN , Iones , Nanoporos , Transistores Electrónicos , ADN/análisis , ADN/química , Nanotecnología/instrumentación , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos
7.
Microb Genom ; 10(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713194

RESUMEN

Whole-genome reconstruction of bacterial pathogens has become an important tool for tracking transmission and antimicrobial resistance gene spread, but highly accurate and complete assemblies have largely only historically been achievable using hybrid long- and short-read sequencing. We previously found the Oxford Nanopore Technologies (ONT) R10.4/kit12 flowcell/chemistry produced improved assemblies over the R9.4.1/kit10 combination, however long-read only assemblies contained more errors compared to Illumina-ONT hybrid assemblies. ONT have since released an R10.4.1/kit14 flowcell/chemistry upgrade and recommended the use of Bovine Serum Albumin (BSA) during library preparation, both of which reportedly increase accuracy and yield. They have also released updated basecallers trained using native bacterial DNA containing methylation sites intended to fix systematic basecalling errors, including common adenosine (A) to guanine (G) and cytosine (C) to thymine (T) substitutions. To evaluate these improvements, we successfully sequenced four bacterial reference strains, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus, and nine genetically diverse E. coli bloodstream infection-associated isolates from different phylogroups and sequence types, both with and without BSA. These sequences were de novo assembled and compared against Illumina-corrected reference genomes. In this small evaluation of 13 isolates we found that nanopore long-read-only R10.4.1/kit 14 assemblies with updated basecallers trained using bacterial methylated DNA produce accurate assemblies with ≥40×depth, sufficient to be cost-effective compared with hybrid ONT/Illumina sequencing in our setting.


Asunto(s)
Genoma Bacteriano , Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Escherichia coli/genética , Staphylococcus aureus/genética , Análisis de Secuencia de ADN/métodos , Pseudomonas aeruginosa/genética , Secuenciación de Nanoporos/métodos , ADN Bacteriano/genética , Klebsiella pneumoniae/genética , Secuenciación Completa del Genoma/métodos , Bacterias/genética , Bacterias/clasificación , Humanos
9.
J Am Chem Soc ; 146(19): 12919-12924, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691627

RESUMEN

RNA is a key biochemical marker, yet its chemical instability and complex secondary structure hamper its integration into DNA nanotechnology-based sensing platforms. Relying on the denaturation of the native RNA structure using urea, we show that restructured DNA/RNA hybrids can readily be prepared at room temperature. Using solid-state nanopore sensing, we demonstrate that the structures of our DNA/RNA hybrids conform to the design at the single-molecule level. Employing this chemical annealing procedure, we mitigate RNA self-cleavage, enabling the direct detection of restructured RNA molecules for biosensing applications.


Asunto(s)
ADN , Nanoporos , ARN , ARN/química , ARN/análisis , ADN/química , Técnicas Biosensibles/métodos , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Nanotecnología/métodos , Urea/química
10.
J Phys Chem Lett ; 15(14): 3900-3906, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38564363

RESUMEN

Nanopores with two-dimensional materials have various advantages in sensing, but the fast translocation of molecules hinders their scale-up applications. In this work, we investigate the influence of -F, -O, and -OH surface terminations on the translocation of peptides through MXene nanopores. We find that the longest dwell time always occurs when peptides pass through the Ti3C2O2 nanopores. This elongated dwell time is induced by the strongest interaction between peptides and the Ti3C2O2 membrane, in which the van der Waals interactions dominate. Compared to the other two MXene nanopores, the braking effect is indicated during the whole translocation process, which evidence the advantage of Ti3C2O2 in nanopore sensing. Our work demonstrates that membrane surface chemistry has a great influence on the translocation of peptides, which can be introduced in the design of nanopores for a better performance.


Asunto(s)
Nanoporos , Nitritos , Elementos de Transición , Péptidos
11.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38608279

RESUMEN

BACKGROUND: As adoption of nanopore sequencing technology continues to advance, the need to maintain large volumes of raw current signal data for reanalysis with updated algorithms is a growing challenge. Here we introduce slow5curl, a software package designed to streamline nanopore data sharing, accessibility, and reanalysis. RESULTS: Slow5curl allows a user to fetch a specified read or group of reads from a raw nanopore dataset stored on a remote server, such as a public data repository, without downloading the entire file. Slow5curl uses an index to quickly fetch specific reads from a large dataset in SLOW5/BLOW5 format and highly parallelized data access requests to maximize download speeds. Using all public nanopore data from the Human Pangenome Reference Consortium (>22 TB), we demonstrate how slow5curl can be used to quickly fetch and reanalyze raw signal reads corresponding to a set of target genes from each individual in large cohort dataset (n = 91), minimizing the time, egress costs, and local storage requirements for their reanalysis. CONCLUSIONS: We provide slow5curl as a free, open-source package that will reduce frictions in data sharing for the nanopore community: https://github.com/BonsonW/slow5curl.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Humanos , Algoritmos , Difusión de la Información , Registros
12.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612388

RESUMEN

Styryl dyes are generally poor fluorescent molecules inherited from their flexible molecular structures. However, their emissive properties can be boosted by restricting their molecular motions. A tight confinement into inorganic molecular sieves is a good strategy to yield highly fluorescent hybrid systems. In this work, we compare the confinement effect of two Mg-aluminophosphate zeotypes with distinct pore systems (the AEL framework, a one-dimensional channeled structure with elliptical pores of 6.5 Å × 4.0 Å, and the CHA framework, composed of large cavities of 6.7 Å × 10.0 Å connected by eight-ring narrower windows) for the encapsulation of 4-DASPI styryl dye (trans-4-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide). The resultant hybrid systems display significantly improved photophysical features compared to 4-DASPI in solution as a result of tight confinement in both host inorganic frameworks. Molecular simulations reveal a tighter confinement of 4-DASPI in the elliptical channels of AEL, explaining its excellent photophysical properties. On the other hand, a singular arrangement of 4-DASPI dye is found when confined within the cavity-based CHA framework, where the 4-DASPI molecule spans along two adjacent cavities, with each aromatic ring sitting on these adjacent cavities and the polymethine chain residing within the narrower eight-ring window. However, despite the singularity of this host-guest arrangement, it provides less tight confinement for 4-DASPI than AEL, resulting in a slightly lower quantum yield.


Asunto(s)
Nanoporos , Colorantes , Movimiento (Física) , Extremidad Superior
13.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612506

RESUMEN

Positronium (Ps) is a valuable probe to investigate nanometric or sub-nanometric cavities in non-metallic materials, where Ps can be confined. Accessible experimental measurements concern the lifetime of trapped Ps, which is largely influenced by pick-off processes, depending on the size of the cavity as well as on the density of the electrons belonging to the surface of the host trap. Another relevant physical quantity is the contact density, that is the electron density at the positron position, which is usually found to be well below the vacuum value. Here, we review the principal models that have been formulated to account and explain for these physical properties of confined Ps. Starting with models, treating Ps as a single particle formulated essentially to study pick-off, we go on to describe more refined two-particle models because a two-body model is the simplest approach able to describe any change in the contact density, observed in many materials. Finally, we consider a theory of Ps annihilation in nanometric voids in which the exchange correlations between the electron of Ps and the outer electrons play a fundamental role. This theory is not usually taken into account in the literature, but it has to be considered for a correct theory of pick-off annihilation processes.


Asunto(s)
Nanoporos , Ligando de CD40 , Electrones , Vacio
14.
ACS Synth Biol ; 13(4): 1382-1392, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38598783

RESUMEN

The functional analysis of protein nanopores is typically conducted in planar lipid bilayers or liposomes exploiting high-resolution but low-throughput electrical and optical read-outs. Yet, the reconstitution of protein nanopores in vitro still constitutes an empiric and low-throughput process. Addressing these limitations, nanopores can now be analyzed using the functional nanopore (FuN) screen exploiting genetically encoded fluorescent protein sensors that resolve distinct nanopore-dependent Ca2+ in- and efflux patterns across the inner membrane of Escherichia coli. With a primary proof-of-concept established for the S2168 holin, and thereof based recombinant nanopore assemblies, the question arises to what extent alternative nanopores can be analyzed with the FuN screen and to what extent alternative fluorescent protein sensors can be adapted. Focusing on self-assembling membrane peptides, three sets of 13 different nanopores are assessed for their capacity to form nanopores in the context of the FuN screen. Nanopores tested comprise both natural and computationally designed nanopores. Further, the FuN screen is extended to K+-specific fluorescent protein sensors and now provides a capacity to assess the specificity of a nanopore or ion channel. Finally, a comparison to high-resolution biophysical and electrophysiological studies in planar lipid bilayers provides an experimental benchmark for future studies.


Asunto(s)
Nanoporos , Membrana Dobles de Lípidos/metabolismo , Liposomas , Péptidos/metabolismo , Canales Iónicos
15.
Lab Chip ; 24(10): 2721-2735, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38656267

RESUMEN

We report the generation of ∼8 nm dual in-plane pores fabricated in a thermoplastic via nanoimprint lithography (NIL). These pores were connected in series with nanochannels, one of which served as a flight tube to allow the identification of single molecules based on their molecular-dependent apparent mobilities (i.e., dual in-plane nanopore sensor). Two different thermoplastics were investigated including poly(methyl methacrylate), PMMA, and cyclic olefin polymer, COP, as the substrate for the sensor both of which were sealed using a low glass transition cover plate (cyclic olefin co-polymer, COC) that could be thermally fusion bonded to the PMMA or COP substrate at a temperature minimizing nanostructure deformation. Unique to these dual in-plane nanopore sensors was two pores flanking each side of the nanometer flight tube (50 × 50 nm, width × depth) that was 10 µm in length. The utility of this dual in-plane nanopore sensor was evaluated to not only detect, but also identify single ribonucleotide monophosphates (rNMPs) by using the travel time (time-of-flight, ToF), the resistive pulse event amplitude, and the dwell time. In spite of the relatively large size of these in-plane pores (∼8 nm effective diameter), we could detect via resistive pulse sensing (RPS) single rNMP molecules at a mass load of 3.9 fg, which was ascribed to the unique structural features of the nanofluidic network and the use of a thermoplastic with low relative dielectric constants, which resulted in a low RMS noise level in the open pore current. Our data indicated that the identification accuracy of individual rNMPs was high, which was ascribed to an improved chromatographic contribution to the nano-electrophoresis apparent mobility. With the ToF data only, the identification accuracy was 98.3%. However, when incorporating the resistive pulse sensing event amplitude and dwell time in conjunction with the ToF and analyzed via principal component analysis (PCA), the identification accuracy reached 100%. These findings pave the way for the realization of a novel chip-based single-molecule RNA sequencing technology.


Asunto(s)
Nanoporos , Ribonucleótidos/química , Ribonucleótidos/análisis , Temperatura , Polimetil Metacrilato/química
16.
Microb Genom ; 10(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683195

RESUMEN

The advent of viral metagenomics, or viromics, has improved our knowledge and understanding of global viral diversity. High-throughput sequencing technologies enable explorations of the ecological roles, contributions to host metabolism, and the influence of viruses in various environments, including the human intestinal microbiome. However, bacterial metagenomic studies frequently have the advantage. The adoption of advanced technologies like long-read sequencing has the potential to be transformative in refining viromics and metagenomics. Here, we examined the effectiveness of long-read and hybrid sequencing by comparing Illumina short-read and Oxford Nanopore Technology (ONT) long-read sequencing technologies and different assembly strategies on recovering viral genomes from human faecal samples. Our findings showed that if a single sequencing technology is to be chosen for virome analysis, Illumina is preferable due to its superior ability to recover fully resolved viral genomes and minimise erroneous genomes. While ONT assemblies were effective in recovering viral diversity, the challenges related to input requirements and the necessity for amplification made it less ideal as a standalone solution. However, using a combined, hybrid approach enabled a more authentic representation of viral diversity to be obtained within samples.


Asunto(s)
Heces , Microbioma Gastrointestinal , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Microbioma Gastrointestinal/genética , Heces/virología , Heces/microbiología , Nanoporos , Secuenciación de Nanoporos/métodos , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Viroma/genética , Análisis de Secuencia de ADN/métodos
17.
Anal Chem ; 96(19): 7411-7420, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38652893

RESUMEN

Accurate analysis of microRNAs (miRNAs) at the single-cell level is extremely important for deeply understanding their multiple and intricate biological functions. Despite some advancements in analyzing single-cell miRNAs, challenges such as intracellular interferences and insufficient detection limits still remain. In this work, an ultrasensitive nanopore sensor for quantitative single-cell miRNA-155 detection is constructed based on ionic current rectification (ICR) coupled with enzyme-free catalytic hairpin assembly (CHA). Benefiting from the enzyme-free CHA amplification strategy, the detection limit of the nanopore sensor for miRNA-155 reaches 10 fM and the nanopore sensor is more adaptable to complex intracellular environments. With the nanopore sensor, the concentration of miRNA-155 in living single cells is quantified to realize the early diagnosis of triple-negative breast cancer (TNBC). Furthermore, the nanopore sensor can be applied in screening anticancer drugs by tracking the expression level of miRNA-155. This work provides an adaptive and universal method for quantitatively analyzing intracellular miRNAs, which will greatly improve our understanding of cell heterogeneity and provide a more reliable scientific basis for exploring major diseases at the single-cell level.


Asunto(s)
MicroARNs , Nanoporos , Análisis de la Célula Individual , Neoplasias de la Mama Triple Negativas , MicroARNs/análisis , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Humanos , Femenino , Línea Celular Tumoral , Límite de Detección
18.
J Clin Microbiol ; 62(5): e0024624, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38563782

RESUMEN

Next-generation sequencing has evolved as a powerful tool, with applications that extend from diagnosis to public health surveillance and outbreak investigations. Short-read sequencing, using primarily Illumina chemistry, has been the prevailing approach. Single-molecule sensing and long-read sequencing using Oxford Nanopore Technologies (ONT) has witnessed a breakthrough in the evolution of the technology, performance, and applications in the past few years. In this issue of the Journal of Clinical Microbiology, Bogaerts et al. (https://doi.org/10.1128/jcm.01576-23) describe the utility of the latest ONT sequencing technology, the R10.4.1, in bacterial outbreak investigations. The authors demonstrate that ONT R10.4.1 technology can be comparable to Illumina sequencing for single-nucleotide polymorphism-based phylogeny. The authors emphasize that the reproducibility between ONT and Illumina technologies could facilitate collaborations among laboratories utilizing different sequencing platforms for outbreak investigations.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Brotes de Enfermedades , Nanoporos , Secuenciación de Nanoporos/métodos , Salud Pública , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Polimorfismo de Nucleótido Simple
19.
J Microbiol Methods ; 221: 106929, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599390

RESUMEN

Utility of a recently developed long-read pipeline, Emu, was assessed using an expectation-maximization algorithm for accurate read classification. We compared it to conventional short- and long-read pipelines, using well-characterized mock bacterial samples. Our findings highlight the necessity of appropriate data-processing for taxonomic descriptions, expanding our understanding of the precise microbiome.


Asunto(s)
Bacterias , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbiota/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Nanoporos , ADN Bacteriano/genética
20.
J Am Chem Soc ; 146(19): 13356-13366, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38602480

RESUMEN

The crucial roles that glycans play in biological systems are determined by their structures. However, the analysis of glycan structures still has numerous bottlenecks due to their inherent complexities. The nanopore technology has emerged as a powerful sensor for DNA sequencing and peptide detection. This has a significant impact on the development of a related research area. Currently, nanopores are beginning to be applied for the detection of simple glycans, but the analysis of complex glycans by this technology is still challenging. Here, we designed an engineered α-hemolysin nanopore M113R/T115A to achieve the sensing of complex glycans at micromolar concentrations and under label-free conditions. By extracting characteristic features to depict a three-dimensional (3D) scatter plot, glycans with different numbers of functional groups, various chain lengths ranging from disaccharide to decasaccharide, and distinct glycosidic linkages could be distinguished. Molecular dynamics (MD) simulations show different behaviors of glycans with ß1,3- or ß1,4-glycosidic bonds in nanopores. More importantly, the designed nanopore system permitted the discrimination of each glycan isomer with different lengths in a mixture with a separation ratio of over 0.9. This work represents a proof-of-concept demonstration that complex glycans can be analyzed using nanopore sequencing technology.


Asunto(s)
Simulación de Dinámica Molecular , Nanoporos , Polisacáridos , Polisacáridos/química , Proteínas Hemolisinas/química , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA