Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2346-2356, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39044596

RESUMEN

To achieve rapid detection of enramycin in feed, we employed the competitive inhibition method to develop a colloidal gold immunochromatographic test strip based on the anti-enramycin A monoclonal antibody (anti-Er.A-mAb). Colloidal gold probes were prepared with a laboratory-prepared high-purity anti-Er.A-mAb. The effects of pH, antibody titer, and antigen concentration (test line) on the test strip performance were investigated. The colloidal gold test strip prepared with 8 µL potassium carbonate addition, 4 µg/mL antibody, 1.0 mg/mL antigen (test line), and 3 µL gold-labeled antibody showed acceptable specificity and a low limit of detection. The test strip showed the detection limit of 25 ng/mL for enramycin A, with a linear range of 25-300 ng/mL. The experiments on the feed with positive sample addition proved that the test strip had good repeatability and was more sensitive than high-performance liquid chromatography, being applicable for the rapid detection of enramycin in large batches of feed samples.


Asunto(s)
Alimentación Animal , Anticuerpos Monoclonales , Cromatografía de Afinidad , Oro Coloide , Oro Coloide/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Cromatografía de Afinidad/métodos , Alimentación Animal/análisis , Nebramicina/análisis , Nebramicina/análogos & derivados , Contaminación de Alimentos/análisis , Residuos de Medicamentos/análisis
2.
J Med Microbiol ; 73(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973691

RESUMEN

Introduction. Aminoglycoside antibiotics such as amikacin and kanamycin are important components in the treatment of Mycobacterium tuberculosis (Mtb) infection. However, more and more clinical strains are found to be aminoglycoside antibiotic-resistant. Apramycin is another kind of aminoglycoside antibiotic that is commonly used to treat infections in animals.Hypothesis. Apramycin may have in vitro activity against Mtb.Aim. This study aims to evaluate the efficacy of apramycin against Mtb in vitro and determine its epidemiological cut-off (ECOFF) value.Methodology. One hundred Mtb isolates, including 17 pansusceptible and 83 drug-resistant tuberculosis (DR-TB) strains, were analysed for apramycin resistance using the MIC assay.Results. Apramycin exhibited significant inhibitory activity against Mtb clinical isolates, with an MIC50 of 0.5 µg ml-1 and an MIC90 of 1 µg ml-1. We determined the tentative ECOFF value as 1 µg ml-1 for apramycin. The resistant rates of multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant (pre-XDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains were 12.12 % (4/33), 20.69 % (6/29) and 66.67 % (14/21), respectively. The rrs gene A1401G is associated with apramycin resistance, as well as the cross-resistance between apramycin and other aminoglycosides.Conclusion. Apramycin shows high in vitro activity against the Mtb clinical isolates, especially the MDR-TB clinical isolates. This encouraging discovery calls for more research on the functions of apramycin in vivo and as a possible antibiotic for the treatment of drug-resistant TB.


Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Nebramicina , Nebramicina/análogos & derivados , Nebramicina/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Humanos , Antituberculosos/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Farmacorresistencia Bacteriana Múltiple
3.
Environ Res ; 252(Pt 3): 118930, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615788

RESUMEN

Antibiotic resistance genes (ARGs) are a kind of emerging environmental contamination, and are commonly found in antibiotic application situations, attracting wide attention. Fish skin mucosal surface (SMS), as the contact interface between fish and water, is the first line of defense against external pollutant invasion. Antibiotics are widely used in aquaculture, and SMS may be exposed to antibiotics. However, what happens to SMS when antibiotics are applied, and whether ARGs are enriched in SMS are not clear. In this study, Zebrafish (Danio rerio) were exposed to antibiotic and antibiotic resistant bacteria in the laboratory to simulate the aquaculture situation, and the effects of SMS on the spread of ARGs were explored. The results showed that SMS maintained the stability of the bacterial abundance and diversity under apramycin (APR) and bacterial exposure effectively. Until 11 days after stopping APR exposure, the abundance of ARGs in SMS (mean value was 3.32 × 10-3 copies/16S rRNA copies) still did not recover to the initial stage before exposure, which means that enriched ARGs in SMS were persistently remained. Moreover, non-specific immunity played an important role in resisting infection of external contamination. Besides, among antioxidant proteins, superoxide dismutase showed the highest activity. Consequently, it showed that SMS became a barrier of antibiotic resistance genes under APR exposure, and ARGs in SMS were difficult to remove once colonized. This study provided a reference for understanding the transmission, enrichment process, and ecological impact of antibiotics and ARGs in aquatic environments.


Asunto(s)
Antibacterianos , Nebramicina , Piel , Pez Cebra , Animales , Pez Cebra/genética , Nebramicina/análogos & derivados , Nebramicina/farmacología , Antibacterianos/farmacología , Antibacterianos/toxicidad , Piel/efectos de los fármacos , Piel/microbiología , Farmacorresistencia Microbiana/genética , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/microbiología , Contaminantes Químicos del Agua/toxicidad
4.
Int J Antimicrob Agents ; 64(1): 107181, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38653351

RESUMEN

BACKGROUND: The aminoglycoside apramycin has been proposed as a drug candidate for the treatment of critical Gram-negative systemic infections. However, the potential of apramycin in the treatment of drug-resistant bloodstream infections (BSIs) has not yet been assessed. METHODS: The resistance gene annotations of 40 888 blood-culture isolates were analysed. In vitro profiling of apramycin comprised cell-free translation assays, broth microdilution, and frequency of resistance determination. The efficacy of apramycin was studied in a mouse peritonitis model for a total of nine Escherichia coli and Klebsiella pneumoniae isolates. RESULTS: Genotypic aminoglycoside resistance was identified in 87.8% of all 6973 carbapenem-resistant Enterobacterales blood-culture isolates, colistin resistance was shown in 46.4% and apramycin in 2.1%. Apramycin activity against methylated ribosomes was > 100-fold higher than that for other aminoglycosides. Frequencies of resistance were < 10-9 at 8 × minimum inhibitory concentration (MIC). Tentative epidemiological cut-offs (TECOFFs) were determined as 8 µg/mL for E. coli and 4 µg/mL for K. pneumoniae. A single dose of 5 to 13 mg/kg resulted in a 1-log colony-forming unit (CFU) reduction in the blood and peritoneum. Two doses of 80 mg/kg resulted in an exposure that resembles the AUC observed for a single 30 mg/kg dose in humans and led to complete eradication of carbapenem- and aminoglycoside-resistant bacteraemia. CONCLUSION: Encouraging coverage and potent in vivo efficacy against a selection of highly drug-resistant Enterobacterales isolates in the mouse peritonitis model warrants the conduct of clinical studies to validate apramycin as a drug candidate for the prophylaxis and treatment of BSI.


Asunto(s)
Aminoglicósidos , Antibacterianos , Carbapenémicos , Modelos Animales de Enfermedad , Escherichia coli , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Nebramicina , Animales , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Nebramicina/análogos & derivados , Nebramicina/farmacología , Nebramicina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Ratones , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Aminoglicósidos/farmacología , Aminoglicósidos/uso terapéutico , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Peritonitis/tratamiento farmacológico , Peritonitis/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Humanos , Femenino , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Farmacorresistencia Bacteriana
5.
J Antimicrob Chemother ; 79(5): 1101-1108, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501368

RESUMEN

OBJECTIVES: To evaluate the in vitro activity of the combination of apramycin with colistin, meropenem, minocycline or sulbactam, against some well-characterized XDR Acinetobacter baumannii clinical isolates from Greece, to understand how apramycin can be best incorporated into clinical practice and optimize effectiveness. METHODS: In vitro interactions of apramycin (0.5×, 1× and 2× the MIC value) with colistin (2 mg/L), meropenem (30 mg/L), minocycline (3.5 mg/L) or sulbactam (24 mg/L) were tested using time-kill methodology. Twenty-one clinical A. baumannii isolates were chosen, exhibiting apramycin MICs of 4-16 mg/L, which were at or below the apramycin preliminary epidemiological cut-off value of 16 mg/L. These isolates were selected for a range of colistin (4-32 mg/L), meropenem (16-256 mg/L), minocycline (8-32 mg/L) and sulbactam (8-32 mg/L) MICs across the resistant range. Synergy was defined as a ≥2 log10 cfu/mL reduction compared with the most active agent. RESULTS: The combination of apramycin with colistin, meropenem, minocycline or sulbactam was synergistic, at least at one of the concentrations of apramycin (0.5×, 1× or 2× MIC), against 83.3%, 90.5%, 90.9% or 92.3% of the tested isolates, respectively. Apramycin alone was bactericidal at 24 h against 9.5% and 33.3% of the tested isolates at concentrations equal to 1× and 2× MIC, while the combination of apramycin at 2× MIC with colistin, meropenem or sulbactam was bactericidal against all isolates tested (100%). The apramycin 2× MIC/minocycline combination had bactericidal activity against 90.9% of the tested isolates. CONCLUSIONS: Apramycin combinations may have potential as a treatment option for XDR/pandrug-resistant (PDR) A. baumannii infections and warrant validation in the clinical setting, when this new aminoglycoside is available for clinical use.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Pruebas de Sensibilidad Microbiana , Nebramicina , Nebramicina/análogos & derivados , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/aislamiento & purificación , Grecia , Antibacterianos/farmacología , Humanos , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Nebramicina/farmacología , Sulbactam/farmacología , Sinergismo Farmacológico , Meropenem/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple , Viabilidad Microbiana/efectos de los fármacos , Minociclina/farmacología
6.
J Am Chem Soc ; 146(14): 10103-10114, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38546392

RESUMEN

Apramycin is a widely used aminoglycoside antibiotic with applications in veterinary medicine. It is composed of a 4-amino-4-deoxy-d-glucose moiety and the pseudodisaccharide aprosamine, which is an adduct of 2-deoxystreptamine and an unusual eight-carbon bicyclic dialdose. Despite its extensive study and relevance to medical practice, the biosynthetic pathway of this complex aminoglycoside nevertheless remains incomplete. Herein, the remaining unknown steps of apramycin biosynthesis are reconstituted in vitro, thereby leading to a comprehensive picture of its biological assembly. In particular, phosphomutase AprJ and nucleotide transferase AprK are found to catalyze the conversion of glucose 6-phosphate to NDP-ß-d-glucose as a critical biosynthetic intermediate. Moreover, the dehydrogenase AprD5 and transaminase AprL are identified as modifying this intermediate via introduction of an amino group at the 4″ position without requiring prior 6″-deoxygenation as is typically encountered in aminosugar biosynthesis. Finally, the glycoside hydrolase family 65 protein AprO is shown to utilize NDP-ß-d-glucose or NDP-4"-amino-4"-deoxy-ß-d-glucose to form the 8',1″-O-glycosidic linkage of saccharocin or apramycin, respectively. As the activated sugar nucleotides in all known natural glycosylation reactions involve either NDP-α-d-hexoses or NDP-ß-l-hexoses, the reported chemistry expands the scope of known biological glycosylation reactions to NDP-ß-d-hexoses, with important implications for the understanding and repurposing of aminoglycoside biosynthesis.


Asunto(s)
Antibacterianos , Vías Biosintéticas , Glucosa , Nebramicina/análogos & derivados , Glicosilación , Aminoglicósidos , Nucleótidos , Hexosas , Azúcares
7.
J Am Chem Soc ; 145(39): 21361-21369, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37733880

RESUMEN

Apramycin is an aminoglycoside antibiotic isolated from Streptoalloteichus tenebrarius and S. hindustanus that has found clinical use in veterinary medicine. The apramycin structure is notable for its atypical eight-carbon bicyclic dialdose (octose) moiety. While the apramycin biosynthetic gene cluster (apr) has been identified and several of the encoded genes functionally characterized, how the octose core itself is assembled has remained elusive. Nevertheless, recent gene deletion studies have hinted at an N-acetyl aminosugar being a key precursor to the octose, and this hypothesis is consistent with the additional feeding experiments described in the present report. Moreover, bioinformatic analysis indicates that AprG may be structurally similar to GlcNAc-2-epimerase and hence recognize GlcNAc or a structurally similar substrate suggesting a potential role in octose formation. AprG with an extended N-terminal sequence was therefore expressed, purified, and assayed in vitro demonstrating that it does indeed catalyze a transaldolation reaction between GlcNAc or GalNAc and 6'-oxo-lividamine to afford 7'-N-acetyldemethylaprosamine with the same 6'-R and 7'-S stereochemistry as those observed in the apramycin product. Biosynthesis of the octose core in apramycin thus proceeds in the [6 + 2] manner with GlcNAc or GalNAc as the two-carbon donor, which has not been previously reported for biological octose formation, as well as novel inverting stereochemistry of the transferred fragment. Consequently, AprG appears to be a new transaldolase that lacks any apparent sequence similarity to the currently known aldolases and catalyzes a transaldolation for which there is no established biological precedent.


Asunto(s)
Nebramicina , Nebramicina/química , Antibacterianos , Aminoglicósidos , Carbono
8.
J Glob Antimicrob Resist ; 33: 21-25, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36822368

RESUMEN

OBJECTIVES: Apramycin is an aminoglycoside (AG) with a unique structure that is little affected by plasmid-mediated mechanisms of AG resistance, including most AG-modifying enzymes and 16S rRNA methyltransferases (16S-RMTases). We evaluate the activity of apramycin against a collection of 16S-RMTase-producing isolates, including Enterobacterales, non-fermenting bacteria, and carbapenemase producers. METHODS: In total, 164 non-duplicate 16S-RMTase-producing isolates, including 84 Enterobacterales, 53 Acinetobacter baumannii and 27 Pseudomonas aeruginosa isolates, were included in the study. Whole-genome sequencing (WGS) was performed on all isolates with Illumina technology. The minimum inhibitory concentration (MIC) of apramycin was determined by broth microdilution with customized Sensititre plates (Thermo Fisher Scientific, Dardilly, France). RESULTS: We found that 95% (156/164) of the 16S-RMTase-producing isolates were susceptible to apramycin, with a MIC50 of 4 mg/L and a MIC90 of 16 mg/L, respectively. Resistance rates were higher in P. aeruginosa (11%) than in A. baumannii (4%) or Enterobacterales (4%) (P < 0.0001 for each comparison). Eight isolates were resistant to apramycin, including one isolate with an MIC >64 mg/L due to the acquisition of the aac(3)-IV gene. The genetic environment of the aac(3)-IV gene was similar to that in the pAH01-4 plasmid of an Escherichia coli isolate from chicken in China. CONCLUSION: Resistance to apramycin remains rare in 16S-RMTase-producing isolates. Apramycin may, therefore, be an interesting alternative treatment for infections caused by 16S-RMTase and carbapenemase producers.


Asunto(s)
Antibacterianos , Nebramicina , ARN Ribosómico 16S/genética , Antibacterianos/farmacología , Aminoglicósidos/farmacología , Nebramicina/farmacología , Escherichia coli
9.
ChemMedChem ; 18(1): e202200486, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36198651

RESUMEN

An intramolecular hydrogen bond between the protonated equatorial 7'-methylamino group of apramycin and the vicinal axial 6'-hydroxy group acidifies the 6'-hydroxy group leading to a strong hydrogen bond to A1408 in the ribosomal drug binding pocket in the decoding A site of the small ribosomal subunit. In 6'-epiapramycin, the trans-nature of the 6'-hydroxy group and the 7'-methylamino group results in a much weaker intramolecular hydrogen bond, and a consequently weaker cooperative hydrogen bonding network with A1408, resulting overall in reduced inhibition of protein synthesis and antibacterial activity.


Asunto(s)
Antibacterianos , Nebramicina , Enlace de Hidrógeno , Antibacterianos/química , Nebramicina/química , Ribosomas/metabolismo , Aminoglicósidos
10.
Int J Antimicrob Agents ; 60(4): 106659, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35988665

RESUMEN

INTRODUCTION: Bloodstream infections (BSIs) are a leading cause of sepsis, which is a life-threatening condition that significantly contributes to the mortality of bacterial infections. Aminoglycoside antibiotics such as gentamicin or amikacin are essential medicines in the treatment of BSIs, but their clinical efficacy is increasingly being compromised by antimicrobial resistance. The aminoglycoside apramycin has demonstrated preclinical efficacy against aminoglycoside-resistant and multidrug-resistant (MDR) Gram-negative bacilli (GNB) and is currently in clinical development for the treatment of critical systemic infections. METHODS: This study collected a panel of 470 MDR GNB isolates from healthcare facilities in Cambodia, Laos, Singapore, Thailand and Vietnam for a multicentre assessment of their antimicrobial susceptibility to apramycin in comparison with other aminoglycosides and colistin by broth microdilution assays. RESULTS: Apramycin and amikacin MICs ≤ 16 µg/mL were found for 462 (98.3%) and 408 (86.8%) GNB isolates, respectively. Susceptibility to gentamicin and tobramycin (MIC ≤ 4 µg/mL) was significantly lower at 122 (26.0%) and 101 (21.5%) susceptible isolates, respectively. Of note, all carbapenem and third-generation cephalosporin-resistant Enterobacterales, all Acinetobacter baumannii and all Pseudomonas aeruginosa isolates tested in this study appeared to be susceptible to apramycin. Of the 65 colistin-resistant isolates tested, four (6.2%) had an apramycin MIC > 16 µg/mL. CONCLUSION: Apramycin demonstrated best-in-class activity against a panel of GNB isolates with resistances to other aminoglycosides, carbapenems, third-generation cephalosporins and colistin, warranting continued consideration of apramycin as a drug candidate for the treatment of MDR BSIs.


Asunto(s)
Amicacina , Colistina , Aminoglicósidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Asia Sudoriental , Cultivo de Sangre , Carbapenémicos , Cefalosporinas , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple , Gentamicinas , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Nebramicina/análogos & derivados , Pseudomonas aeruginosa , Tobramicina
11.
Microbiol Spectr ; 10(4): e0159722, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35950862

RESUMEN

Postweaning diarrhea (PWD) is a relevant problem associated with early weaning on pig farms. For decades, in-feed antibiotics and therapeutic zinc oxide (ZnO) have been widely used to prevent PWD in piglets. The European Union is banning both strategies in 2022 due to antimicrobial resistance and environmental contamination concerns, respectively. Understanding the effects of these products on the pig microbiome is crucial for correcting potential microbial disbalances that would prompt PWD. Using shotgun sequencing, three trials were carried out to explore the impact of in-feed apramycin and ZnO, combined with different farm hygiene protocols, on the fecal microbiomes of piglets 7 days postweaning. In trial 1, 28-day-old piglets were allocated to one of three groups: control diet (Ct), Ct + ZnO (Zn), and Ct + apramycin (Ab). In trials 2 and 3, piglets were allocated to the same treatments, but the trials also included different cleaning protocols, achieving different hygiene levels. In-feed treatments impacted the richness, diversity, and relative abundance of the piglets' microbiome more than hygiene. Pigs in the Ct group showed higher species richness than pigs in the Ab and Zn groups. A clustering analysis evidenced a link between Enterobacteriaceae in the Ct group; Lactobacillaceae and Veillonellaceae mainly in the Ct group; and Bacteroidaceae, Ruminococcaceae, Oscillospiraceae, Acidaminococcaceae, and Lactobacillaceae in the Ab and Zn groups. Functional data analysis revealed a higher abundance of virulence genes in the Ct group microbiomes and heavy metal and antimicrobial resistance-related functions in the Zn treatment group. The results demonstrate that alternatives to Ab and ZnO should balance the microbial abundance and stimulate the growth of commensals to outcompete potential pathogens. IMPORTANCE Weaning is a critical period for piglets, during which potentially harmful bacteria such as Escherichia coli can increase in abundance in the intestine, creating digestive problems and diarrhea. In-feed antibiotics, the most frequent administration route for antibiotics in livestock, and therapeutic doses of zinc oxide (ZnO) help to control diarrhea but prompt secondary problems such as antimicrobial resistance and soil pollution from heavy metals. Understanding how these strategies impact the gut microbiota is crucial for establishing health biomarkers and designing successful replacement strategies. Using shotgun sequencing, this study compares the microbiota of pigs after early weaning when treated with in-feed antibiotics, ZnO, or treatment-free diets to describe differences that could define the susceptibility to infections, providing the basis for future research on improving intestinal resilience through microbiota-based strategies.


Asunto(s)
Microbioma Gastrointestinal , Óxido de Zinc , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Diarrea/microbiología , Escherichia coli , Nebramicina/análogos & derivados , Porcinos , Óxido de Zinc/farmacología , Óxido de Zinc/uso terapéutico
12.
J Antimicrob Chemother ; 77(10): 2718-2728, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35849148

RESUMEN

BACKGROUND: Apramycin is under development for human use as EBL-1003, a crystalline free base of apramycin, in face of increasing incidence of multidrug-resistant bacteria. Both toxicity and cross-resistance, commonly seen for other aminoglycosides, appear relatively low owing to its distinct chemical structure. OBJECTIVES: To perform a population pharmacokinetic (PPK) analysis and predict an efficacious dose based on data from a first-in-human Phase I trial. METHODS: The drug was administered intravenously over 30 min in five ascending-dose groups ranging from 0.3 to 30 mg/kg. Plasma and urine samples were collected from 30 healthy volunteers. PPK model development was performed stepwise and the final model was used for PTA analysis. RESULTS: A mammillary four-compartment PPK model, with linear elimination and a renal fractional excretion of 90%, described the data. Apramycin clearance was proportional to the absolute estimated glomerular filtration rate (eGFR). All fixed effect parameters were allometrically scaled to total body weight (TBW). Clearance and steady-state volume of distribution were estimated to 5.5 L/h and 16 L, respectively, for a typical individual with absolute eGFR of 124 mL/min and TBW of 70 kg. PTA analyses demonstrated that the anticipated efficacious dose (30 mg/kg daily, 30 min intravenous infusion) reaches a probability of 96.4% for a free AUC/MIC target of 40, given an MIC of 8 mg/L, in a virtual Phase II patient population with an absolute eGFR extrapolated to 80 mL/min. CONCLUSIONS: The results support further Phase II clinical trials with apramycin at an anticipated efficacious dose of 30 mg/kg once daily.


Asunto(s)
Nebramicina , Aminoglicósidos , Antibacterianos/farmacocinética , Humanos , Infusiones Intravenosas , Nebramicina/análogos & derivados
13.
Clin Microbiol Infect ; 28(10): 1367-1374, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35598857

RESUMEN

OBJECTIVES: New drugs and methods to efficiently fight carbapenem-resistant gram-negative pathogens are sorely needed. In this study, we characterized the preclinical pharmacokinetics (PK) and pharmacodynamics of the clinical stage drug candidate apramycin in time kill and mouse lung infection models. Based on in vitro and in vivo data, we developed a mathematical model to predict human efficacy. METHODS: Three pneumonia-inducing gram-negative species Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were studied. Bactericidal kinetics were evaluated with time-kill curves; in vivo PK were studied in healthy and infected mice, with sampling in plasma and epithelial lining fluid after subcutaneous administration; in vivo efficacy was measured in a neutropenic mouse pneumonia model. A pharmacokinetic-pharmacodynamic model, integrating all the data, was developed and simulations were performed. RESULTS: Good lung penetration of apramycin in epithelial lining fluid (ELF) was shown (area under the curve (AUC)ELF/AUCplasma = 88%). Plasma clearance was 48% lower in lung infected mice compared to healthy mice. For two out of five strains studied, a delay in growth (∼5 h) was observed in vivo but not in vitro. The mathematical model enabled integration of lung PK to drive mouse PK and pharmacodynamics. Simulations predicted that 30 mg/kg of apramycin once daily would result in bacteriostasis in patients. DISCUSSION: Apramycin is a candidate for treatment of carbapenem-resistant gram-negative pneumonia as demonstrated in an integrated modeling framework for three bacterial species. We show that mathematical modelling is a useful tool for simultaneous inclusion of multiple data sources, notably plasma and lung in vivo PK and simulation of expected scenarios in a clinical setting, notably lung infections.


Asunto(s)
Neumonía Bacteriana , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/uso terapéutico , Humanos , Pulmón/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Nebramicina/análogos & derivados , Neumonía Bacteriana/tratamiento farmacológico
14.
J Ind Microbiol Biotechnol ; 49(4)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35536571

RESUMEN

A structurally unique aminoglycoside produced in Streptoalloteichus tenebrarius, Apramycin is used in veterinary medicine or the treatment of Salmonella, Escherichia coli, and Pasteurella multocida infections. Although apramycin was discovered nearly 50 years ago, many biosynthetic steps of apramycin remain unknown. In this study, we identified a HemK family methyltransferase, AprI, to be the 7'-N-methyltransferase in apramycin biosynthetic pathway. Biochemical experiments showed that AprI converted demethyl-aprosamine to aprosamine. Through gene disruption of aprI, we identified a new aminoglycoside antibiotic demethyl-apramycin as the main product in aprI disruption strain. The demethyl-apramycin is an impurity in apramycin product. In addition to demethyl-apramycin, carbamyltobramycin is another major impurity. However, unlike demethyl-apramycin, tobramycin is biosynthesized by an independent biosynthetic pathway in S. tenebrarius. The titer and rate of apramycin were improved by overexpression of the aprI and disruption of the tobM2, which is a crucial gene for tobramycin biosynthesis. The titer of apramycin increased from 2227 ± 320 mg/L to 2331 ± 210 mg/L, while the titer of product impurity demethyl-apramycin decreased from 196 ± 36 mg/L to 51 ± 9 mg/L. Moreover, the carbamyltobramycin titer of the wild-type strain was 607 ± 111 mg/L and that of the engineering strain was null. The rate of apramycin increased from 68% to 87% and that of demethyl-apramycin decreased from 1.17% to 0.34%.


Asunto(s)
Actinomycetales , Streptomyces , Actinobacteria , Aminoglicósidos , Antibacterianos , Escherichia coli/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Nebramicina/análogos & derivados , Streptomyces/genética , Tobramicina/metabolismo
15.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35163350

RESUMEN

The purpose of this study was to establish the clinical breakpoint (CBP) of apramycin (APR) against Salmonella in swine and evaluate its effect on intestinal microbiota. The CBP was established based on three cutoff values of wild-type cutoff value (COWT), pharmacokinetic-pharmadynamic (PK/PD) cutoff value (COPD) and clinical cutoff value (COCL). The effect of the optimized dose regimen based on ex vivo PK/PD study. The evolution of the ileum flora was determined by the 16rRNA gene sequencing and bioinformatics. This study firstly established the COWT, COPD in ileum, and COCL of APR against swine Salmonella, the value of these cutoffs were 32 µg/mL, 32 µg/mL and 8 µg/mL, respectively. According to the guiding principle of the Clinical Laboratory Standards Institute (CLSI), the final CBP in ileum was 32 µg/mL. Our results revealed the main evolution route in the composition of ileum microbiota of diarrheic piglets treated by APR. The change of the abundances of Bacteroidetes and Euryarchaeota was the most obvious during the evolution process. Methanobrevibacter, Prevotella, S24-7 and Ruminococcaceae were obtained as the highest abundance genus. The abundance of Methanobrevibacter increased significantly when APR treatment carried and decreased in cure and withdrawal period groups. The abundance of Prevotella in the tested groups was significantly lower than that in the healthy group. A decreased of abundance in S24-7 was observed after Salmonella infection and increased slightly after cure. Ruminococcaceae increased significantly after Salmonella infection and decreased significantly after APR treatment. In addition, the genera of Methanobrevibacter and Prevotella were defined as the key node. Valine, leucine and isoleucine biosynthesis, D-Glutamine and D-glutamate metabolism, D-Alanine metabolism, Peptidoglycan and amino acids biosynthesis were the top five Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the ileum microbiota of piglets during the Salmonella infection and APR treatment process. Our study extended the understanding of dynamic shift of gut microbes during diarrheic piglets treated by APR.


Asunto(s)
Microbioma Gastrointestinal , Nebramicina , Animales , Íleon , Nebramicina/análogos & derivados , Nebramicina/farmacología , Prevotella , Salmonella , Porcinos
16.
Antimicrob Agents Chemother ; 66(2): e0151021, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34930031

RESUMEN

Antibiotic therapy of infections caused by the emerging pathogen Mycobacterium abscessus is challenging due to the organism's inherent resistance to clinically available antimicrobials. The low bactericidal potency of currently available treatment regimens is of concern and testifies to the poor therapeutic outcomes for pulmonary M. abscessus infections. Mechanistically, we demonstrate here that the acetyltransferase Eis2 is responsible for the lack of bactericidal activity of amikacin, the standard aminoglycoside used in combination treatment. In contrast, the aminoglycoside apramycin, with a distinct structure, is not modified by any of the pathogen's innate aminoglycoside resistance mechanisms and is not affected by the multidrug resistance regulator WhiB7. As a consequence, apramycin uniquely shows potent bactericidal activity against M. abscessus. This favorable feature of apramycin is reflected in a mouse model of pulmonary M. abscessus infection, which demonstrates superior activity, compared with amikacin. These findings encourage the development of apramycin for the treatment of M. abscessus infections and suggest that M. abscessus eradication in pulmonary disease may be within therapeutic reach.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Nebramicina , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Nebramicina/análogos & derivados , Nebramicina/farmacología , Nebramicina/uso terapéutico
17.
EBioMedicine ; 73: 103652, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34740109

RESUMEN

BACKGROUND: The clinical-stage drug candidate EBL-1003 (apramycin) represents a distinct new subclass of aminoglycoside antibiotics for the treatment of drug-resistant infections. It has demonstrated best-in-class coverage of resistant isolates, and preclinical efficacy in lung infection models. However, preclinical evidence for its utility in other disease indications has yet to be provided. Here we studied the therapeutic potential of EBL-1003 in the treatment of complicated urinary tract infection and acute pyelonephritis (cUTI/AP). METHODS: A combination of data-base mining, antimicrobial susceptibility testing, time-kill experiments, and four murine infection models was used in a comprehensive assessment of the microbiological coverage and efficacy of EBL-1003 against Gram-negative uropathogens. The pharmacokinetics and renal toxicology of EBL-1003 in rats was studied to assess the therapeutic window of EBL-1003 in the treatment of cUTI/AP. FINDINGS: EBL-1003 demonstrated broad-spectrum activity and rapid multi-log CFU reduction against a phenotypic variety of bacterial uropathogens including aminoglycoside-resistant clinical isolates. The basicity of amines in the apramycin molecule suggested a higher increase in positive charge at urinary pH when compared to gentamicin or amikacin, resulting in sustained drug uptake and bactericidal activity, and consequently in potent efficacy in mouse infection models. Renal pharmacokinetics, biomarkers for toxicity, and kidney histopathology in adult rats all indicated a significantly lower nephrotoxicity of EBL-1003 than of gentamicin. INTERPRETATION: This study provides preclinical proof-of-concept for the efficacy of EBL-1003 in cUTI/AP. Similar efficacy but lower nephrotoxicity of EBL-1003 in comparison to gentamicin may thus translate into a higher safety margin and a wider therapeutic window in the treatment of cUTI/API. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Asunto(s)
Antibacterianos/uso terapéutico , Concentración de Iones de Hidrógeno , Nebramicina/análogos & derivados , Pielonefritis/tratamiento farmacológico , Infecciones Urinarias/tratamiento farmacológico , Animales , Antibacterianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Nebramicina/farmacología , Nebramicina/uso terapéutico , Pielonefritis/etiología , Ratas , Resultado del Tratamiento , Infecciones Urinarias/etiología
18.
J Med Microbiol ; 70(10)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34612810

RESUMEN

Introduction. The emergence of multidrug-resistant Salmonella Typhimurium strains has increased the need for safe, alternative therapies from natural sources with antibacterial properties.Hypothesis/Gap Statement. There are no published data regarding the use of chitosan propolis nanocomposite (CPNP) either alone or in combination with antibiotics as antimicrobials against S. Typhimurium, especially in Egypt.Aim. This study evaluated the antibacterial activities of five antimicrobials [apramycin, propolis, chitosan nanoparticles (CNPs), chitosan propolis nanocomposite (CPNP) and CPNP +apramycin] against ten virulent and multidrug-resistant (MDR) S. Typhimurium field strains recovered from diarrheic rabbits through in vitro and in vivo study.Methodology. The expression levels of three virulence genes of S. Typhimurium strains were determined by quantitative reverse-transcription PCR (RT-qPCR) after exposure to sub-inhibitory concentrations of apramycin, propolis, CNPs, CPNP alone, and CPNP +apramycin. Additionally, 90 New Zealand rabbits were divided into control and experimentally S. Typhimurium-infected groups. The infected rabbits were orally administered saline solution (infected-untreated); 10 mg apramycin/kg (infected-apramycin-treated); 50 mg propolis/kg (infected-propolis-treated); 15 mg CPNP/kg (infected-CPNP-treated) and 15 mg CPNP +10 mg apramycin/kg (infected-CPNP +apramycin-treated) for 5 days.Results. The RT-qPCR analysis revealed different degrees of downregulation of all screened genes. Furthermore, the treatment of infected rabbits with CPNP or CPNP +apramycin significantly improved performance parameters, and total bacterial and Salmonella species counts, while also modulating both oxidative stress and altered liver and kidney parameters.Conclusion. This work demonstrates the use of CPNP alone or in combination with apramycin in the treatment of S. Typhimurium in rabbits.


Asunto(s)
Antibacterianos/uso terapéutico , Quitosano/química , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Nanocompuestos/uso terapéutico , Própolis/química , Infecciones por Salmonella/tratamiento farmacológico , Salmonella typhimurium/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/metabolismo , Carga Bacteriana/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quitosano/farmacología , Quitosano/uso terapéutico , Chlorocebus aethiops , Farmacorresistencia Bacteriana Múltiple/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Nanocompuestos/química , Nebramicina/análogos & derivados , Nebramicina/farmacología , Nebramicina/uso terapéutico , Própolis/farmacología , Própolis/uso terapéutico , Conejos , Infecciones por Salmonella/microbiología , Salmonella typhimurium/patogenicidad , Células Vero , Virulencia/genética
19.
Molecules ; 26(14)2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34299618

RESUMEN

Tobramycin is a broad-spectrum aminoglycoside antibiotic agent. The compound is obtained from the base-catalyzed hydrolysis of carbamoyltobramycin (CTB), which is naturally produced by the actinomycete Streptoalloteichus tenebrarius. However, the strain uses the same precursors to synthesize several structurally related aminoglycosides. Consequently, the production yields of tobramycin are low, and the compound's purification is very challenging, costly, and time-consuming. In this study, the production of the main undesired product, apramycin, in the industrial isolate Streptoalloteichus tenebrarius 2444 was decreased by applying the fermentation media M10 and M11, which contained high concentrations of starch and dextrin. Furthermore, the strain was genetically engineered by the inactivation of the aprK gene (∆aprK), resulting in the abolishment of apramycin biosynthesis. In the next step of strain development, an additional copy of the tobramycin biosynthetic gene cluster (BGC) was introduced into the ∆aprK mutant. Fermentation by the engineered strain (∆aprK_1-17L) in M11 medium resulted in a 3- to 4-fold higher production than fermentation by the precursor strain (∆aprK). The phenotypic stability of the mutant without selection pressure was validated. The use of the engineered S. tenebrarius 2444 facilitates a step-saving, efficient, and, thus, more sustainable production of the valuable compound tobramycin on an industrial scale.


Asunto(s)
Actinobacteria/genética , Antibacterianos/biosíntesis , Tobramicina/biosíntesis , Aminoglicósidos/biosíntesis , Fermentación/genética , Ingeniería Genética/métodos , Familia de Multigenes/genética , Nebramicina/análogos & derivados , Nebramicina/biosíntesis
20.
Microb Drug Resist ; 27(11): 1555-1559, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33956523

RESUMEN

Apramycin and florfenicol are two antimicrobial agents exclusively used in veterinary medicine. Resistance determinants to these antimicrobial agents have been described in several staphylococci, yet no inhibition zone-based epidemiological cutoff (ECOFF) values are available to detect populations harboring resistance mechanisms. In this study, we propose disk diffusion inhibition zone ECOFF values of Staphylococcus aureus for apramycin and florfenicol. The susceptibility to apramycin and florfenicol was evaluated by disk diffusion of five S. aureus collections, comprising 352 isolates of animal (n = 265) and human (n = 87) origin. The aggregated distributions of inhibition zone diameters were analyzed by the normalized resistance interpretation method to obtain normalized wild-type (WT) population distributions and corresponding ECOFF values. The putative WT populations of S. aureus were characterized by an inhibition zone ≥15 mm (ECOFF = 15 mm) for apramycin and ≥21 mm for florfenicol (ECOFF = 21 mm). Five nonwild-type (NWT) isolates were detected for apramycin, all without inhibition zone and harboring the apmA gene, whereas five NWT isolates were identified for florfenicol, all carrying the fexA gene. The proposed ECOFF values for apramycin and florfenicol may be a valuable tool in future antimicrobial resistance monitoring and surveillance studies to identify S. aureus NWT populations toward these antimicrobial agents.


Asunto(s)
Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana/normas , Nebramicina/análogos & derivados , Staphylococcus aureus/efectos de los fármacos , Tianfenicol/análogos & derivados , Farmacorresistencia Bacteriana , Nebramicina/farmacología , Tianfenicol/farmacología , Medicina Veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA