Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.454
Filtrar
1.
Aquat Toxicol ; 275: 107067, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222567

RESUMEN

The increase in industrial production of multi-walled carbon nanotubes (MWCNTs) raises concerns about their potential adverse effects associated to environmental releases, especially in aquatic environments where they are likely to accumulate. This study focuses on the environmental impact of MWCNTs, specifically on a benthic freshwater diatom (Nitzschia linearis), which plays a major role in the primary production of water bodies. The obtained results indicate that exposure to MWCNTs in the presence of natural organic matter (NOM) inhibits diatom's growth in a dose-dependent manner after 72 h of exposure. Interestingly, the photosystem II quantum yield (PSIIQY) in diatoms remains unaffected even after exposure to MWCNTs at 10 mg/L. After 48 h of exposure, MWCNTs are found to bind preferentially to extracellular polymeric substances (EPS) produced by diatoms, which could decrease their toxicity by limiting their interaction with this organism. However, measurement of genotoxicity and teratogenicity in diatoms exposed to MWCNTs revealed that the exposure to MWCNTs increased the occurrence of cells with micronuclei and abnormal frustules. Microscopy analyses including two-photon excitation microscopy (TPEM) revealed the internalization of MWCNTs. Investigations of the diatom's frustule structure using Scanning electron microscopy (SEM) indicated that the presence of pore structures constitutes a pathway allowing MWCNTs uptake. The presence in the diatom's cytoplasm of MWCNTs might possibly induce disturbances of the cellular components, leading to the observed genotoxic and teratogenic effects. In view of previous studies, this work underscores the need for further studies on the interaction between nanomaterials and different diatom species, given the species-specific nature of the interactions.


Asunto(s)
Diatomeas , Nanotubos de Carbono , Contaminantes Químicos del Agua , Diatomeas/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Contaminantes Químicos del Agua/toxicidad , Agua Dulce , Teratógenos/toxicidad , Complejo de Proteína del Fotosistema II/metabolismo , Daño del ADN
2.
Ecotoxicol Environ Saf ; 285: 117019, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39317077

RESUMEN

Carbonaceous nanomaterials (CNMs) are widely used in electronics, biomedicine, agriculture, environmental remediation, and catalysis due to their excellent biocompatibility, high reactivity, and high specific surface area. However, the extensive applications of CNMs cause their inevitable release into water, which may result in toxic effects on the aquatic ecological environment and organisms. CNMs can cause lipid peroxidation damage and neurotoxicity in aquatic organisms, affecting embryo hatching and larval morphology. The effects of CNMs on aquatic organisms vary depending on their structures and physicochemical properties, as well as the species, age, and tolerance of the tested organisms. The above uncertainties have increased the difficulty of exploring the impact of carbonaceous nanomaterials on the toxicity of aquatic organisms to a certain extent. Solving these issues is of great significance and reference value for promoting the research and safe utilization of carbon nanomaterials. Therefore, a systematic review of the effects of potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies is needed. This paper firstly summarizes the toxic effects of commonly used CNMs (i.e., carbon nanotubes, graphene, and fullerene) on different aquatic organisms, which include developmental toxicity, behavioral and metabolic toxicity, reproductive toxicity, and organ toxicity. Then the main mechanisms of CNMs to aquatic organisms are further explored, and the methods to reduce the toxicity of CNMs are also summarized. Finally, the current challenges and future perspectives for studying CNM toxicity to aquatic organisms are proposed.


Asunto(s)
Organismos Acuáticos , Nanoestructuras , Contaminantes Químicos del Agua , Organismos Acuáticos/efectos de los fármacos , Animales , Contaminantes Químicos del Agua/toxicidad , Nanoestructuras/toxicidad , Grafito/toxicidad , Grafito/química , Nanotubos de Carbono/toxicidad , Fulerenos/toxicidad , Fulerenos/química , Reproducción/efectos de los fármacos , Restauración y Remediación Ambiental/métodos
3.
Aquat Toxicol ; 275: 107078, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39241468

RESUMEN

In recent years, there is a great concern about the potential adverse effects of carbon nanotubes (CNTs) on the aquatic systems due to their increasingly extensive application. In this study, juvenile Cyprinus carpio were exposed to multi-walled CNTs (MWCNTs) at concentrations of 0, 0.25, and 2.5 mg L-1 for 28 days. Then, oxidative stress indicators and metabolite profile of the livers were assessed. Results showed the significant increase of malondialdehyde (MDA) content and decrease of glutathione (GSH) activities in fish treated with 2.5 mg L-1 MWCNTs. LC-MS untargeted metabolomics demonstrated that 406 and 274 metabolites in fish treated with 2.5 mg L-1 MWCNTs were significantly up- and down-regulated, respectively. KEGG functional annotation analysis showed the disturbance of amino acid metabolism, lipid metabolism, and nucleotide metabolism. In addition, ferroptosis signaling pathway was detected. Therefore, iron content analysis and quantitative real-time RT-PCR assay were performed furtherly to validate the contribution of ferroptosis to MWCNTs-induced hepatotoxicity. The iron content increased significantly and the mRNA levels of ferroptosis-related genes including STEAP3, ACSL4, NCOA4, TFR1, NRF2, SLC3A2, SLC7A11, GPX4, and FPN1 were also obviously changed. Taken together, our study suggested that MWCNTs exposure-induced ferroptosis were associated with iron overload and lipid peroxidation via NRF2/SLC7A11/GSH/GPX4 axis. Our findings provide essential information to understand the mechanism of CNTs-induced hepatotoxicity in fish and explore potential biomarkers.


Asunto(s)
Carpas , Ferroptosis , Hígado , Metabolómica , Nanotubos de Carbono , Contaminantes Químicos del Agua , Animales , Carpas/metabolismo , Ferroptosis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Nanotubos de Carbono/toxicidad , Cromatografía Liquida , Estrés Oxidativo/efectos de los fármacos , Hierro/metabolismo , Glutatión/metabolismo , Malondialdehído/metabolismo , Cromatografía Líquida con Espectrometría de Masas
4.
Sci Total Environ ; 947: 174614, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992354

RESUMEN

This study aimed to determine the potential toxicological effects of carbon nanotubes (CNTs), their modifications with ethylenediamine (ED) and boric acid (BA) on aquatic organisms. Specifically, the research focused on the morphological, physiological, and histopathological-immuno-histochemical responses in zebrafish (Danio rerio) embryos and larvae, via applying different concentrations of CNTs, CNT-ED, and CNT-ED-BA (Control, 5, 10, and 20 mg/L). The results indicated that 20 mg/L CNT nanoparticles were toxic to zebrafish larvae, with mortality rates increasing with CNT and CNT-ED concentrations, reaching 36.7 % at the highest CNT concentration. The highest dose caused considerable degeneration, necrosis, DNA damage, and apoptosis, as evidenced by histopathological and immunohistochemical tests. In contrast, despite their high concentration, CNT-ED-BA nanoparticles exhibited low toxicity. Behavioral studies revealed that CNT and CNT-ED nanoparticles had a more significant impact on sensory-motor functions compared to CNT-ED-BA nanoparticles. These findings suggest that modifying the nanosurface with boric acid, resulting in boramidic acid, can reduce the toxicity induced by CNT and CNT-ED.


Asunto(s)
Ácidos Bóricos , Embrión no Mamífero , Larva , Nanotubos de Carbono , Contaminantes Químicos del Agua , Pez Cebra , Animales , Nanotubos de Carbono/toxicidad , Embrión no Mamífero/efectos de los fármacos , Ácidos Bóricos/toxicidad , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
5.
Sci Total Environ ; 947: 174765, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004362

RESUMEN

Widely-used C60 fullerene nanoparticles (C60) result in their release into the aquatic environment, which may affect the distribution and toxicity of pollutants such as arsenic (As), to aquatic organism. In this study, arsenate (As(V)) accumulation, speciation and subcellular distribution was determined in Danio rerio (zebrafish) intestine, head and muscle tissues in the presence of C60. Meanwhile we compared how single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO) and graphene (GN) nanoparticles alter the behaviors of As(V). Results showed that C60 significantly inhibited As accumulation and toxicity in D. rerio, due to a decrease in total As and monomethylarsonic acid (MMA) and As(V) species concentrations, a lower relative distribution in the metal-sensitive fraction (MSF). It was attributed that C60 may coat As(V) ion channels and consequently, affect the secretion of digestive enzymes in the gut, favoring As excretion and inhibiting As methylation. Similarly, MWCNTs reduced the species concentration of MMA and As(V) in the intestines, low GSH (glutathione) contents in the intestine. Due to the disparity of other carbon-based nanomaterial morphologies, SWCNTs, GO and GN exhibited the various effects on the toxicity of As(V). In addition, the possible pathway of arsenobetaine (AsB) biosynthesis included migration from the intestine to muscle in D. rerio, with the precursor of AsB likely to be 2-dimethylarsinylacetic acid (DMAA). The results of this study suggest that C60 is beneficial for controlling As(V) pollution and reducing the impact of As(V) biogeochemical cycles throughout the ecosystem.


Asunto(s)
Arseniatos , Fulerenos , Nanopartículas , Contaminantes Químicos del Agua , Pez Cebra , Fulerenos/toxicidad , Animales , Arseniatos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad , Nanotubos de Carbono/toxicidad , Grafito/toxicidad
6.
J Hazard Mater ; 476: 135214, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39029181

RESUMEN

Nano-concrete, which is an admixture of nanomaterials in concrete recipes, has been investigated to overcome the limitations of existing concrete, such as its stability and strength. However, there is no information on the human health effects of broken-down dust released during the construction and demolition efforts. In this study, we prepared an inhalable fraction of multi-walled carbon nanotube-containing nano-concrete dust and performed comparative toxicity studies with conventional concrete dust and DQ12 using a rat intratracheal instillation model. Although the recipes for concrete and nano-concrete are entirely different, the pulverized dust samples showed similar physicochemical properties, such as 0.46-0.48 µm diameter and chemical composition. Both concrete and nano-concrete dust exhibited similar patterns and magnitudes, representing acute neutrophilic inflammation and chronic active inflammation with lymphocyte infiltration. The toxicity endpoints of the tested particles at both time points showed an excellent correlation with the reactive oxygen species levels released from the alveolar macrophages, highlighting that alveolar macrophages are the primary target cells and that the oxidative stress paradigm is the main toxicity mechanism of the tested particles. In addition, the toxicity potentials of both concrete and nano-concrete dust were more than 10 times lower than that of DQ12.


Asunto(s)
Materiales de Construcción , Polvo , Nanotubos de Carbono , Estrés Oxidativo , Neumonía , Nanotubos de Carbono/toxicidad , Nanotubos de Carbono/química , Animales , Estrés Oxidativo/efectos de los fármacos , Polvo/análisis , Materiales de Construcción/toxicidad , Neumonía/inducido químicamente , Masculino , Especies Reactivas de Oxígeno/metabolismo , Exposición por Inhalación/efectos adversos , Macrófagos Alveolares/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/patología , Ratas Sprague-Dawley , Ratas , Líquido del Lavado Bronquioalveolar/química
7.
Chem Biol Interact ; 400: 111158, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39033796

RESUMEN

Multi-walled carbon nanotube (MWCNT) induced respiratory toxicity has become a growing concern, with ferroptosis emerging as a novel mechanism implicated in various respiratory diseases. However, whether ferroptosis is involved in MWCNT-elicited lung injury and the underlying molecular mechanisms warrant further exploration. In this study, we found that MWCNT-induced ferroptosis is autophagy-dependent, contributing to its cellular toxicity. Inhibiting of autophagy by pharmacological inhibitors 3-MA or ATG5 gene knockdown significantly attenuated MWCNT-induced ferroptosis, concomitant with rescued mitochondrial biogenesis. Rapamycin, the autophagy agonist, exacerbated the mitochondrial damage and MWCNT-induced ferroptosis. Moreover, lentivirus-mediated overexpression of PGC-1α inhibited ferroptosis, while inhibition of PGC-1α aggravated ferroptosis. In summary, our study unveils ferroptosis as a novel mechanism underlying MWCNT-induced respiratory toxicity, with autophagy promoting MWCNT-induced ferroptosis by hindering PGC-1α-dependent mitochondrial biogenesis.


Asunto(s)
Autofagia , Ferroptosis , Pulmón , Nanotubos de Carbono , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Nanotubos de Carbono/toxicidad , Ferroptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/citología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Biogénesis de Organelos , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Animales , Sirolimus/farmacología , Ratones , Línea Celular
8.
Environ Toxicol ; 39(9): 4431-4446, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38856197

RESUMEN

Multi-walled carbon nanotubes (MWCNTs) and halloysite nanotubes (HNTs) are widely used tubular-structured nanomaterials (NMs), but their cardiovascular effects are not clear. This study compared the effects of MWCNTs and HNTs on lipid profiles in mouse plasma and gene expression profiles in aortas and hearts. Mice were intravenously injected with 50 µg NMs, once a day, for 5 days. Then, the plasma was collected for lipidomics analysis, and aortas and hearts were collected for RNA-sequencing analysis. While MWCNTs or HNTs did not induce obvious pathological changes in aortas or hearts, the lipid profiles in mouse plasma were altered. Further analysis revealed that MWCNTs more effectively upregulated sphingolipids and sterol lipids, whereas HNTs more effectively upregulated glycerophospholipids and fatty acyls. Consistently, RNA-sequencing data indicated that MWCNTs and HNTs altered signaling pathways related with lipid synthesis and metabolism, as well as those related with endoplasmic reticulum, lysosomes and autophagy, more significantly in aortas than in hearts. We further verified the changes of proteins involved in autophagic lipolysis, that MWCNTs were more effectively to suppress the autophagic biomarker LC3, whereas HNTs were more effectively to affect lipid metabolism proteins. These results may provide novel understanding about the influences of MWCNTs and HNTs on lipid profiles and lipid signaling pathways in cardiovascular systems. Importantly, previous studies considered HNTs as biocompatible materials, but the results from this study suggested that both MWCNTs and HNTs were capable to affect lipid profiles and autophagic lipolysis pathways in cardiovascular systems, although their exact influences were different.


Asunto(s)
Aorta , Autofagia , Miocardio , Nanotubos de Carbono , Animales , Nanotubos de Carbono/toxicidad , Autofagia/efectos de los fármacos , Ratones , Masculino , Aorta/efectos de los fármacos , Aorta/metabolismo , Miocardio/metabolismo , Arcilla/química , Nanotubos/química , Nanotubos/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Ratones Endogámicos C57BL , Corazón/efectos de los fármacos
9.
Chemosphere ; 362: 142685, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909862

RESUMEN

Carbon nanomaterials rarely exist in isolation in the natural environment, and their combined effects cannot be ignored. Multi-walled carbon nanotubes (MWCNTs) have shown tremendous potential applications in diverse fields, including pollution remediation, biomedicine, energy, and smart agriculture. However, the combined toxicities of MWCNTs and pesticides on non-target organisms, particularly amphibians, are often overlooked. Fluxapyroxad (FLX), a significant succinate dehydrogenase inhibitor fungicide, has been extensively utilized for the protection of food and cash crops and control of fungi. This raises the possibility of coexistence of MWCNTs and FLX. The objective of this study was to explore the individual and combined toxic effects of FLX and MWCNTs on the early life stages of Xenopus laevis. Embryos were exposed to varying concentrations of FLX (0, 5, and 50 µg/L) either alone or in combination with MWCNTs (100 µg/L) for a duration of 17 days. The findings indicated that co-exposure to FLX and MWCNTs worsened the inhibition of growth, liver damage, and dysregulation of enzymatic activity in tadpoles. Liver transcriptomic analysis further revealed that the presence of MWCNTs exacerbated the disturbances in glucose and lipid metabolism caused by FLX. Additionally, the combined exposure groups exhibited amplified alterations in the composition and function of the gut microflora. Our study suggests that it is imperative to pay greater attention to the agricultural applications, management and ecological risks of MWCNTs in the future, considering MWCNTs may significantly enhance the toxicity of FLX.


Asunto(s)
Larva , Nanotubos de Carbono , Xenopus laevis , Animales , Nanotubos de Carbono/toxicidad , Larva/efectos de los fármacos , Fungicidas Industriales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Hígado/efectos de los fármacos
10.
Inhal Toxicol ; 36(4): 275-281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38836332

RESUMEN

Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.


Asunto(s)
Nanotubos de Carbono , Triterpenos Pentacíclicos , Neumonía , Transducción de Señal , Triterpenos , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nanotubos de Carbono/toxicidad , FN-kappa B/metabolismo , Triterpenos Pentacíclicos/farmacología , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Neumonía/prevención & control , Neumonía/metabolismo , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología
11.
J Endod ; 50(8): 1117-1123, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38719088

RESUMEN

INTRODUCTION: Carbon nanotubes (CNT) are 1 of the allotropes of carbon with unique properties. CNT shows good bone-tissue compatibility and has been reported to induce osteogenesis; therefore, it is regarded as an ideal material in a wide range of applications. However, the therapeutic effect of CNT-containing materials in the healing of apical periodontal tissue is unknown. The purpose of this study was to clarify the effect of CNT on the proliferation and mineralization of the human cementoblast cell line (HCEM). METHODS: The proliferation of HCEM cells with CNT stimulation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay performed from 24-72 hours. Calcium deposition levels were evaluated by alizarin red S staining on days 7 and 10, and mineralization-related gene expression was examined by quantitative real-time polymerase chain reaction on days 3, 7, and 10. Scanning electron microscopy was used to observe the culture with CNT on day 14. RESULTS: CNT showed no cytotoxicity to HCEM cell proliferation. Treatment was performed with mineralization medium, CNT-induced HCEM mineralization on day 7, and increased calcium deposition on days 7 and 14. Messenger RNA expression of alkaline phosphatase was significantly increased throughout the experimental period, and bone sialoprotein was significantly increased on day 3 by CNT, whereas no effect was found on mRNA expression of type I collagen. CNT was observed in attachment to the cell surface on day 14. CONCLUSIONS: CNT promotes the mineralization of HCEM cells, indicating the potential as a new bioactive component for apical periodontal tissue regeneration materials through the regulation of cementoblast mineralization.


Asunto(s)
Calcificación Fisiológica , Proliferación Celular , Cemento Dental , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/toxicidad , Cemento Dental/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Línea Celular , Microscopía Electrónica de Rastreo
12.
Arch Toxicol ; 98(9): 2843-2866, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38739308

RESUMEN

The type of experimental model for the in vitro testing of drug formulations efficiency represents an important tool in cancer biology, with great attention being granted to three-dimensional (3D) cultures as these offer a closer approximation of the clinical sensitivity of drugs. In this study, the effects induced by carboxyl-functionalized single-walled carbon nanotubes complexed with cisplatin (SWCNT-COOH-CDDP) and free components (SWCNT-COOH and CDDP) were compared between conventional 2D- and 3D-spheroid cultures of human breast cancer cells. The 2D and 3D breast cancer cultures were exposed to various doses of SWCNT-COOH (0.25-2 µg/mL), CDDP (0.158-1.26 µg/mL) and the same doses of SWNCT-COOH-CDDP complex for 24 and 48 h. The anti-tumor activity, including modulation of cell viability, oxidative stress, proliferation, apoptosis, and invasion potential, was explored by spectrophotometric and fluorometric methods, immunoblotting, optical and fluorescence microscopy. The SWCNT-COOH-CDDP complex proved to have high anti-cancer efficiency on 2D and 3D cultures by inhibiting cell proliferation and activating cell death. A dose of 0.632 µg/mL complex triggered different pathways of apoptosis in 2D and 3D cultures, by intrinsic, extrinsic, and reticulum endoplasmic pathways. Overall, the 2D cultures showed higher susceptibility to the action of complex compared to 3D cultures and SWCNT-COOH-CDDP proved enhanced anti-tumoral activity compared to free CDDP.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Supervivencia Celular , Cisplatino , Nanotubos de Carbono , Transducción de Señal , Neoplasias de la Mama Triple Negativas , Cisplatino/farmacología , Humanos , Nanotubos de Carbono/toxicidad , Nanotubos de Carbono/química , Apoptosis/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacos , Femenino , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Relación Dosis-Respuesta a Droga
13.
Nanotoxicology ; 18(2): 214-228, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557361

RESUMEN

Carbon nanotubes (CNTs) are increasingly being used in industrial applications, but their toxicological data in animals and humans are still sparse. To assess the toxicological dose-response of CNTs and to evaluate their pulmonary biopersistence, their quantification in tissues, especially lungs, is crucial. There are currently no reference methods or reference materials for low levels of CNTs in organic matter. Among existing analytical methods, few have been fully and properly validated. To remedy this, we undertook an inter-laboratory comparison on samples of freeze-dried pig lung, ground and doped with CNTs. Eight laboratories were enrolled to analyze 3 types of CNTs at 2 concentration levels each in this organic matrix. Associated with the different analysis techniques used (specific to each laboratory), sample preparation may or may not have involved prior digestion of the matrix, depending on the analysis technique and the material being analyzed. Overall, even challenging, laboratories' ability to quantify CNT levels in organic matter is demonstrated. However, CNT quantification is often overestimated. Trueness analysis identified effective methods, but systematic errors persisted for some. Choosing the assigned value proved complex. Indirect analysis methods, despite added steps, outperform direct methods. The study emphasizes the need for reference materials, enhanced precision, and organized comparisons.


Asunto(s)
Pulmón , Nanotubos de Carbono , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidad , Animales , Porcinos , Pulmón/química , Pulmón/efectos de los fármacos , Laboratorios/normas , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química
14.
Plant Physiol Biochem ; 210: 108628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636256

RESUMEN

Carbon nanotubes (CNTs) have emerged as a promising frontier in plant science owing to their unique physicochemical properties and versatile applications. CNTs enhance stress tolerance by improving water dynamics and nutrient uptake and activating defence mechanisms against abiotic and biotic stresses. They can be taken up by roots and translocated within the plant, impacting water retention, nutrient assimilation, and photosynthesis. CNTs have shown promise in modulating plant-microbe interactions, influencing symbiotic relationships and mitigating the detrimental effects of phytopathogens. CNTs have demonstrated the ability to modulate gene expression in plants, offering a powerful tool for targeted genetic modifications. The integration of CNTs as sensing elements in plants has opened new avenues for real-time monitoring of environmental conditions and early detection of stress-induced changes. In the realm of agrochemicals, CNTs have been explored for their potential as carriers for targeted delivery of nutrients, pesticides, and other bioactive compounds. CNTs have the potential to demonstrate phytotoxic effects, detrimentally influencing both the growth and developmental processes of plants. Phytotoxicity is characterized by induction of oxidative stress, impairment of cellular integrity, disruption of photosynthetic processes, perturbation of nutrient homeostasis, and alterations in gene expression. This review aims to provide a comprehensive overview of the current state of knowledge regarding the multifaceted roles of CNTs in plant physiology, emphasizing their potential applications and addressing the existing challenges in translating this knowledge into sustainable agricultural practices.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Carbono/toxicidad , Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Fotosíntesis , Estrés Fisiológico , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Estrés Oxidativo
15.
Chem Biol Interact ; 392: 110925, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452846

RESUMEN

In recent years, carbon nanotubes (CNTs) have become one of the most promising materials for the technology industry. However, due to the extensive usage of these materials, they may be released into the environment, and cause toxicities to the organism. Here, their acute toxicities in zebrafish embryos and larvae were evaluated by using various assessments that may provide us with a novel perspective on their effects on aquatic animals. Before conducting the toxicity assessments, the CNTs were characterized as multiwall carbon nanotubes (MWCNTs) functionalized with hydroxyl and carboxyl groups, which improved their solubility and dispersibility. Based on the results, abnormalities in zebrafish behaviors were observed in the exposed groups, indicated by a reduction in tail coiling frequency and alterations in the locomotion as the response toward photo and vibration stimuli that might be due to the disruption in the neuromodulatory system and the formation of reactive oxygen species (ROS) by MWCNTs. Next, based on the respiratory rate assay, exposed larvae consumed more oxygen, which may be due to the injuries in the larval gill by the MWCNTs. Finally, even though no irregularity was observed in the exposed larval cardiac rhythm, abnormalities were shown in their cardiac physiology and blood flow with significant downregulation in several cardiac development-related gene expressions. To sum up, although the following studies are necessary to understand the exact mechanism of their toxicity, the current study demonstrated the environmental implications of MWCNTs in particularly low concentrations and short-term exposure, especially to aquatic organisms.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Animales , Pez Cebra/metabolismo , Nanotubos de Carbono/toxicidad , Larva , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Embrión no Mamífero/metabolismo , Contaminantes Químicos del Agua/toxicidad
16.
Environ Toxicol Pharmacol ; 107: 104413, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485102

RESUMEN

Carbon nanotubes (CNTs) vary in physicochemical properties which makes risk assessment challenging. Mice were pulmonary exposed to 26 well-characterized CNTs using the same experimental design and followed for one day, 28 days or 3 months. This resulted in a unique dataset, which was used to identify physicochemical predictors of pulmonary inflammation and systemic acute phase response. MWCNT diameter and SWCNT specific surface area were predictive of lower and higher neutrophil influx, respectively. Manganese and iron were shown to be predictive of higher neutrophil influx at day 1 post-exposure, whereas nickel content interestingly was predictive of lower neutrophil influx at all three time points and of lowered acute phase response at day 1 and 3 months post-exposure. It was not possible to separate effects of properties such as specific surface area and length in the multiple regression analyses due to co-variation.


Asunto(s)
Nanotubos de Carbono , Neumonía , Ratones , Animales , Nanotubos de Carbono/toxicidad , Nanotubos de Carbono/química , Reacción de Fase Aguda , Líquido del Lavado Bronquioalveolar/química , Pulmón , Neumonía/inducido químicamente , Ratones Endogámicos C57BL
17.
J Mater Sci Mater Med ; 35(1): 24, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526738

RESUMEN

Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1ß, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.


Asunto(s)
Curcumina , Nanotubos de Carbono , Humanos , Curcumina/farmacología , Nanotubos de Carbono/toxicidad , Nanotubos de Carbono/química , Antioxidantes/farmacología , Inflamación , Antiinflamatorios/farmacología
18.
J Toxicol Environ Health A ; 87(9): 398-418, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38385605

RESUMEN

Nanoribbons of imidacloprid, a systemic and chloronicotinyl insecticide, were successfully synthesized by laser-induced fragmentation/exfoliation of imidacloprid powders suspended in water, with widths ranging from 160 to 470 nm, lengths in the micron scale, and thickness of a few atoms layers. The aim of the present study was to examine the effects of acute and chronic exposure to imidacloprid (IMC) bulk and compare its effects with synthesized imidacloprid nanoribbons (IMCNR) on larval and adult viability, developmental time, olfactory capacity, longevity, productivity, and genotoxicity in Drosophila melanogaster. Larvae or adults were exposed at 0.01, 0.02, or 0.03 ppm to IMC or IMCNR. Results demonstrated that IMCNR produced a significant reduction in viability and olfactory ability. IMC did not significantly alter viability and olfactory ability. Similarly, marked differences on longevity were detected between treatment with IMC and IMCNR where the lifespan of males treated with IMC was significantly higher than control while IMCNR produced a reduction. As for productivity, developmental time, and genotoxicity, no marked differences were found between both forms of IMC.


Asunto(s)
Insecticidas , Nanotubos de Carbono , Nitrocompuestos , Animales , Masculino , Drosophila melanogaster/genética , Nanotubos de Carbono/toxicidad , Neonicotinoides/toxicidad , Insecticidas/toxicidad , Larva , Mutación
19.
Cardiovasc Toxicol ; 24(4): 408-421, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411850

RESUMEN

Halloysite nanotubes (HNTs) are nanomaterials (NMs) derived from natural clays and have been considered as biocompatible NMs for biomedical uses. However, the cardiovascular toxicity of HNTs has not been thoroughly investigated. In this study, we compared the cardiotoxicity of HNTs and multi-walled carbon nanotubes (MWCNTs), focusing on the changes in Kruppel-like factor (KLF)-mediated signaling pathways. Mice were intravenously injected with 50 µg NMs, once a day, for 5 days, and then mouse hearts were removed for experiments. While HNTs or MWCNTs did not induce obvious pathological changes, RNA-sequencing data suggested the alterations of KLF gene expression. We further confirmed an increase of Klf15 positive cells, accompanied by changes in Klf15-related gene ontology (GO) terms. We noticed that most of the changed GO terms are related with the regulation of gene expression, and we confirmed that the NMs increased myoneurin (Mynn) but decreased snail family transcriptional repressor 1 (Snai1), two transcription factors (TFs) related with Klf15. Besides, the changed GO terms also include metal ion binding and positive regulation of glucose import, and we verified an increase of phosphoenolpyruvate carboxykinase 1 (Pck1) and insulin receptor (Insr). However, HNTs and MWCNTs only showed minimal impact on cell death signaling pathways, and no increase in apoptotic sites was observed after NM treatment. We concluded that intravenous administration of HNTs and MWCNTs activated a protective TF, namely Klf15 in mouse aortas, to alter gene expression and signaling pathways related with metal ion binding and glucose import.


Asunto(s)
Nanotubos de Carbono , Animales , Ratones , Nanotubos de Carbono/toxicidad , Arcilla , Inyecciones Intravenosas , Factores de Transcripción de Tipo Kruppel/genética , Glucosa
20.
BMC Plant Biol ; 24(1): 116, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38365618

RESUMEN

Water deficit stress is one of the most significant environmental abiotic factors influencing plant growth and metabolism globally. Recently, encouraging outcomes for the use of nanomaterials in agriculture have been shown to reduce the adverse effects of drought stress on plants. The present study aimed to investigate the impact of various carbon nanomaterials (CNMs) on the physiological, morphological, and biochemical characteristics of bell pepper plants subjected to water deficit stress conditions. The study was carried out as a factorial experiment using a completely randomized design (CRD) in three replications with a combination of three factors. The first factor considered was irrigation intensity with three levels [(50%, 75%, and 100% (control) of the field capacity (FC)] moisture. The second factor was the use of carbon nanomaterials [(fullerene C60, multi-walled carbon nanotubes (MWNTs) and graphene nanoplatelets (GNPs)] at various concentrations [(control (0), 100, 200, and 1000 mg/L)]. The study confirmed the foliar uptake of CNMs using the Scanning Electron Microscopy (SEM) technique. The effects of the CNMs were observed in a dose-dependent manner, with both stimulatory and toxicity effects being observed. The results revealed that exposure to MWNTs (1000 mg/L) under well-watered irrigation, and GNPs treatment (1000 mg/L) under severe drought stress (50% FC) significantly (P < 0.01) improved fruit production and fruit dry weight by 76.2 and 73.2% as compared to the control, respectively. Also, a significant decrease (65.9%) in leaf relative water content was obtained in plants subjected to soil moisture of 50% FC over the control. Treatment with GNPs at 1000 mg/L under 50% FC increased electrolyte leakage index (83.6%) compared to control. Foliar applied MWNTs enhanced the leaf gas exchange, photosynthesis rate, and chlorophyll a and b concentrations, though decreased the oxidative shock in leaves which was demonstrated by the diminished electrolyte leakage index and upgrade in relative water content and antioxidant capacity compared to the control. Plants exposed to fullerene C60 at 100 and 1000 mg/L under soil moisture of 100 and 75% FC significantly increased total flavonoids and phenols content by 63.1 and 90.9%, respectively, as compared to the control. A significant increase (184.3%) in antioxidant activity (FRAP) was observed in plants exposed to 200 mg/L MWCNTs under irrigation of 75% FC relative to the control. The outcomes proposed that CNMs could differentially improve the plant and fruit characteristics of bell pepper under dry conditions, however, the levels of changes varied among CNMs concentrations. Therefore, both stimulatory and toxicity effects of employed CNMs were observed in a dose-dependent manner. The study concludes that the use of appropriate (type/dose) CNMs through foliar application is a practical tool for controlling the water shortage stress in bell pepper. These findings will provide the basis for more research on CNMs-plant interactions, and with help to ensure their safe and sustainable use within the agricultural chains.


Asunto(s)
Capsicum , Fulerenos , Grafito , Nanotubos de Carbono , Nanotubos de Carbono/toxicidad , Nanotubos de Carbono/química , Capsicum/fisiología , Clorofila A , Grafito/química , Deshidratación , Antioxidantes/metabolismo , Agua/metabolismo , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA