Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
1.
Dalton Trans ; 53(20): 8772-8780, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712840

RESUMEN

A series of Ir(III)-naproxen (NPX) conjugates with the molecular formula [Ir(C^N)2bpy(4-CH2ONPX-4'-CH2ONPX)](PF6) (Ir-NPX-1-3) were designed and synthesized, including C^N = 2-phenylpyridine (ppy, Ir-NPX-1), 2-(2-thienyl)pyridine (thpy, Ir-NPX-2) and 2-(2,4-difluorophenyl)pyridine (dfppy, Ir-NPX-3). Cytotoxicity tests showed that Ir-NPX-1-3 exhibited excellent antitumor activity, especially in A549R cells. The cellular uptake experiment showed that the complexes were mainly localized in mitochondria, and induced apoptosis in A549R cells by damaging the structure and function of mitochondria. The main manifestations are a decrease in the mitochondrial membrane potential (MMP), an increase in reactive oxygen species (ROS) levels, and cell cycle arrest. Furthermore, Ir-NPX-1-3 could inhibit the migration and colony formation of cancer cells, demonstrating potential anti-metastatic ability. Finally, the anti-inflammatory and immunological applications of Ir-NPX-1-3 were verified. The downregulation of cyclooxygenase-2 (COX-2) and programmed death-ligand 1 (PD-L1) expression levels and the release of immunogenic cell death (ICD) related signaling molecules such as damage-associated molecular patterns (DAMPs) (cell surface calreticulin (CRT), high mobility group box 1 (HMGB1), and adenosine triphosphate (ATP)) indicate that these Ir(III) -NPX conjugates are novel ICD inducers with synergistic effects in multiple anti-tumor pathways.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Iridio , Mitocondrias , Naproxeno , Iridio/química , Iridio/farmacología , Naproxeno/farmacología , Naproxeno/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Animales , Ratones , Inflamación/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estructura Molecular , Línea Celular Tumoral
2.
Ecotoxicol Environ Saf ; 278: 116333, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701652

RESUMEN

Discharging pharmaceutically active drugs into water and wastewater has become a significant environmental threat. Traditional methods are unable to effectively remove these compounds from wastewater, so it is necessary to search for more effective methods. This study investigates the potential of MIL-101(Cr)-NH2 as a preferable and more effective adsorbent for the adsorption and removal of pharmaceutically active compounds from aqueous solutions. By utilizing its large porosity, high specific surface area, and high stability, the structural and transport properties of three pharmaceutically active compounds naproxen (NAP), diclofenac (DIC) and sulfamethoxazole (SMX)) studied using molecular dynamics simulation. The results indicate that the MIL-101(Cr)-NH2 adsorbent is suitable for removing drug molecules from aqueous solutions, with maximum adsorption capacities of 697.75 mg/g for naproxen, 704.99 mg/g for diclofenac, and 725.51 mg/g for sulfamethoxazole.


Asunto(s)
Diclofenaco , Estructuras Metalorgánicas , Simulación de Dinámica Molecular , Naproxeno , Sulfametoxazol , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Naproxeno/química , Estructuras Metalorgánicas/química , Sulfametoxazol/química , Diclofenaco/química , Adsorción , Purificación del Agua/métodos , Aguas Residuales/química , Preparaciones Farmacéuticas/química
3.
J Hazard Mater ; 470: 134258, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608588

RESUMEN

Photochemical active species generated from photosensitizers, e.g., dissolved organic matter (DOM), play vital roles in the transformation of micropollutants in water. Here, butanedione (BD), a redox-active moiety in DOM and widely found in nature, was employed to photo-transform naproxen (NPX) with peracetic acid (PAA) and H2O2 as contrasts. The results obtained showed that the BD exhibited more applicable on NPX degradation. It works in the lake or river water under UV and solar irradiation, and its NPX degradation efficiency was 10-30 times faster than that of PAA and H2O2. The reason for the efficient transformation of pollutants is that the BD system was proved to be a non-free radical dominated mechanism. The quantum yield of BD (Ф254 nm) was calculated to be 0.064, which indicates that photophysical process is the dominant mode of BD conversion. By adding trapping agents, direct energy transfer from 3BD* to NPX (in anoxic environment) or dissolved oxygen (in aerobic environment) was proved to play a major role (> 91 %). Additionally, the BD process reduces the toxicity of NPX and promotes microbial growth after irradiation. Overall, this study significantly deepened the understanding of the transformation between BD and micropollutants, and provided a potential BD-based process for micropollutants removal under solar irradiation.


Asunto(s)
Naproxeno , Fotólisis , Rayos Ultravioleta , Contaminantes Químicos del Agua , Naproxeno/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Transferencia de Energía , Peróxido de Hidrógeno/química , Ácido Peracético/química , Procesos Fotoquímicos
4.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673856

RESUMEN

Immune response to biomaterials, which is intimately related to their surface properties, can produce chronic inflammation and fibrosis, leading to implant failure. This study investigated the development of magnetic nanoparticles coated with silica and incorporating the anti-inflammatory drug naproxen, aimed at multifunctional biomedical applications. The synthesized nanoparticles were characterized using various techniques that confirmed the presence of magnetite and the formation of a silica-rich bioactive glass (BG) layer. In vitro studies demonstrated that the nanoparticles exhibited bioactive properties, forming an apatite surface layer when immersed in simulated body fluid, and biocompatibility with bone cells, with good viability and alkaline phosphatase activity. Naproxen, either free or encapsulated, reduced nitric oxide production, an inflammatory marker, while the BG coating alone did not show anti-inflammatory effects in this study. Overall, the magnetic nanoparticles coated with BG and naproxen showed promise for biomedical applications, especially anti-inflammatory activity in macrophages and in the bone field, due to their biocompatibility, bioactivity, and osteogenic potential.


Asunto(s)
Materiales Biocompatibles Revestidos , Vidrio , Nanopartículas de Magnetita , Naproxeno , Naproxeno/farmacología , Naproxeno/química , Vidrio/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Nanopartículas de Magnetita/química , Animales , Ratones , Humanos , Óxido Nítrico/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Dióxido de Silicio/química , Supervivencia Celular/efectos de los fármacos , Células RAW 264.7 , Osteogénesis/efectos de los fármacos
5.
Int J Pharm ; 657: 124126, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38626845

RESUMEN

As the monotherapy of available analgesics is usually accompanied by serious side effects or limited efficacy in the management of chronic pain, multimodal analgesia is widely used to achieve improved benefit-to-risk ratios in clinic. Drug-drug salts are extensively researched to optimize the physicochemical properties of active pharmaceutical ingredients (APIs) and achieve clinical benefits compared with individual APIs or their combination. New drug-drug salt crystals metformin-ibuprofen (MET-IBU) and metformin-naproxen (MET-NAP) were prepared from metformin (MET) and two poorly water-soluble anti-inflammatory drugs (IBU and NAP) by the solvent evaporation method. The structures of these crystals were confirmed by single crystal and powder X-ray diffraction, Hirshfeld surface, Fourier transform infrared spectroscopy and thermal analysis. Both MET-IBU and MET-NAP showed significantly improved solubility and intrinsic dissolution rate than the pure IBU or NAP. The stability test indicated that MET-IBU and MET-NAP have excellent physical stability under stressing test (10 days) and accelerated conditions (3 months). Moreover, isobolographic analysis suggested that MET-IBU and MET-NAP exerted potent and synergistic antinociceptive effects in λ-Carrageenan-induced inflammatory pain in mice, and both of them had an advantage in rapid pain relief. These results demonstrated the potential of MET-IBU and MET-NAP to achieve synergistic antinociceptive effects by developing drug-drug salt crystals.


Asunto(s)
Analgésicos , Cristalización , Sinergismo Farmacológico , Ibuprofeno , Metformina , Naproxeno , Solubilidad , Metformina/química , Metformina/administración & dosificación , Metformina/farmacología , Animales , Naproxeno/química , Naproxeno/administración & dosificación , Ibuprofeno/química , Ibuprofeno/administración & dosificación , Ibuprofeno/farmacología , Analgésicos/química , Analgésicos/administración & dosificación , Analgésicos/farmacología , Ratones , Masculino , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Dolor/tratamiento farmacológico , Estabilidad de Medicamentos , Carragenina , Liberación de Fármacos , Sales (Química)/química
6.
Mol Pharm ; 21(5): 2501-2511, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38574292

RESUMEN

The molecular structures of nonsteroidal anti-inflammatory drugs (NSAIDs) vary, but most contain a carboxylic acid functional group (RCOOH). This functional group is known to be related to the mechanism of cyclooxygenase inhibition and also causes side effects, such as gastrointestinal bleeding. This study proposes a new role for RCOOH in NSAIDs: facilitating the interaction at the binding site II of serum albumins. We used bovine serum albumin (BSA) as a model to investigate the interactions with ligands at site II. Using dansyl-proline (DP) as a fluorescent site II marker, we demonstrated that only negatively charged NSAIDs such as ibuprofen (IBP), naproxen (NPX), diflunisal (DFS), and ketoprofen (KTP) can efficiently displace DP from the albumin binding site. We confirmed the importance of RCOO by neutralizing IBP and NPX through esterification, which reduced the displacement of DP. The competition was also monitored by stopped-flow experiments. While IBP and NPX displaced DP in less than 1 s, the ester derivatives were ineffective. We also observed a higher affinity of negatively charged NSAIDs using DFS as a probe and ultrafiltration experiments. Molecular docking simulations showed an essential salt bridge between the positively charged residues Arg409 and Lys413 with RCOO-, consistent with the experimental findings. We performed a ligand dissociation pathway and corresponding energy analysis by applying molecular dynamics. The dissociation of NPX showed a higher free energy barrier than its ester. Apart from BSA, we conducted some experimental studies with human serum albumin, and similar results were obtained, suggesting a general effect for other mammalian serum albumins. Our findings support that the RCOOH moiety affects not only the mechanism of action and side effects but also the pharmacokinetics of NSAIDs.


Asunto(s)
Antiinflamatorios no Esteroideos , Ácidos Carboxílicos , Simulación del Acoplamiento Molecular , Albúmina Sérica Bovina , Animales , Bovinos , Humanos , Antiinflamatorios no Esteroideos/química , Sitios de Unión , Ácidos Carboxílicos/química , Diflunisal/química , Ibuprofeno/química , Cetoprofeno/química , Ligandos , Naproxeno/química , Unión Proteica , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo
7.
J Chromatogr A ; 1725: 464909, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688052

RESUMEN

Membrane technology has revolutionized various fields with its energy efficiency, versatility, user-friendliness, and adaptability. This study introduces a microfluidic chip, comprised of silicone rubber and polymethylmethacrylate (PMMA) sheets to explore the impacts of polymeric support morphology on electro-membrane extraction efficiency, representing a pioneering exploration in this field. In this research, three polyvinylidenefluoride (PVDF) membranes with distinct pore sizes were fabricated and their characteristics were assessed through field-emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). This investigation centers on the extraction of three widely prescribed non-steroidal anti-inflammatory drugs: aspirin (ASA), naproxen (NAP), and ibuprofen (IBU). Quantitative parameters in the extraction process including voltage, donor phase flow rate, and acceptor phase composition were optimized, considering the type of membrane as a qualitative factor. To assess the performance of the fabricated PVDF membranes, a comparative analysis with a commercially available Polypropylene (PP) membrane was conducted. Efficient enrichment factors of 30.86, 23.15, and 21.06 were attained for ASA, NAP, and IBU, respectively, from urine samples under optimal conditions using the optimum PVDF membrane. Significantly, the choice of the ideal membrane amplified the purification levels of ASA, NAP, and IBU by factors of 1.6, 7.5, and 40, respectively.


Asunto(s)
Ibuprofeno , Membranas Artificiales , Polivinilos , Polivinilos/química , Ibuprofeno/aislamiento & purificación , Ibuprofeno/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antiinflamatorios no Esteroideos/química , Humanos , Naproxeno/aislamiento & purificación , Naproxeno/química , Aspirina/química , Aspirina/aislamiento & purificación , Técnicas Analíticas Microfluídicas , Límite de Detección , Polímeros de Fluorocarbono
8.
Anal Methods ; 16(13): 1870-1879, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38465391

RESUMEN

This paper presents a study on the application of magnetic biochars derived from three distinct biomass sources: almond (AMBC), walnut (WMBC), and peanut (PMBC) shells for magnetic solid-phase extraction (MSPE) of naproxen, a non-steroidal anti-inflammatory drug, from human saliva prior to LC-MS analysis. The three magnetic biochars were synthesized and characterized through IR, XRD, SEM, and EDX analyses. This work explored the factors influencing extraction efficiency using these three bioadsorbents through experimental design. The results obtained revealed that magnetic biochar derived from almond shells demonstrated outstanding performance in terms of naproxen extraction, achieving an impressive yield of 100.2%. This remarkable efficiency was achieved by optimizing parameters, including a 12-minute extraction time, a 3.5 mL elution volume, a 10 mg adsorbent mass, and a 4-minute elution time. Consequently, this study established almond shell as a low-cost, environmentally friendly, and efficient magnetic biochar for extracting naproxen from human saliva. This superior performance was made possible due to the abundant lignocellulosic potential inherent in almond shell structures, surpassing that of the other two biochars. The combination of magnetic extraction with LC-MS demonstrates good linearity, with an R2 value equal to 0.9987. The limits of detection (LOD) and quantification (LOQ) are 0.013 and 0.047 µg L-1, respectively.


Asunto(s)
Carbón Orgánico , Naproxeno , Saliva , Humanos , Naproxeno/química , Biomasa , Extracción en Fase Sólida/métodos , Fenómenos Magnéticos
9.
J Hazard Mater ; 470: 134139, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38555674

RESUMEN

In this study, the porous carbon material (FeN-BC) with ultra-high catalytic activity was obtained from waste biomass through Fe-N co-doping. The prominent degradation rate (> 96.8%) of naproxen (NAP) was achieved over a wide pH range (pH 3.0-9.0) in FeN-BC/PAA system. Unlike previously reported iron-based peracetic acid (PAA) systems with •OH or RO• as the dominated reactive species, the degradation of contaminants was attributed to singlet oxygen (1O2) produced by organic radicals (RO•) decomposition, which was proved to be thermodynamically feasible and favorable by theoretical calculations. Combining the theoretical calculations, characteristic and experimental analysis, the synergistic effects of Fe and N were proposed and summarized as follows: i) promoted the formation of extensive defects and Fe0 species that facilitated electron transfer between FeN-BC and PAA and continuous Fe(II) generation; ii) modified the specific surface area (SSA) and the isoelectric point of FeN-BC in favor of PAA adsorption on the catalyst surface. This study provides a strategy for waste biomass reuse to construct a heterogeneous catalyst/PAA system for efficient water purification and reveals the synergistic effects of typical metal-heteroatom for PAA activation.


Asunto(s)
Biomasa , Carbón Orgánico , Hierro , Ácido Peracético , Contaminantes Químicos del Agua , Purificación del Agua , Ácido Peracético/química , Carbón Orgánico/química , Hierro/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Nitrógeno/química , Naproxeno/química , Catálisis , Descontaminación/métodos , Adsorción
10.
Int J Biol Macromol ; 262(Pt 1): 130013, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340930

RESUMEN

A natural polysaccharide-based vehicle is facilely prepared for enantioselective loading of S-naproxen (S-NPX) and its programmed release. Cyclodextrin metal-organic frameworks (CD-MOF) are synthesized through the coordination of K+ with γ-cyclodextrin (γ-CD). Compared with R-NPX, the CD-MOF preferably combines with S-NPX, which can be confirmed by the thermodynamic calculations. The S-NPX loaded CD-MOF (CD-MOF-S-NPX) is grafted with disulfide bond (-S-S-) to improve its hydrophobicity, and the loaded S-NPX is further encapsulated in the chiral cavity of γ-CD by carboxymethyl potato starch (CPS) hydrogels. The intermolecular hydrogen bonding of the CPS hydrogels is prone to be destroyed in mildly basic media (∼pH 8.0), resulting in the swelling of the hydrogels; the -S-S- linkage in the vehicle can be cleaved in the presence of glutathione (GSH), leading to the collapse of the CD-MOF. Therefore, the programmed release of S-NPX can be achieved. Also in this work, the release kinetics is investigated, and the results indicate that the release of S-NPX is controlled by the Higuchi model.


Asunto(s)
Ciclodextrinas , Estructuras Metalorgánicas , Solanum tuberosum , Ciclodextrinas/química , Naproxeno/química , Estructuras Metalorgánicas/química , Hidrogeles , Estereoisomerismo
11.
Int J Pharm ; 652: 123846, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38272195

RESUMEN

Long-acting crystal suspensions of active pharmaceutical ingredients (API) mostly comprised of an API, a suspension media (water) and excipients and provide sustained API release over time. Excipients are crucial for controlling particle size and to achieve the stability of the API crystals in suspension. A bottom-up process was designed to produce long-acting crystal suspensions whilst investigating the excipient requirements during the production process and the subsequent storage. PVP K30 emerged as the most effective excipient for generating stable naproxen crystals with the desired size of 1 to 15 µm, using ethanol as solvent and water as anti-solvent. Calculations, performed based on the crystal properties and assuming complete PVP K30 adsorption on the crystal surface, revealed lower PVP K30 requirements during storage compared to initial crystal generation. Consequently, a membrane-based diafiltration process was used to determine and fine-tune PVP K30 concentration in the suspension post-crystallization. A seven-stage diafiltration process removed 98 % of the PVP K30 present in the suspension thereby reducing the PVP-to-naproxen ratio from 1:2 to 1:39 without impacting the stability of naproxen crystals in suspension. This work provides insights into the excipient requirements at various production stages and introduce the membrane-based diafiltration for precise excipient control after crystallization.


Asunto(s)
Química Farmacéutica , Excipientes , Excipientes/química , Naproxeno/química , Povidona/química , Tecnología , Agua/química , Suspensiones , Solubilidad
12.
Chemosphere ; 342: 140155, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716561

RESUMEN

A photocatalytic adsorbent composed of carbon dots (CD) embedded in a metal-organic framework (MOF) of MIL-88 B(Fe) was prepared by solvothermal technique. The synthesized CD@MIL-88 B(Fe) was characterized by different X-ray-based microscopic and spectroscopic methods, as well as electrochemical impedance spectroscopy, UV-Vis, FT-IR, DRS, TGA, and photoluminescence (PL) analysis. The prepared adsorbent showed a remarkable photocatalytic activity for eliminating amphotericin B (AmB) and naproxen (Nap) from aqueous solutions under visible light, reaching up to 92% and 90% removal, respectively, with an RSD value of around 5%. The parameters affecting the degradation process of pharmaceuticals were investigated. The optimal conditions for the degradation process were determined, including pH values (3 and 4 for AmB and Nap), photocatalyst concentration (0.2 g L-1), and H2O2 concentration (40-50 mM). Reactive oxidative species were also identified (·OH, ·O2) by examination of different scavengers. The adsorption isotherm and kinetic studies reveal that the synthesized photocatalyst exhibits dual functionality as an effective adsorbent (with maximum adsorption capacities of 42.5 and 121.5 mg g-1 for AmB and Nap) and a photocatalytic agent for removal purposes.


Asunto(s)
Carbono , Puntos Cuánticos , Naproxeno/química , Anfotericina B , Espectroscopía Infrarroja por Transformada de Fourier , Cinética , Peróxido de Hidrógeno/química , Luz , Agua
13.
Org Biomol Chem ; 21(14): 2968-2975, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36938589

RESUMEN

Bis-squaramide receptors L1-L4 bearing a dansyl moiety were synthesised and their potential applications as fluorescent probes towards non steroidal anti-inflammatory drugs naproxen and ketoprofen was investigated. A detailed photophysical characterization in CH3CN/DMSO solution (9 : 1 v/v) was conducted and demonstrated that the two macrocyclic receptors L1 and L2 show good sensitivity towards ketoprofen with an ON-OFF fluorescent response, while the two open chain receptors L3 and L4 behave similarly with the three guests considered. DFT theoretical calculations carried out on L2 and L4 as model receptors allowed to propose a possible coordination mode towards the guests. Finally, 1H-NMR spectroscopy in DMSO-d6/0.5% water solution demonstrated that the four receptors interact with the considered guests via H-bonds.


Asunto(s)
Cetoprofeno , Naproxeno , Naproxeno/farmacología , Naproxeno/química , Cetoprofeno/farmacología , Cetoprofeno/química , Dimetilsulfóxido , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química
14.
Biochim Biophys Acta Biomembr ; 1865(3): 184099, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36493856

RESUMEN

Non steroidal anti-inflammatory drugs (NSAIDs) are those of the most common over the counter (OTC) medications widely used by millions of people every day. Unfortunately, despite their popularity those drugs can cause serious side effects in the digestive system (ulcers, bleeding, and pain). These inconveniences are caused by the changes in the structures of the outer phospholipid layers of gastric mucus and mucosa. As a result the H+ ions from the stomach acid can pass easily through these natural protective barriers and damage the epithelial cells which causes ulcers and bleeding. Chitosan as a polysaccharide known for its unique biocompatibility, drug delivery possibilities and wound healing effect has been chosen to examine if it can induce the reduction of undesirable effects of naproxen. This paper focuses on the interactions of the naproxen with a model biological membrane with and without the presence of chitosan. Applying the Langmuir technique coupled with the surface potential measurements and the Brewster angle microscope imaging allowed to characterize successfully examined systems in terms of the monolayer compressibility, thickness, stability, electric properties and morphology. The results proved that the presence of naproxen alters the mechanical and electrical properties of the model membrane depending on its surface pressure. Moreover, the addition of chitosan to the lipid-drug system causes significant changes in the properties of the layer, i.e. a reduction of its compressibility, thickness and morphology modification. Nevertheless, chitosan suppresses some changes induced by naproxen such as alteration of the apparent dipole moment and film stability.


Asunto(s)
Quitosano , Naproxeno , Humanos , Naproxeno/farmacología , Naproxeno/química , Quitosano/química , Úlcera , Agua/química , Fosfolípidos/química
15.
J Biomol Struct Dyn ; 41(2): 753-763, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34871148

RESUMEN

Body's homeostasis is dependent on many factors, such as maintaining balance between free radicals formation and degradation. Human serum albumin (HSA) also plays an important role in homeostasis. The aim of this study was thermodynamic analysis of the interaction between ketoprofen (KET), naproxen (NPX), diclofenac (DIC) and HSA, as well as the effect of drug-albumin binding on HSA antioxidant activity using calorimetric and spectrophotometric techniques. Based on the calorimetric analysis it has been shown that accompanied by hydrophobic interaction drugs-albumin binding is an exoenergetic reaction. All analyzed drugs and HSA showed the ability to react with free radicals such as a radical cation, formed as a result of the reaction between 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and potassium persulfate (K2S2O8). Using ABTS assay a synergistic effect of ketoprofen (KET) and naproxen (NPX) on HSA antioxidant activity was observed while the effect of diclofenac (DIC) binding with albumin was probably additive. Because some medications including KET, NPX and DIC belong to over the counter (OTC) non-steroidal anti-inflammatory drugs (NSAIDs), it is necessary to understand their influence on HSA antioxidant activity.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Cetoprofeno , Humanos , Cetoprofeno/química , Naproxeno/farmacología , Naproxeno/química , Naproxeno/metabolismo , Antioxidantes/farmacología , Albúmina Sérica Humana , Diclofenaco/farmacología , Diclofenaco/química , Albúmina Sérica/química , Antiinflamatorios no Esteroideos/química , Sitios de Unión
16.
Molecules ; 27(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36431774

RESUMEN

Pharmaceutical products such as antibiotics, analgesics, steroids, and non-steroidal anti-inflammatory drugs (NSAIDs) are new emerging pollutants, often present in wastewater, potentially able to contaminate drinking water resources. Adsorption is considered the cheapest and most effective technique for the removal of pollutants from water, and, recently, membranes obtained by wet filtration method of SWCNT aqueous solutions (SWCNT buckypapers, SWCNT BPs) have been proposed as self-standing porous adsorbents. In this paper, the ability of graphene oxide/single-walled carbon nanotube composite membranes (GO-SWCNT BPs) to remove some important NSAIDs, namely Diclofenac, Ketoprofen, and Naproxen, was investigated at different pH conditions (pH 4, 6, and 8), graphene oxide amount (0, 20, 40, 60, and 75 wt.%), and initial NSAIDs concentration (1, 10, and 50 ppm). For the same experimental conditions, the adsorption capacities were found to strongly depend on the graphene oxide content. The best results were obtained for 75 wt.% graphene oxide with an adsorption capacity of 118 ± 2 mg g-1 for Diclofenac, 116 ± 2 mg g-1 for Ketoprofen, and 126 ± 3 mg g-1 for Naproxen at pH 4. Overall, the reported data suggest that GO-SWCNT BPs can represent a promising tool for a cheap and fast removal of NSAIDs from drinking water resources, with easy recovery and reusability features.


Asunto(s)
Agua Potable , Contaminantes Ambientales , Cetoprofeno , Diclofenaco/química , Cetoprofeno/química , Naproxeno/química , Antiinflamatorios no Esteroideos/química
17.
J Org Chem ; 87(21): 14186-14193, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36214741

RESUMEN

This work presents a compilation of binding constant (logKass) values in DMSO-d6/H2O (0.5% m/m) for a variety of receptors with 12 carboxylate anions (formate, acetate, lactate, pivalate, sorbate, hexanoate, benzoate, glyphosate, glucuronate, ibuprofen, naproxen, and ketoprofen). A total of 489 logKass values are listed for 100 anion receptor molecules. Most logKass values originate from previously published articles, along with some values for previously unpublished receptor molecules, spanning a workflow of 8 years. The purpose of this study is to serve as a comprehensive information source for selecting suitable receptor candidates to be used in practical carboxylate sensing applications, such as constructing ion-selective electrodes (ISE-s). To support such decision making, all receptors are presented together with lipophilicity (logPo/w) data.


Asunto(s)
Cetoprofeno , Aniones , Ácidos Carboxílicos , Ibuprofeno/química , Cetoprofeno/química , Naproxeno/química
18.
Mol Pharm ; 19(11): 4345-4356, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36268657

RESUMEN

Co-processing active pharmaceutical ingredients (APIs) with excipients is a promising particle engineering technique to improve the API physical properties, which can lead to more robust downstream drug product manufacturing and improved drug product attributes. Excipients provide control over critical API attributes like particle size and solid-state outcomes. Eudragit E100 is a widely used polymeric excipient to modulate drug release. Being cationic, it is primarily employed as a precipitation inhibitor to stabilize amorphous solid dispersions. In this work, we demonstrate how co-processing of E100 with naproxen (NPX) (a model hydrophobic API) into monodisperse emulsions via droplet microfluidics followed by solidification via solvent evaporation allows the facile fabrication of compact, monodisperse, and spherical particles with an expanded range of solid-state outcomes spanning from amorphous to crystalline forms. Low E100 concentrations (≤26% w/w) yield crystalline microparticles with a stable NPX polymorph distributed uniformly across the matrix at a high drug loading (∼89% w/w). Structurally, E100 incorporation reduces the size of primary particles comprising the co-processed microparticles in comparison to neat API microparticles made using the same technique and the as-received API powder. This reduction in primary particle size translates into an increased internal porosity of the co-processed microparticles, with specific surface area and pore volume ∼9 times higher than the neat API microparticles. These E100-enabled structural modifications result in faster drug release in acidic media compared to neat API microparticles. Additionally, E100-NPX microparticles have a significantly improved flowability compared to neat API microparticles and as-received API powder. Overall, this study demonstrates a facile microfluidics-based co-processing method that broadly expands the range of solid-state outcomes obtainable with E100 as an excipient, with multiscale control over the key attributes and performance of hydrophobic API-laden microparticles.


Asunto(s)
Química Farmacéutica , Excipientes , Excipientes/química , Química Farmacéutica/métodos , Polvos , Solubilidad , Microfluídica , Naproxeno/química , Tamaño de la Partícula , Composición de Medicamentos/métodos
19.
Analyst ; 147(21): 4735-4738, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36197128

RESUMEN

In this study, we propose a semi-quantification method based on breaking bonds between microparticles and glass plates in a combined acoustic-gravitational field. The semi-quantified binding constant values for BSA-ibuprofen, BSA-ciprofloxacin, ConA-glycogen, ConA-mannan, and BSA-naproxen calculated using this method were 7.5 × 103, 1.6 × 104, 2.3 × 105, 2.4 × 106 and 9.0 × 107 M-1, respectively, which were in concord with the reported values.


Asunto(s)
Ibuprofeno , Naproxeno , Naproxeno/química , Ibuprofeno/química , Mananos , Acústica , Ciprofloxacina , Glucógeno , Albúmina Sérica Bovina/química
20.
Molecules ; 27(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36144537

RESUMEN

Salts of naproxen (NAP) with chitosan (CTS) and reticulated chitosan (CEP) were prepared under optimized conditions to maximize the yield of reaction. The objective was to evaluate the dissociation in water, which can guide studies of release of the drug from biopolymeric salts in pharmaceutical applications. Higher salification was found after 24 h of reaction at 60 °C in a molar ratio 1:1.05 (CTS:NAP, mol/mol), resulting in a degree of substitution (DS) of 17% according to 13C NMR, after neutralization of the -NH2 group of the biopolymer by the carboxylic group of the drug. The presence of NAP salt is evidenced by FTIR bands related to the -NH3+ group at 856 cm-1, a decrease in crystallinity index in XRD diffractograms as well as changes in mass loss ratios (TG/DTG/DTA) and increased thermal stability of the salt regarding CTS itself. The CEPN crosslinked salt presented a DS = 3.6%, probably due to the shielding of the -NH2 groups. Dissociation studies revealed that at pH 2.00, dissociation occurred faster when compared to at pH 7.00 in the non-reticulated salt, while the opposite was observed for the reticulated one.


Asunto(s)
Quitosano , Biopolímeros , Quitosano/química , Naproxeno/química , Preparaciones Farmacéuticas , Sales (Química) , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA