Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.051
Filtrar
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000165

RESUMEN

Chronic kidney disease (CKD) is a noncommunicable condition that has become a major healthcare burden across the globe, often underdiagnosed and associated with low awareness. The main cause that leads to the development of renal impairment is diabetes mellitus and, in contrast to other chronic complications such as retinopathy or neuropathy, it has been suggested that intensive glycemic control is not sufficient in preventing the development of diabetic kidney disease. Nevertheless, a novel class of antidiabetic agents, the sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown multiple renoprotective properties that range from metabolic and hemodynamic to direct renal effects, with a major impact on reducing the risk of occurrence and progression of CKD. Thus, this review aims to summarize current knowledge regarding the renoprotective mechanisms of SGLT2i and to offer a new perspective on this innovative class of antihyperglycemic drugs with proven pleiotropic beneficial effects that, after decades of no significant progress in the prevention and in delaying the decline of renal function, start a new era in the management of patients with CKD.


Asunto(s)
Insuficiencia Renal Crónica , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Humanos , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/prevención & control , Insuficiencia Renal Crónica/metabolismo , Animales , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo
4.
Eur J Pharmacol ; 976: 176699, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38825302

RESUMEN

Clinically, statins have long been used for the prevention and treatment of chronic renal diseases, however, the underlying mechanisms are not fully elucidated. The present study investigated the effects of atorvastatin on diabetes renal injury and ferroptosis signaling. A mouse model of diabetes was established by the intraperitoneal injection of streptozotocin (50 mg/kg/day) plus a high fat diet with or without atorvastatin treatment. Diabetes mice manifested increased plasma glucose and lipid profile, proteinuria, renal injury and fibrosis, atorvastatin significantly lowered plasma lipid profile, proteinuria, renal injury in diabetes mice. Atorvastatin reduced renal reactive oxygen species (ROS), iron accumulation and renal expression of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), transferrin receptor 1 (TFR1), and increased renal expression of glutathione peroxidase 4 (GPX4), nuclear factor erythroid 2-related factor (NRF2) and ferritin heavy chain (FTH) in diabetes mice. Consistent with the findings in vivo, atorvastatin prevented high glucose-induced ROS formation and Fe2+ accumulation, an increase in the expression of 4-HNE, MDA and TFR1, and a decrease in cell viability and the expression of NRF2, GPX4 and FTH in HK2 cells. Atorvastatin also reversed ferroptosis inducer erastin-induced ROS production, intracellular Fe2+ accumulation and the changes in the expression of above-mentioned ferroptosis signaling molecules in HK2 cells. In addition, atorvastatin alleviated high glucose- or erastin-induced mitochondria injury. Ferroptosis inhibitor ferrostatin-1 and antioxidant N-acetylcysteine (NAC) equally reversed the expression of high glucose-induced ferroptosis signaling molecules. Our data support the notion that statins can inhibit diabetes-induced renal oxidative stress and ferroptosis, which may contribute to statins protection of diabetic nephropathy.


Asunto(s)
Atorvastatina , Nefropatías Diabéticas , Ferroptosis , Estrés Oxidativo , Especies Reactivas de Oxígeno , Transducción de Señal , Ferroptosis/efectos de los fármacos , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/prevención & control , Estrés Oxidativo/efectos de los fármacos , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Masculino , Transducción de Señal/efectos de los fármacos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Ratones Endogámicos C57BL , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Línea Celular , Fenilendiaminas/farmacología , Fenilendiaminas/uso terapéutico
5.
Carbohydr Polym ; 339: 122275, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823933

RESUMEN

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and few therapeutic options are available. The root of Achyranthis bidentatae (AB) is commonly used for DKD treatment in Traditional Chinese medicine. However, its mechanisms are still unclear. Here, a graminan type fructan ABPW1 with molecular weight of 3998 Da was purified from AB. It was composed of ß-1,2-linked Fruf, ß-2,6-linked-Fruf and ß-1,2,6-linked-Fruf backbone, and terminated with T-Glcp and 2-Fruf residues. ABPW1 protected against kidney injuries and intestinal barrier disruption in Streptozotocin (STZ)/High fat diet (HFD) mice. It could modulate gut microbiota composition, evidenced by a rise in the abundance of Bacteroide and decreases of Rikenella, Alistipes, Laedolimicola and Faecalibaculum. ABPW1 intervention promoted short chain fatty acids (SCFAs) production in STZ/HFD mice, especially propionate and isobutyric acid. Antibiotic treatment further demonstrated the key role of gut microbiota in the renal protective action of ABPW1. In addition, in vitro simulated digestion and fermentation together with in vivo fluorescent labeling studies demonstrated ABPW1 was indigestible in upper digestive tract but could reach the colon and be degraded into SCFAs by gut microbiota there. Overall, these data suggested ABPW1 has the potential application on DKD prevention.


Asunto(s)
Achyranthes , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Fructanos , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Achyranthes/química , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Masculino , Fructanos/farmacología , Fructanos/química , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Estreptozocina , Riñón/efectos de los fármacos , Riñón/patología , Ácidos Grasos Volátiles/metabolismo
6.
Phytother Res ; 38(7): 3594-3606, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38725104

RESUMEN

Diabetic nephropathy (DN) is the most common and serious complication of diabetes, posing a significant threat to human health. Currently, safe and effective preventive strategies for DN are lacking. The study aimed to explore the preventive effect and the underlying mechanism of quercetin against DN. In the in vivo experiments, we established a mouse model of type 2 diabetes mellitus (T2DM) induced by a combination of high-fat diet (HFD) and streptozotocin (STZ) to explore the preventive effect of quercetin on DN and its protective role against renal tubular epithelial cell apoptosis. Subsequently, in vitro experiments using human tubular epithelial cells (HK-2 cells) were conducted to further validate the protective effects of quercetin on renal tubular epithelial cell apoptosis. Additionally, we employed RNA sequencing analysis (RNA-seq) and network pharmacology analysis to comprehensively elucidate the molecular mechanisms involved. In vivo, we observed a significant increase in the ratio of urinary microalbumin to creatinine in diabetic mice compared to control mice, accompanied by the activation of renal tubular epithelial cell apoptosis. Remarkably, all of these changes were reversed after quercetin treatment. In vitro, high-glucose-induced apoptosis in HK-2 cells was significantly attenuated by quercetin. Subsequent RNA sequencing analysis and network pharmacology analysis revealed that quercetin was most likely to inhibit high-glucose-induced HK-2 cell apoptosis through the PI3K/AKT signaling pathway. Western Blotting results further demonstrated that quercetin could inhibit the activation of the PI3K/AKT signaling pathway in HK-2 cells induced by high glucose. Our results supported that quercetin could prevent DN by inhibiting tubular epithelial cell apoptosis via the PI3K/AKT pathway. Quercetin might be a promising candidate for the prevention of DN.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Células Epiteliales , Túbulos Renales , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Quercetina , Transducción de Señal , Quercetina/farmacología , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Animales , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Células Epiteliales/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Humanos , Túbulos Renales/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Línea Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Estreptozocina
7.
Mol Biol Rep ; 51(1): 677, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796641

RESUMEN

BACKGROUND: One of the main causes of diabetic nephropathy is oxidative stress induced by hyperglycemia. Apelin inhibits insulin secretion. Besides, renal expression of TGF-ß is increased in diabetes mellitus (DM). The preventive effect of quercetin (Q) against renal functional disorders and tissue damage developed by DM in rats was assessed. METHODS: Forty male Wistar rats were grouped into normal control (NC), normal + quercetin (NQ: quercetin, 50 mg/kg/day by gavage), diabetic control (DC: streptozotocin, 65 mg/kg, i.p.), diabetic + quercetin pretreatment (D + Qpre), and diabetic + quercetin post-treatment (D + Qpost). All samples (24-hour urine, plasma, pancreatic, and renal tissues) were obtained at the terminal of the experiment. RESULTS: Compared to NC and NQ groups, DM ended in elevated plasma and glucose levels, decreased plasma insulin level, kidney dysfunction, augmented levels of malondialdehyde, decreased level of reduced glutathione, reduced enzymatic activities of superoxide dismutase and catalase, elevated gene expression levels of apelin and TGF-ß, also renal and pancreatic histological damages. Quercetin administration diminished entire the changes. However, the measure of improvement in the D + Qpre group was higher than that of the D + Qpost group. CONCLUSION: Quercetin prevents renal dysfunction induced by DM, which might be related to the diminution of lipid peroxidation, strengthening of antioxidant systems, and prevention of the apelin/ TGF-ß signaling pathway.


Asunto(s)
Apelina , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Riñón , Estrés Oxidativo , Quercetina , Ratas Wistar , Factor de Crecimiento Transformador beta , Animales , Quercetina/farmacología , Ratas , Masculino , Factor de Crecimiento Transformador beta/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/tratamiento farmacológico , Apelina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Insulina/metabolismo , Insulina/sangre , Diabetes Mellitus Tipo 1/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
8.
Carbohydr Res ; 540: 109125, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703663

RESUMEN

Di-d-psicose anhydride (DPA), derived from functional rare saccharide as d-psicose, is investigated for its strong chelating ability. Methylglyoxal (MGO), an important precursor of advanced glycation end-products (AGEs), promotes obesity, and causes complications such as diabetic nephropathy. On mesangial cells, DPA can substantially reduce the negative effects of MGO. DPA effectively trapping MGO in mesangial cells. The bonding properties of the DPA-MGO adduct were discussed by mass spectrometry and nuclear magnetic resonance (NMR). The NMR spectra of the DPA-MGO adduct provide evidence for chelation bonding. The inhibition of AGE formation and the mass spectrometry results of the DPA-MGO adduct indicate that DPA can scavenge MGO at a molar ratio of 1:1. DPA suppressed 330 % of the up-regulated receptor for an AGEs protein expression to a normal level and restored the suppressed glyoxalase 1 level to 86 % of the normal group. This research provides important evidence and theoretical basis for the development of AGE inhibitors derived from rare saccharide.


Asunto(s)
Nefropatías Diabéticas , Productos Finales de Glicación Avanzada , Piruvaldehído , Piruvaldehído/química , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/prevención & control , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Lactoilglutatión Liasa/antagonistas & inhibidores , Lactoilglutatión Liasa/metabolismo , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Anhídridos/química , Quelantes/química , Quelantes/farmacología
10.
Am J Physiol Renal Physiol ; 326(6): F1054-F1065, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695075

RESUMEN

Diabetic nephropathy remains the leading cause of end-stage kidney disease in many countries, and additional therapeutic targets are needed to prevent its development and progression. Some angiogenic factors are involved in the pathogenesis of diabetic nephropathy. Vasohibin-2 (VASH2) is a novel proangiogenic factor, and our previous study showed that glomerular damage is inhibited in diabetic Vash2 homozygous knockout mice. Therefore, we established a VASH2-targeting peptide vaccine as a tool for anti-VASH2 therapy in diabetic nephropathy. In this study, the preventive effects of the VASH2-targeting peptide vaccine against glomerular injury were examined in a streptozotocin (STZ)-induced diabetic mouse model. The mice were subcutaneously injected with the vaccine at two doses 2 wk apart and then intraperitoneally injected with 50 mg/kg STZ for 5 consecutive days. Glomerular injury was evaluated 20 wk after the first vaccination. Treatment with the VASH2-targeting peptide vaccine successfully induced circulating anti-VASH2 antibody without inflammation in major organs. Although the vaccination did not affect blood glucose levels, it significantly prevented hyperglycemia-induced increases in urinary albumin excretion and glomerular volume. The vaccination did not affect increased VASH2 expression but significantly inhibited renal angiopoietin-2 (Angpt2) expression in the diabetic mice. Furthermore, it significantly prevented glomerular macrophage infiltration. The preventive effects of vaccination on glomerular injury were also confirmed in db/db mice. Taken together, the results of this study suggest that the VASH2-targeting peptide vaccine may prevent diabetic glomerular injury in mice by inhibiting Angpt2-mediated microinflammation.NEW & NOTEWORTHY This study demonstrated preventive effects of VASH2-targeting peptide vaccine therapy on albuminuria and glomerular microinflammation in STZ-induced diabetic mouse model by inhibiting renal Angpt2 expression. The vaccination was also effective in db/db mice. The results highlight the importance of VASH2 in the pathogenesis of early-stage diabetic nephropathy and the practicability of anti-VASH2 strategy as a vaccine therapy.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Vacunas de Subunidad , Animales , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/inmunología , Masculino , Vacunas de Subunidad/farmacología , Vacunas de Subunidad/inmunología , Albuminuria/prevención & control , Ratones Endogámicos C57BL , Angiopoyetina 2/metabolismo , Ratones , Glomérulos Renales/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/inmunología , Proteínas Angiogénicas/metabolismo , Vacunas de Subunidades Proteicas
11.
Pak J Pharm Sci ; 37(1): 65-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38741401

RESUMEN

Diabetic nephropathy (DN), a micro vascular complication of diabetes, is the main cause of end-stage renal disease, with a morbidity over 40% of diabetes. High glucose and lipid metabolism dysfunction are the leading cause of the development of DN. Previous study demonstrated that increased expression or activation of SREBPs in models of DN. Leonuride (LE), as an active constituent of Leonurus japonicus Houttuyn, has multiple biological activities, including antioxidant and anti-inflammatory effects. Previous studies showed that increasing the degradation of mature SREBPs is a robust way of lowering lipids and improve lipid metabolism dysfunction. However, effective regulation method of SREBPs degradation are still lacking. Herein, this study indicated that LE can effectively improve glucose and lipid metabolism disorders. In addition, the kidney function was also improved by inhibition of SREBPs activities in streptozocin (STZ)-induced type II diabetic mice. To our knowledge, this is the first time to describe the detailed mechanism of LE on the inhibition of precursor SREBPs, which would present a new direction for diabetic nephropathy treatment.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/prevención & control , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Masculino , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones
12.
BMJ Open Diabetes Res Care ; 12(3)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816203

RESUMEN

INTRODUCTION: The Look AHEAD randomized clinical trial reported that an 8-year intensive lifestyle intervention (ILI) compared with diabetes support and education (DSE) in adults aged 45-76 years with type 2 diabetes and overweight/obesity delayed kidney disease progression. Here, we report long-term post-intervention follow-up for the trial's secondary outcome of kidney disease. RESEARCH DESIGN AND METHODS: We examined effects of ILI (n=2570) versus DSE (n=2575) on decline in estimated glomerular filtration rate (eGFR) to <45 mL/min/1.73 m2 or need for kidney replacement therapy (KRT: dialysis or kidney transplant) during intervention and post-intervention follow-up (median 15.6 years overall). RESULTS: Incidence of eGFR <45 mL/min/1.73 m2 was lower in ILI during the intervention (HR=0.80, 95% CI=0.66 to 0.98) but not post-intervention (HR=1.03, 0.86 to 1.23) or overall (HR=0.92, 0.80 to 1.04). There were no significant treatment group differences in KRT. In prespecified subgroup analyses, age×treatment interactions were significant over total follow-up: p=0.001 for eGFR <45 mL/min/1.73 m2 and p=0.01 for KRT. The 2205 participants aged >60 years at baseline had benefit in both kidney outcomes during intervention and overall (HR=0.75, 0.62 to 0.90 for eGFR <45 mL/min/1.73 m2; HR=0.62, 0.43 to 0.91 for KRT). The absolute treatment effects were greater post-intervention: ILI reduced the rate of eGFR <45 mL/min/1.73 m2 by 0.46 and 0.76 cases/100 person-years during and post-intervention, respectively; and reduced KRT by 0.15 and 0.21 cases/100 person-years. The younger participants experienced no such post-intervention benefits. CONCLUSIONS: ILI reduced kidney disease progression during and following the active intervention in persons aged ≥60 years. ILI should be considered for reducing kidney disease incidence in older persons with type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Tasa de Filtración Glomerular , Estilo de Vida , Obesidad , Sobrepeso , Humanos , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/complicaciones , Persona de Mediana Edad , Masculino , Femenino , Anciano , Obesidad/terapia , Sobrepeso/terapia , Sobrepeso/complicaciones , Estudios de Seguimiento , Progresión de la Enfermedad , Nefropatías Diabéticas/terapia , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/epidemiología , Conducta de Reducción del Riesgo , Pronóstico
13.
Diabetes ; 73(7): 1167-1177, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656940

RESUMEN

Reduced kidney AMPK activity is associated with nutrient stress-induced chronic kidney disease (CKD) in male mice. In contrast, female mice resist nutrient stress-induced CKD. The role of kidney AMPK in sex-related organ protection against nutrient stress and metabolite changes was evaluated in diabetic kidney tubule-specific AMPKγ2KO (KTAMPKγ2ΚΟ) male and female mice. In wild-type (WT) males, diabetes increased albuminuria, urinary kidney injury molecule-1, hypertension, kidney p70S6K phosphorylation, and kidney matrix accumulation; these features were not exacerbated with KTAMPKγ2ΚΟ. Whereas WT females had protection against diabetes-induced kidney injury, KTAMPKγ2ΚΟ led to loss of female protection against kidney disease. The hormone 17ß-estradiol ameliorated high glucose-induced AMPK inactivation, p70S6K phosphorylation, and matrix protein accumulation in kidney tubule cells. The mechanism for female protection against diabetes-induced kidney injury is likely via an estrogen-AMPK pathway, as inhibition of AMPK led to loss of estrogen protection to glucose-induced mTORC1 activation and matrix production. RNA sequencing and metabolomic analysis identified a decrease in the degradation pathway of phenylalanine and tyrosine resulting in increased urinary phenylalanine and tyrosine levels in females. The metabolite levels correlated with loss of female protection. The findings provide new insights to explain evolutionary advantages to females during states of nutrient challenges.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Nefropatías Diabéticas , Riñón , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/prevención & control , Femenino , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Riñón/metabolismo , Ratones Noqueados , Fosforilación , Estradiol/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Diabetes Mellitus Experimental/metabolismo
14.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612417

RESUMEN

Diabetic nephropathy (DN) is a serious complication of diabetes, and its progression is influenced by factors like oxidative stress, inflammation, cell death, and fibrosis. Compared to drug treatment, exercise offers a cost-effective and low-risk approach to slowing down DN progression. Through multiple ways and mechanisms, exercise helps to control blood sugar and blood pressure and reduce serum creatinine and albuminuria, thereby alleviating kidney damage. This review explores the beneficial effects of exercise on DN improvement and highlights its potential mechanisms for ameliorating DN. In-depth understanding of the role and mechanism of exercise in improving DN would pave the way for formulating safe and effective exercise programs for the treatment and prevention of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/prevención & control , Albuminuria , Glucemia , Presión Sanguínea , Muerte Celular
15.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1249-1254, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621971

RESUMEN

The chemical constituents of Draconis Sanguis were preliminarily studied by macroporous resin, silica gel, dextran gel, and high-performance liquid chromatography. One retro-dihydrochalcone, four flavonoids, and one stilbene were isolated. Their chemical structures were identified as 4-hydroxy-2,6-dimethoxy-3-methyldihydrochalcone(1), 4'-hydroxy-5,7-dimethoxy-8-methylflavan(2), 7-hydroxy-4',5-dimethoxyflavan(3),(2S)-7-hydroxy-5-methoxy-6-methylflavan(4),(2S)-7-hydroxy-5-methoxyflavan(5), and pterostilbene(6) by modern spectroscopy, physicochemical properties, and literature comparison. Compound 1 was a new compound. Compounds 2 and 6 were first found in the Arecaceae family. Compound 5 had the potential to prevent and treat diabetic kidney disease.


Asunto(s)
Arecaceae , Diabetes Mellitus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Flavonoides/análisis , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos
16.
PLoS One ; 19(4): e0301992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640098

RESUMEN

BACKGROUND AND OBJECTIVE: Diabetic neuropathy (DN) is a complex type of diabetes. The underlying cause of diabetic nephropathy remains unclear and may be due to a variety of pathological conditions resulting in kidney failure. This study examines the protective effect of the methanolic extract of Spilanthes filicaulis leaves (MESFL) in fructose-fed streptozotocin (STZ)-induced diabetic nephropathy and the associated pathway. METHODS: Twenty-five rats were equally divided randomly into five categories: Control (C), diabetic control, diabetic + metformin (100 mg/kg), diabetic + MESFL 150 mg/kg bw, and diabetic + MESFL 300 mg/kg bw. After 15 days, the rats were evaluated for fasting blood glucose (FBG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea, uric acid, serum creatinine, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Gene expression levels of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response element-binding (CREB), cFOS and the antiapoptotic protein Bcl-2 were examined. RESULTS: We observed that MESFL at 150 and 300 mg/kg bw significantly downregulated the protein expression of cAMP, PKA, CREB, and cFOS and upregulated the Bcl-2 gene, suggesting that the nephroprotective action of MESFL is due to the suppression of the cAMP/PKA/CREB/cFOS signaling pathway. In addition, MESFL increases SOD and CAT activities and GSH levels, reduces MDA levels, and reduces renal functional indices (ALP, urea, uric acid, and creatinine). CONCLUSION: Therefore, our results indicate that MESFL alleviates the development of diabetic nephropathy via suppression of the cAMP/PKA/CREB/cFOS pathways.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/metabolismo , Estreptozocina/farmacología , Riñón/patología , Ácido Úrico/metabolismo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Diabetes Mellitus/patología
17.
Cochrane Database Syst Rev ; 4: CD006257, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682786

RESUMEN

BACKGROUND: Guidelines suggest that adults with diabetes and kidney disease receive treatment with angiotensin-converting-enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB). This is an update of a Cochrane review published in 2006. OBJECTIVES: We compared the efficacy and safety of ACEi and ARB therapy (either as monotherapy or in combination) on cardiovascular and kidney outcomes in adults with diabetes and kidney disease. SEARCH METHODS: We searched the Cochrane Kidney and Transplants Register of Studies to 17 March 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA: We included studies evaluating ACEi or ARB alone or in combination, compared to each other, placebo or no treatment in people with diabetes and kidney disease. DATA COLLECTION AND ANALYSIS: Two authors independently assessed the risk of bias and extracted data. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) or standardised mean difference (SMD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS: One hundred and nine studies (28,341 randomised participants) were eligible for inclusion. Overall, the risk of bias was high. Compared to placebo or no treatment, ACEi may make little or no difference to all-cause death (24 studies, 7413 participants: RR 0.91, 95% CI 0.73 to 1.15; I2 = 23%; low certainty) and with similar withdrawals from treatment (7 studies, 5306 participants: RR 1.03, 95% CI 0.90 to 1.19; I2 = 0%; low certainty). ACEi may prevent kidney failure (8 studies, 6643 participants: RR 0.61, 95% CI 0.39 to 0.94; I2 = 0%; low certainty). Compared to placebo or no treatment, ARB may make little or no difference to all-cause death (11 studies, 4260 participants: RR 0.99, 95% CI 0.85 to 1.16; I2 = 0%; low certainty). ARB have uncertain effects on withdrawal from treatment (3 studies, 721 participants: RR 0.85, 95% CI 0.58 to 1.26; I2 = 2%; low certainty) and cardiovascular death (6 studies, 878 participants: RR 3.36, 95% CI 0.93 to 12.07; low certainty). ARB may prevent kidney failure (3 studies, 3227 participants: RR 0.82, 95% CI 0.72 to 0.94; I2 = 0%; low certainty), doubling of serum creatinine (SCr) (4 studies, 3280 participants: RR 0.84, 95% CI 0.72 to 0.97; I2 = 32%; low certainty), and the progression from microalbuminuria to macroalbuminuria (5 studies, 815 participants: RR 0.44, 95% CI 0.23 to 0.85; I2 = 74%; low certainty). Compared to ACEi, ARB had uncertain effects on all-cause death (15 studies, 1739 participants: RR 1.13, 95% CI 0.68 to 1.88; I2 = 0%; low certainty), withdrawal from treatment (6 studies, 612 participants: RR 0.91, 95% CI 0.65 to 1.28; I2 = 0%; low certainty), cardiovascular death (13 studies, 1606 participants: RR 1.15, 95% CI 0.45 to 2.98; I2 = 0%; low certainty), kidney failure (3 studies, 837 participants: RR 0.56, 95% CI 0.29 to 1.07; I2 = 0%; low certainty), and doubling of SCr (2 studies, 767 participants: RR 0.88, 95% CI 0.52 to 1.48; I2 = 0%; low certainty). Compared to ACEi plus ARB, ACEi alone has uncertain effects on all-cause death (6 studies, 1166 participants: RR 1.08, 95% CI 0.49 to 2.40; I2 = 20%; low certainty), withdrawal from treatment (2 studies, 172 participants: RR 0.78, 95% CI 0.33 to 1.86; I2 = 0%; low certainty), cardiovascular death (4 studies, 994 participants: RR 3.02, 95% CI 0.61 to 14.85; low certainty), kidney failure (3 studies, 880 participants: RR 1.36, 95% CI 0.79 to 2.32; I2 = 0%; low certainty), and doubling of SCr (2 studies, 813 participants: RR 1.14, 95% CI 0.70 to 1.85; I2 = 0%; low certainty). Compared to ACEi plus ARB, ARB alone has uncertain effects on all-cause death (7 studies, 2607 participants: RR 1.02, 95% CI 0.76 to 1.37; I2 = 0%; low certainty), withdrawn from treatment (3 studies, 1615 participants: RR 0.81, 95% CI 0.53 to 1.24; I2 = 0%; low certainty), cardiovascular death (4 studies, 992 participants: RR 3.03, 95% CI 0.62 to 14.93; low certainty), kidney failure (4 studies, 2321 participants: RR 1.15, 95% CI 0.67 to 1.95; I2 = 29%; low certainty), and doubling of SCr (3 studies, 2252 participants: RR 1.18, 95% CI 0.85 to 1.64; I2 = 0%; low certainty). Comparative effects of different ACEi or ARB and low-dose versus high-dose ARB were rarely evaluated. No study compared different doses of ACEi. Adverse events of ACEi and ARB were rarely reported. AUTHORS' CONCLUSIONS: ACEi or ARB may make little or no difference to all-cause and cardiovascular death compared to placebo or no treatment in people with diabetes and kidney disease but may prevent kidney failure. ARB may prevent the doubling of SCr and the progression from microalbuminuria to macroalbuminuria compared with a placebo or no treatment. Despite the international guidelines suggesting not combining ACEi and ARB treatment, the effects of ACEi or ARB monotherapy compared to dual therapy have not been adequately assessed. The limited data availability and the low quality of the included studies prevented the assessment of the benefits and harms of ACEi or ARB in people with diabetes and kidney disease. Low and very low certainty evidence indicates that it is possible that further studies might provide different results.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Nefropatías Diabéticas , Progresión de la Enfermedad , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Sesgo , Causas de Muerte , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/prevención & control , Quimioterapia Combinada
18.
Life Sci ; 347: 122667, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670449

RESUMEN

BACKGROUND: Zinc deficiency is strongly correlated with prolonged diabetes mellitus and diabetic nephropathy (DN). Previously, glucose-lowering, insulinomimetic, and ß-cell proliferative activities of zinc oxide nanoparticles (ZON) have been reported. Considering these pleiotropic effects, we hypothesized that ZON modulates multiple cellular pathways associated with necroptosis, inflammation, and renal fibrosis, which are involved in progressive loss of renal function. AIM: This study evaluated the effect of ZON on renal function, leading to the alleviation of DN in streptozotocin (STZ)-induced type 1 diabetic Wistar rats and proposed a probable mechanism for its activity. METHODS: Wistar rats (n = 6/group) were used as healthy controls, diabetic controls, diabetic rats treated with ZON (1, 3, and 10 mg/kg), and insulin controls. Urine and serum biochemical parameters, glomerular filtration rate (GFR), and renal histology were also evaluated. Cultured E11 podocytes were evaluated in vitro for markers of oxidative stress, proteins associated with the loss of renal function, and genes associated with renal damage. KEY FINDINGS: STZ-treated rats receiving oral doses of ZON showed enhanced renal function, with no histological alterations in the kidney tissue. ZON inhibited the TGF-ß/Samd3 pathway in renal fibrosis; blocked Ripk1/Ripk3/Mlkl mediated necroptosis and protected against hyperglycemia-induced pyroptosis. In E11 podocytes, ZON reduced oxidative stress under high glucose conditions and retained podocyte-specific proteins. SIGNIFICANCE: A probable mechanism by which ZON prevents DN has been proposed, suggesting its use as a complementary therapeutic agent for the treatment of diabetic complications. To the best of our knowledge, this is the first study to demonstrate the in vitro effects of ZON in cultured podocytes.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Estrés Oxidativo , Ratas Wistar , Óxido de Zinc , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Masculino , Óxido de Zinc/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nanopartículas , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Fibrosis , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Estreptozocina , Transducción de Señal/efectos de los fármacos
19.
J Endocrinol Invest ; 47(7): 1763-1776, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38512446

RESUMEN

PURPOSE: To investigate how sleeve gastrectomy (SG), a typical operation of bariatric surgery, attenuated symptom, and progression of diabetic kidney disease (DKD). METHODS: DKD model was induced by high-fat diet (HFD) combined with streptozocin in Wistar rats. SG was performed, and the group subjected to sham surgery served as control. The animals were euthanized 12 weeks after surgery, followed by sample collection for the subsequent experiment. The HK-2, a renal proximal tubular epithelial cell line derived from human, was utilized to investigate the potential mechanisms. RESULTS: SG improved metabolic parameters and glucose homeostasis, and could alleviate DKD in terms of renal function indices as well as histological and morphological structures in DM rats, accompanied with a significant reduction in renal tubular injury. Compared with sham group, SG reduced the renal tubular ferroptosis. To further clarify the mechanism involved, in vitro experiments were performed. In the presence of high glucose, renal tubular TGF-ß1 secretion was significantly increased in HK-2 cell line, which led to activation of ferroptosis through TGF-ß1/Smad3 signaling pathway. Inhibition of TGF-ß1 receptor and phosphorylation of Smad3 significantly ameliorated TGF-ß1-mediated ferroptosis. In vivo experiments also found that SG improved the hyperglycemic environment, reduced renal TGF-ß1 concentrations, and down-regulated the TGF-ß1/Smad3 signaling pathway. CONCLUSIONS: With the capacity to lower the glucose, SG could attenuate the ferroptosis by inhibiting TGF-ß1/Smad3 signaling pathway in DKD rats, and eventually attenuated DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ferroptosis , Gastrectomía , Ratas Wistar , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control , Ratas , Factor de Crecimiento Transformador beta1/metabolismo , Proteína smad3/metabolismo , Transducción de Señal/fisiología , Masculino , Gastrectomía/métodos , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Humanos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Regulación hacia Abajo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Dieta Alta en Grasa/efectos adversos
20.
Endocrine ; 84(3): 822-835, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38472620

RESUMEN

PURPOSE: Chronic kidney disease (CKD) is one of the most common complications of type 2 diabetes (T2D), and CKD-related disability and mortality are increasing despite the recent advances in diabetes management. The dual GIP/GLP-1 receptor agonist tirzepatide is among the furthest developed multi-agonists for diabetes care and has so far displayed promising nephroprotective effects. This review aims to summarize the evidence regarding the nephroprotective effects of glucagon-like peptide-1 receptor agonists (GLP-1RA) and tirzepatide and the putative mechanisms underlying the favorable renal profile of tirzepatide. METHODS: A comprehensive literature search was performed from inception to July 31st 2023 to select research papers addressing the renal effects of GLP-1RA and tirzepatide. RESULTS: The pathogenesis of CKD in patients with T2D likely involves many contributors besides hyperglycemia, such as hypertension, obesity, insulin resistance and glomerular atherosclerosis, exerting kidney damage through metabolic, fibrotic, inflammatory, and hemodynamic mechanisms. Tirzepatide displayed an unprecedented glucose and body weight lowering potential, presenting also with the ability to increase insulin sensitivity, reduce systolic blood pressure and inflammation and ameliorate dyslipidemia, particularly by reducing triglycerides levels. CONCLUSION: Tirzepatide is likely to counteract most of the pathogenetic factors contributing to CKD in T2D, potentially representing a step forward in incretin-based therapy towards nephroprotection. Further evidence is needed to understand its role in renal hemodynamics, fibrosis, cell damage and atherosclerosis, as well as to conclusively show reduction of hard renal outcomes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Insuficiencia Renal Crónica/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Riñón/efectos de los fármacos , Agonistas Receptor de Péptidos Similares al Glucagón , Receptor del Péptido 2 Similar al Glucagón , Polipéptido Inhibidor Gástrico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA