Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.120
Filtrar
1.
Mol Cancer ; 23(1): 91, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715012

RESUMEN

BACKGROUND: Recent evidence has demonstrated that abnormal expression and regulation of circular RNA (circRNAs) are involved in the occurrence and development of a variety of tumors. The aim of this study was to investigate the effects of circ_PPAPDC1A in Osimertinib resistance in NSCLC. METHODS: Human circRNAs microarray analysis was conducted to identify differentially expressed (DE) circRNAs in Osimertinib-acquired resistance tissues of NSCLC. The effect of circ_PPAPDC1A on cell proliferation, invasion, migration, and apoptosis was assessed in both in vitro and in vivo. Dual-luciferase reporter assay, RT-qPCR, Western-blot, and rescue assay were employed to confirm the interaction between circ_PPAPDC1A/miR-30a-3p/IGF1R axis. RESULTS: The results revealed that circ_PPAPDC1A was significantly upregulated in Osimertinib acquired resistance tissues of NSCLC. circ_PPAPDC1A reduced the sensitivity of PC9 and HCC827 cells to Osimertinib and promoted cell proliferation, invasion, migration, while inhibiting apoptosis in Osimertinib-resistant PC9/OR and HCC829/OR cells, both in vitro and in vivo. Silencing circ_PPAPDC1A partially reversed Osimertinib resistance. Additionally, circ_PPAPDC1A acted as a competing endogenous RNA (ceRNA) by targeting miR-30a-3p, and Insulin-like Growth Factor 1 Receptor (IGF1R) was identified as a functional gene for miR-30a-3p in NSCLC. Furthermore, the results confirmed that circ_PPAPDC1A/miR-30a-3p/IGF1R axis plays a role in activating the PI3K/AKT/mTOR signaling pathway in NSCLC with Osimertinib resistance. CONCLUSIONS: Therefore, for the first time we identified that circ_PPAPDC1A was significantly upregulated and exerts an oncogenic role in NSCLC with Osimertinib resistance by sponging miR-30a-3p to active IGF1R/PI3K/AKT/mTOR pathway. circ_PPAPDC1A may serve as a novel diagnostic biomarker and therapeutic target for NSCLC patients with Osimertinib resistance.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , MicroARNs , ARN Circular , Receptor IGF Tipo 1 , Transducción de Señal , Humanos , MicroARNs/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Resistencia a Antineoplásicos/genética , Acrilamidas/farmacología , ARN Circular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Compuestos de Anilina/farmacología , Línea Celular Tumoral , Animales , Ratones , Apoptosis , Movimiento Celular/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Femenino , Indoles , Pirimidinas
2.
Clin Respir J ; 18(5): e13757, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715380

RESUMEN

OBJECTIVE: This research was aimed to comprehensively investigate the expression levels, diagnostic and prognostic implications, and the relationship with immune infiltration of G2 and S phase-expressed-1 (GTSE1) across 33 tumor types, including lung adenocarcinoma (LUAD), through gene expression profiling. METHODS: GTSE1 mRNA expression data together with clinical information were acquired from Xena database of The Cancer Genome Atlas (TCGA), ArrayExpress, and Gene Expression Omnibus (GEO) database for this study. The Wilcoxon rank-sum test was used to detect differences in GTSE1 expression between groups. The ability of GTSE1 to accurately predict cancer status was evaluated by calculating the area under the curve (AUC) value for the receiver operating characteristic curve. Additionally, we investigated the predictive value of GTSE1 in individuals diagnosed with neoplasms using univariate Cox regression analysis as well as Kaplan-Meier curves. Furthermore, the correlation between GTSE1 expression and levels of immune infiltration was assessed by utilizing the Tumor Immune Estimate Resource (TIMER) database to calculate the Spearman rank correlation coefficient. Finally, the pan-cancer analysis findings were validated by examining the association between GTSE1 expression and prognosis among patients with LUAD. RESULTS: GTSE1 exhibited significantly increased expression levels in a wide range of tumor tissues in contrast with normal tissues (p < 0.05). The expression of GTSE1 in various tumors was associated with clinical features, overall survival, and disease-specific survival (p < 0.05). In immune infiltration analyses, a strong correlation of the level of immune infiltration with the expression of GTSE1 was observed. Furthermore, GTSE1 demonstrated good discriminative and diagnostic value for most tumors. Additional experiments confirmed the relationship between elevated GTSE1 expression and unfavorable prognosis in individuals diagnosed with LUAD. These findings indicated the crucial role of GTSE1 expression level in influencing the development and immune infiltration of different types of tumors. CONCLUSIONS: GTSE1 might be a potential biomarker for the prognosis of pan-cancer. Meanwhile, it represented a promising target for immunotherapy.


Asunto(s)
Adenocarcinoma del Pulmón , Biomarcadores de Tumor , Neoplasias Pulmonares , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/diagnóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Pronóstico
3.
JCI Insight ; 9(9)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716730

RESUMEN

Lung cancer is the leading cause of cancer-related deaths in the world, and non-small cell lung cancer (NSCLC) is the most common subset. We previously found that infiltration of tumor inflammatory monocytes (TIMs) into lung squamous carcinoma (LUSC) tumors is associated with increased metastases and poor survival. To further understand how TIMs promote metastases, we compared RNA-Seq profiles of TIMs from several LUSC metastatic models with inflammatory monocytes (IMs) of non-tumor-bearing controls. We identified Spon1 as upregulated in TIMs and found that Spon1 expression in LUSC tumors corresponded with poor survival and enrichment of collagen extracellular matrix signatures. We observed SPON1+ TIMs mediate their effects directly through LRP8 on NSCLC cells, which resulted in TGF-ß1 activation and robust production of fibrillar collagens. Using several orthogonal approaches, we demonstrated that SPON1+ TIMs were sufficient to promote NSCLC metastases. Additionally, we found that Spon1 loss in the host, or Lrp8 loss in cancer cells, resulted in a significant decrease of both high-density collagen matrices and metastases. Finally, we confirmed the relevance of the SPON1/LRP8/TGF-ß1 axis with collagen production and survival in patients with NSCLC. Taken together, our study describes how SPON1+ TIMs promote collagen remodeling and NSCLC metastases through an LRP8/TGF-ß1 signaling axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Monocitos , Transducción de Señal , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/secundario , Línea Celular Tumoral , Colágeno/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Monocitos/metabolismo , Monocitos/patología , Metástasis de la Neoplasia , Factor de Crecimiento Transformador beta1/metabolismo
4.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724488

RESUMEN

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Asunto(s)
Adenocarcinoma del Pulmón , Proteínas Relacionadas con la Autofagia , Autofagia , Progresión de la Enfermedad , Neoplasias Pulmonares , MicroARNs , Material Particulado , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Material Particulado/efectos adversos , Autofagia/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proliferación Celular/genética , Células A549 , Línea Celular Tumoral , Proteínas Adaptadoras del Transporte Vesicular
5.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743625

RESUMEN

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Fosfatidilinositol 3-Quinasas , Proteínas Serina-Treonina Quinasas , Esferoides Celulares , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Esferoides Celulares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proliferación Celular , Línea Celular Tumoral , Sistemas CRISPR-Cas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
6.
Cancer Res ; 84(10): 1543-1545, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745495

RESUMEN

Nutrient stress accompanies several stages of tumor progression, including metastasis formation. Metabolic reprogramming is a hallmark of cancer, and it has been associated with stress tolerance and anchorage-independent cell survival. Adaptive responses are required to support cancer cell survival under these conditions. In this issue of Cancer Research, Nam and colleagues showed that the extracellular matrix (ECM) receptor integrin ß3 was upregulated in lung cancer cells in response to nutrient starvation, resulting in increased cell survival that was independent from ECM binding. Delving into the molecular mechanisms responsible for this, the authors found that integrin ß3 promoted glutamine metabolism and oxidative phosphorylation (OXPHOS) by activating a Src/AMPK/PGC1α signaling pathway. Importantly, in vivo experiments confirmed that OXPHOS inhibition suppressed tumor initiation in an orthotopic model of lung cancer, while ß3 knockout completely abrogated tumor initiation. These observations indicate that targeting signaling pathways downstream of αvß3 could represent a promising therapeutic avenue to prevent lung cancer progression and metastasis. See related article by Nam et al., p. 1630.


Asunto(s)
Integrina alfaVbeta3 , Neoplasias Pulmonares , Humanos , Integrina alfaVbeta3/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Animales , Transducción de Señal , Ratones , Fosforilación Oxidativa , Estrés Fisiológico , Nutrientes/metabolismo
7.
Tunis Med ; 102(4): 223-228, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746962

RESUMEN

AIM: Our study aimed to perform on Moroccan patients' non-small cell lung carcinoma (NSCLC) concerning the relationship between PD-L1 tumor expression, clinicopathological features and tumor infiltrating immune cells (ICs). METHODS: This is a retrospective study (2019 to 2021) conducted on samples from Moroccan patients with NSCLC at the Pathological Anatomy Laboratory of Ibn Rochd University Hospital in Casablanca. Eligible participants for our study had to meet the following predefined criteria: age ≥18 years, histologically confirmed NSCLC, no prior therapeutic interventions, availability of clinical and pathological data, and a usable tumor sample for determining PD-L1 status. Exclusion criteria applied to patients with other types of lung cancer and unusable tumor samples. The evaluation of tumor and immune expression of PD-L1 was performed using immunohistochemistry (IHC), with the 22C3 clone on the Dako Autostainer Link 48 platform. Tumor PD-L1 expression was categorized into 3 levels: TPS <1% (negative expression), TPS 1-49% (low expression), and TPS ≥50% (high expression). ICs infiltrating the tumor expressing PD-L1 were considered positive when more than 1% of positive ICs were present. RESULTS: Among the 316 analyzed samples, 56.6% showed a negative expression of PD-L1, 16.8% displayed a low expression of PD-L1, and 26.6% exhibited a strong expression. Regarding the histological type, among patients with TPS ≥ 50%, 25.8% had adenocarcinoma. Among patients with TPS ≥ 50%, 24.81% were smokers. PD-L1 was also strongly expressed in the lung (28.2%) and bronchi (26.5%). PD-L1 expression (TPS ≥ 50%) was observed in 35.29% of early-stage patients. Concerning tumor cells (TCs), 27.5% of tumors infiltrated by ICs had TPS ≥ 50%. Furthermore, coexpression of PD-L1 on both TCs and ICs infiltrating the tumor was found in 27.8% of tumors. Statistical analysis demonstrated a significant association between tumor PD-L1 expression and smoking status (P=0.019). However, no significant difference was observed between PD-L1 expression and the presence of ICs infiltrating the tumor (P=0.652), as well as the IHC expression of PD-L1 on ICs (P=0.259). CONCLUSION: Our results demonstrate a significant association between PD-L1 expression and smoking status. However, no significant association was observed between PD-L1 expression and the presence of infiltrating ICs, nor with the IHC expression of PD-L1 on ICs. Our data underscore the importance of participating in the study of specific factors influencing PD-L1 expression in patients with NSCLC.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Linfocitos Infiltrantes de Tumor , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/análisis , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/inmunología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Linfocitos Infiltrantes de Tumor/metabolismo , Marruecos/epidemiología , Adulto , Inmunohistoquímica , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Anciano de 80 o más Años
8.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731403

RESUMEN

Food supplements have become beneficial as adjuvant therapies for many chronic disorders, including cancer. Genistein, a natural isoflavone enriched in soybeans, has gained potential interest as an anticancer agent for various cancers, primarily by modulating apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. However, in lung cancer, the exact impact and mechanism of action of genistein still require clarification. To provide more insight into the mechanism of action of genistein, network pharmacology was employed to identify the key targets and their roles in lung cancer pathogenesis. Based on the degree score, the hub genes AKT1, CASP3, EGFR, STAT3, ESR1, SRC, PTGS2, MMP9, PRAG, and AR were significantly correlated with genistein treatment. AKT1, EGFR, and STAT3 were enriched in the non-small cell lung cancer (NSCLC) pathway according to Kyoto Encyclopedia of Genes and Genomes analysis, indicating a significant connection to lung cancer development. Moreover, the binding affinity of genistein to NSCLC target proteins was further verified by molecular docking and molecular dynamics simulations. Genistein exhibited potential binding to AKT1, which is involved in apoptosis, cell migration, and metastasis, thus holding promise for modulating AKT1 function. Therefore, this study aimed to investigate the mechanism of action of genistein and its therapeutic potential for the treatment of NSCLC.


Asunto(s)
Genisteína , Neoplasias Pulmonares , Simulación de Dinámica Molecular , Farmacología en Red , Genisteína/farmacología , Genisteína/química , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Simulación del Acoplamiento Molecular , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
9.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731532

RESUMEN

A series of flavanols were synthesized to assess their biological activity against human non-small cell lung cancer cells (A549). Among the sixteen synthesized compounds, it was observed that compounds 6k (3.14 ± 0.29 µM) and 6l (0.46 ± 0.02 µM) exhibited higher potency compared to 5-fluorouracil (5-Fu, 4.98 ± 0.41 µM), a clinical anticancer drug which was used as a positive control. Moreover, compound 6l (4'-bromoflavonol) markedly induced apoptosis of A549 cells through the mitochondrial- and caspase-3-dependent pathways. Consequently, compound 6l might be developed as a candidate for treating or preventing lung cancer.


Asunto(s)
Antineoplásicos , Apoptosis , Flavonoles , Humanos , Flavonoles/farmacología , Flavonoles/síntesis química , Flavonoles/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Células A549 , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Fluorouracilo/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral
10.
Clin Respir J ; 18(5): e13765, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721812

RESUMEN

LINC00857 is frequently dysregulated in varying cancers, which in turn exerts carcinogenic effects; however, its DNA methylation status in promoter region and molecular mechanisms underlying the progression of lung adenocarcinoma (LUAD) remain rarely understood. Through bioinformatics analysis, we examined the expression state and methylation site of LINC00857 in LUAD and further investigated the properties of LINC00857 as a competitive endogenous RNA in the cancer progression. The current study revealed that the overexpression of LINC00857 in LUAD tissue and cells was mainly caused by the hypomethylation of the promoter region. LINC00857 knockdown prominently reduced cell proliferation, impeded cell migration and invasion, and restrained lymph node metastasis, with enhancing radiosensitivity. The effects of LINC00857 on tumor growth were also investigated in nude mice models. Subsequently, the downstream factors, miR-486-5p and NEK2, were screened, and the putative regulatory axis was examined. Overall, the regulatory effect of methylation-mediated LINC00857 overexpression on miR-486-5p/NEK2 axis may be a new mechanism for LUAD progression.


Asunto(s)
Adenocarcinoma del Pulmón , Proliferación Celular , Metilación de ADN , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Regulación hacia Arriba , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Animales , Ratones , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proliferación Celular/genética , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Línea Celular Tumoral , Ratones Desnudos , Movimiento Celular/genética , Masculino
11.
Med Oncol ; 41(6): 147, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733492

RESUMEN

Wnt/ß-catenin signaling plays important role in cancers. Compound 759 is one of the compounds previously screened to identify inhibitors of the Wnt/ß-catenin pathway in A549 cells [Lee et al. in Bioorg Med Chem Lett 20:5900-5904, 2010]. However, the mechanism by which Compound 759 induces the inhibition of the Wnt/ß-catenin pathway remains unknown. In our study, we employed various assays to comprehensively evaluate the effects of Compound 759 on lung cancer cells. Our results demonstrated that Compound 759 significantly suppressed cell proliferation and Wnt3a-induced Topflash activity and arrested the cell cycle at the G1 stage. Changes in Wnt/ß-catenin signaling-related protein expression, gene activity, and protein stability including Axin, and p21, were achieved through western blot and qRT-PCR analysis. Compound 759 treatment upregulated the mRNA level of p21 and increased Axin protein levels without altering the mRNA expression in A549 cells. Co-treatment of Wnt3a and varying doses of Compound 759 dose-dependently increased the amounts of Axin1 in the cytosol and inhibited ß-catenin translocation into the nucleus. Moreover, Compound 759 reduced tumor size and weight in the A549 cell-induced tumor growth in the in vivo tumor xenograft mouse model. Our findings indicate that Compound 759 exhibits potential anti-cancer activity by inhibiting the Wnt/ß-catenin signaling pathway through the increase of Axin1 protein stability.


Asunto(s)
Proteína Axina , Proliferación Celular , Neoplasias Pulmonares , Ratones Desnudos , Vía de Señalización Wnt , Humanos , Proteína Axina/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Estabilidad Proteica/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Células A549 , beta Catenina/metabolismo , beta Catenina/antagonistas & inhibidores , Proteína Wnt3A/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Ratones Endogámicos BALB C
13.
Biochem Biophys Res Commun ; 716: 150011, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704890

RESUMEN

Methionine adenosyltransferase 2 A (MAT2A) mediates the synthesis of methyl donor S-Adenosylmethionine (SAM), providing raw materials for methylation reactions in cells. MAT2A inhibitors are currently used for the treatment of tumors with methylthioadenosine phosphorylase (MTAP) deficiency in clinical research. Methyltransferase like 3 (METTL3) catalyzes N6-methyladenosine (m6A) modification of mRNA in mammalian cells using SAM as the substrate which has been shown to affect the tumorigenesis of non-small cell lung cancer (NSCLC) from multiple perspectives. MAT2A-induced SAM depletion may have the potential to inhibit the methyl transfer function of METTL3. Therefore, in order to expand the applicability of inhibitors, improve anti-tumor effects and reduce toxicity, the combinational effect of MAT2A inhibitor AG-270 and METTL3 inhibitor STM2457 was evaluated in NSCLC. The results showed that this combination induced cell apoptosis rather than cell cycle arrest, which was non-tissue-specific and was independent of MTAP expression status, resulting in a significant synergistic anti-tumor effect. We further elucidated that the combination-induced enhanced apoptosis was associated with the decreased m6A level, leading to downregulation of PI3K/AKT protein, ultimately activating the apoptosis-related proteins. Unexpectedly, although combination therapy resulted in metabolic recombination, no significant change in methionine metabolic metabolites was found. More importantly, the combination also exerted synergistic effects in vivo. In summary, the combination of MAT2A inhibitor and METTL3 inhibitor showed synergistic effects both in vivo and in vitro, which laid a theoretical foundation for expanding the clinical application research of the two types of drugs.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Sinergismo Farmacológico , Neoplasias Pulmonares , Metionina Adenosiltransferasa , Metiltransferasas , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Línea Celular Tumoral , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Anal Chem ; 96(19): 7651-7660, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690989

RESUMEN

Development of molecular diagnostics for lung cancer stratification and monitoring is crucial for the rational planning and timely adjustment of treatments to improve clinical outcomes. In this regard, we propose a nanocavity architecture to sensitively profile the protein signature on small extracellular vesicles (sEVs) to enable accurate, noninvasive staging and treatment monitoring of lung cancer. The nanocavity architecture is formed by molecular recognition through the binding of sEVs with the nanobox-based core-shell surface-enhanced Raman scattering (SERS) barcodes and mirrorlike, asymmetric gold microelectrodes. By imposing an alternating current on the gold microelectrodes, a nanofluidic shear force was stimulated that supported the binding of sEVs and the efficient assembly of the nanoboxes. The binding of sEVs further induced a nanocavity between the nanobox and the gold microelectrode that significantly amplified the electromagnetic field to enable the simultaneous enhancement of Raman signals from four SERS barcodes and generate patient-specific molecular sEV signatures. Importantly, evaluated on a cohort of clinical samples (n = 76) on the nanocavity architecture, the acquired patient-specific sEV molecular signatures achieved accurate identification, stratification, and treatment monitoring of lung cancer patients, highlighting its potential for transition to clinical utility.


Asunto(s)
Vesículas Extracelulares , Oro , Neoplasias Pulmonares , Espectrometría Raman , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Humanos , Oro/química , Microelectrodos
15.
Anal Chem ; 96(19): 7634-7642, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691624

RESUMEN

Chemical derivatization is a widely employed strategy in metabolomics to enhance metabolite coverage by improving chromatographic behavior and increasing the ionization rates in mass spectroscopy (MS). However, derivatization might complicate MS data, posing challenges for data mining due to the lack of a corresponding benchmark database. To address this issue, we developed a triple-dimensional combinatorial derivatization strategy for nontargeted metabolomics. This strategy utilizes three structurally similar derivatization reagents and is supported by MS-TDF software for accelerated data processing. Notably, simultaneous derivatization of specific metabolite functional groups in biological samples produced compounds with stable but distinct chromatographic retention times and mass numbers, facilitating discrimination by MS-TDF, an in-house MS data processing software. In this study, carbonyl analogues in human plasma were derivatized using a combination of three hydrazide-based derivatization reagents: 2-hydrazinopyridine, 2-hydrazino-5-methylpyridine, and 2-hydrazino-5-cyanopyridine (6-hydrazinonicotinonitrile). This approach was applied to identify potential carbonyl biomarkers in lung cancer. Analysis and validation of human plasma samples demonstrated that our strategy improved the recognition accuracy of metabolites and reduced the risk of false positives, providing a useful method for nontargeted metabolomics studies. The MATLAB code for MS-TDF is available on GitHub at https://github.com/CaixiaYuan/MS-TDF.


Asunto(s)
Metabolómica , Programas Informáticos , Humanos , Metabolómica/métodos , Neoplasias Pulmonares/metabolismo , Piridinas/química
16.
Commun Biol ; 7(1): 593, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760429

RESUMEN

STAT3 is constitutively activated in many cancer types, including lung cancer, and can induce cancer cell proliferation and cancer stem cell (CSC) maintenance. STAT3 is activated by tyrosine kinases, such as JAK and SRC, but the mechanism by which STAT3 maintains its activated state in cancer cells remains unclear. Here, we show that PRMT5 directly methylates STAT3 and enhances its activated tyrosine phosphorylation in non-small cell lung cancer (NSCLC) cells. PRMT5 expression is also induced by STAT3, suggesting the presence of a positive feedback loop in cancer cells. Furthermore, methylation of STAT3 at arginine 609 by PRMT5 is important for its transcriptional activity and support of tumour growth and CSC maintenance. Indeed, NSCLC cells expressing the STAT3 mutant which R609 was replaced to alanine (R609K) show significantly impaired tumour growth in nude mice. Overall, our study reveals a mechanism by which STAT3 remains activated in NSCLC and provides a new target for cancer therapeutic approaches.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Neoplasias Pulmonares , Ratones Desnudos , Células Madre Neoplásicas , Proteína-Arginina N-Metiltransferasas , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Metilación , Línea Celular Tumoral , Fosforilación , Regulación Neoplásica de la Expresión Génica
17.
J Vis Exp ; (207)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38767376

RESUMEN

Understanding the relationship between the cells and their location within each tissue is critical to uncover the biological processes associated with normal development and disease pathology. Spatial transcriptomics is a powerful method that enables the analysis of the whole transcriptome within tissue samples, thus providing information about the cellular gene expression and the histological context in which the cells reside. While this method has been extensively utilized for many soft tissues, its application for the analyses of hard tissues such as bone has been challenging. The major challenge resides in the inability to preserve good quality RNA and tissue morphology while processing the hard tissue samples for sectioning. Therefore, a method is described here to process freshly obtained bone tissue samples to effectively generate spatial transcriptomics data. The method allows for the decalcification of the samples, granting successful tissue sections with preserved morphological details while avoiding RNA degradation. In addition, detailed guidelines are provided for samples that were previously paraffin-embedded, without demineralization, such as samples collected from tissue banks. Using these guidelines, high-quality spatial transcriptomics data generated from tissue bank samples of primary tumor and lung metastasis of bone osteosarcoma are shown.


Asunto(s)
Neoplasias Óseas , Huesos , Transcriptoma , Humanos , Transcriptoma/genética , Huesos/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , Perfilación de la Expresión Génica/métodos , Adhesión en Parafina/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo
18.
BMC Pulm Med ; 24(1): 248, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764064

RESUMEN

BACKGROUND: Neuronal guanine nucleotide exchange factor (NGEF) plays a key role in several cancers; however, its role in lung adenocarcinoma (LUAD) remains unclear. The aim of this study was to evaluate the efficacy of NGEF as a prognostic biomarker and potential therapeutic target for LUAD. METHODS: NGEF expression data for multiple cancers and LUAD were downloaded from multiple databases. The high- and low-NGEF expression groups were constructed based on median NGEF expression in LUAD samples, and then performed Kaplan-Meier survival analysis. Differentially expressed genes (DEGs) from the two NGEF expression groups were screened and applied to construct a protein-protein interaction network. The primary pathways were obtained using gene set enrichment analysis. The associations between NGEF expression and clinical characteristics, immune infiltration, immune checkpoint inhibitors (ICIs), sensitivity to chemotherapy, and tumor mutation burden (TMB) were investigated using R. Levels of NGEF expression in the lung tissue was validated using single-cell RNA sequencing, quantitative polymerase chain reaction (qPCR), immunohistochemical staining, and western blot analysis. RESULTS: The expression of NGEF mRNA was upregulated in multiple cancers. mRNA and protein expression levels of NGEF were higher in patients with LUAD than in controls, as validated using qPCR and western blot. High NGEF expression was an independent prognostic factor for LUAD and was associated with advanced tumor stage, large tumor size, more lymph node metastasis, and worse overall survival (OS). A total of 182 overlapping DEGs were screened between The Cancer Genome Atlas and GSE31210, among which the top 20 hub genes were identified. NGEF expression was mainly enriched in the pathways of apoptosis, cell cycle, and DNA replication. Moreover, elevated NGEF expression were associated with a high fraction of activated memory CD4+ T cells and M0 macrophages; elevated expression levels of the ICIs: programmed cell death 1 and programmed cell death 1 ligand 1 expression; higher TMB; and better sensitivity to bortezomib, docetaxel, paclitaxel, and parthenolide, but less sensitivity to axitinib and metformin. CONCLUSION: NGEF expression is upregulated in LUAD and is significantly associated with tumor stages, OS probability, immune infiltration, immunotherapy response, and chemotherapy response. NGEF may be a potential diagnostic and prognostic biomarker and therapeutic target in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Biomarcadores de Tumor , Factores de Intercambio de Guanina Nucleótido , Inmunoterapia , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Pronóstico , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Inmunoterapia/métodos , Masculino , Femenino , Persona de Mediana Edad , Estimación de Kaplan-Meier , Regulación Neoplásica de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Anciano , Mapas de Interacción de Proteínas
19.
Zhongguo Fei Ai Za Zhi ; 27(4): 245-256, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38769827

RESUMEN

BACKGROUND: Tumor microenvironment (TME) is one of the important factors in tumorigenesis and progression, in which tumor-associated macrophages (TAMs) play an important role in non-small cell lung cancer (NSCLC) progression. However, the mechanism of TAMs in NSCLC progression remains unclear, so this study aimed to investigate the role of TAMs in NSCLC progression and to find potential therapeutic targets. METHODS: Gene Expression Profiling Interactive Analysis (GEPIA) database was used to analyze the expression of prostaglandin E2 receptor 4 (EP4) mRNA in NSCLC and normal lung tissues; the protein expression levels of cyclooxygenase-2 (COX-2), EP4, cluster of differentiation 86 (CD86), CD163 and CD31 were detected by immunohistochemistry (IHC) in 120 NSCLC tissues and 24 paracancerous tissues specimens. The nude mouse lung adenocarcinoma cell A549 and macrophage RAW264.7 co-transplanted tumor model was established. And the samples were collected by gavage with EP4 inhibitor E7046, and then stained with hematoxylin-eosin (HE), IHC, and immunofluorescence (IF), and then detected by Western blot for the epithelial mesenchymal transformation (EMT) of the tumor tissues of the nude mice in each group. Western blot was used to detect the expressions of EMT related protiens in each group of nude mice; full-length transcriptome sequencing was used to screen the key genes causing liver metastasis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed. RESULTS: EP4 mRNA expression level in NSCLC tissues was generally lower than that in normal lung tissues (P<0.05); COX-2, EP4, CD163, CD31 proteins were differentially expressed in NSCLC tissues and adjacent tissues, and differences were observed in many clinicopathological parameters of NSCLC patients; RAW264.7 shortened the latency period of tumorigenesis of A549 and promoted the proliferation of tumors and liver metastasis of tumors, and E7046 could reduce tumor cell proliferation activity, tumor tissue vascular density and M2-type macrophage infiltration in nude mice; IF staining showed that macrophages were mainly distributed around the metastatic foci of tumors; Western blot results showed that compared with A549 alone transplantation group, the relative expression of E-cadherin protein in tumor tissues of mice in A549 and RAW264.7 co-transplantation group was significantly decreased, and the difference was statistically significant (P<0.05), while the relative expression of N-cadherin protein was up-regulated, but the difference was not statistically significant (P>0.05); the main pathways enriched in the differential genes of the full-length transcriptome were the PI3K-AKT and MAPK signaling pathways. CONCLUSIONS: During NSCLC development, the COX-2/PGE2/EP4 axis may promote tumor progression by inducing macrophage functional activation, and EP4 may be a potential new target for tumor immunotherapy. This study provides new perspectives and ideas for in-depth exploration of the mechanisms of NSCLC development, as well as a theoretical basis for the development of new therapeutic strategies for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ciclooxigenasa 2 , Dinoprostona , Neoplasias Pulmonares , Subtipo EP4 de Receptores de Prostaglandina E , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Humanos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Animales , Dinoprostona/metabolismo , Ratones , Macrófagos/metabolismo , Activación de Macrófagos , Masculino , Femenino , Células A549 , Células RAW 264.7
20.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732173

RESUMEN

Lung adenocarcinoma (LUAD) is the most prevalent and aggressive subtype of lung cancer, exhibiting a dismal prognosis with a five-year survival rate below 5%. DEAD-box RNA helicase 18 (DDX18, gene symbol DDX18), a crucial regulator of RNA metabolism, has been implicated in various cellular processes, including cell cycle control and tumorigenesis. However, its role in LUAD pathogenesis remains elusive. This study demonstrates the significant upregulation of DDX18 in LUAD tissues and its association with poor patient survival (from public databases). Functional in vivo and in vitro assays revealed that DDX18 knockdown potently suppresses LUAD progression. RNA sequencing and chromatin immunoprecipitation experiments identified cyclin-dependent kinase 4 (CDK4), a cell cycle regulator, as a direct transcriptional target of DDX18. Notably, DDX18 depletion induced G1 cell cycle arrest, while its overexpression promoted cell cycle progression even in normal lung cells. Interestingly, while the oncogenic protein c-Myc bound to the DDX18 promoter, it did not influence its expression. Collectively, these findings establish DDX18 as a potential oncogene in LUAD, functioning through the CDK4-mediated cell cycle pathway. DDX18 may represent a promising therapeutic target for LUAD intervention.


Asunto(s)
Adenocarcinoma del Pulmón , Quinasa 4 Dependiente de la Ciclina , ARN Helicasas DEAD-box , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Animales , Línea Celular Tumoral , Carcinogénesis/genética , Carcinogénesis/metabolismo , Regulación hacia Arriba , Ratones , Ciclo Celular/genética , Proliferación Celular , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA