Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.613
Filtrar
1.
Clin Transl Med ; 14(5): e1680, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769668

RESUMEN

BACKGROUND: A series of studies have demonstrated the emerging involvement of transfer RNA (tRNA) processing during the progression of tumours. Nevertheless, the roles and regulating mechanisms of tRNA processing genes in neuroblastoma (NB), the prevalent malignant tumour outside the brain in children, are yet unknown. METHODS: Analysis of multi-omics results was conducted to identify crucial regulators of downstream tRNA processing genes. Co-immunoprecipitation and mass spectrometry methods were utilised to measure interaction between proteins. The impact of transcriptional regulators on expression of downstream genes was measured by dual-luciferase reporter, chromatin immunoprecipitation, western blotting and real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) methods. Studies have been conducted to reveal impact and mechanisms of transcriptional regulators on biological processes of NB. Survival differences were analysed using the log-rank test. RESULTS: c-Myc was identified as a transcription factor driving tRNA processing gene expression and subsequent malate-aspartate shuttle (MAS) in NB cells. Mechanistically, c-Myc directly promoted the expression of glutamyl-prolyl-tRNA synthetase (EPRS) and leucyl-tRNA synthetase (LARS), resulting in translational up-regulation of glutamic-oxaloacetic transaminase 1 (GOT1) as well as malate dehydrogenase 1 (MDH1) via inhibiting general control nonrepressed 2 or activating mechanistic target of rapamycin signalling. Meanwhile, lamin A (LMNA) inhibited c-Myc transactivation via physical interaction, leading to suppression of MAS, aerobic glycolysis, tumourigenesis and aggressiveness. Pre-clinically, lobeline was discovered as a LMNA-binding compound to facilitate its interaction with c-Myc, which inhibited aminoacyl-tRNA synthetase expression, MAS and tumour progression of NB, as well as growth of organoid derived from c-Myc knock-in mice. Low levels of LMNA or elevated expression of c-Myc, EPRS, LARS, GOT1 or MDH1 were linked to a worse outcome and a shorter survival time of clinical NB patients. CONCLUSIONS: These results suggest that targeting c-Myc transactivation by LMNA inhibits tRNA processing essential for MAS and tumour progression.


Asunto(s)
Proteínas Proto-Oncogénicas c-myc , Humanos , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Ácido Aspártico/metabolismo , Malatos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/genética , Progresión de la Enfermedad , Activación Transcripcional/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad
2.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791263

RESUMEN

Stroke and Alzheimer's disease (AD) are prevalent age-related diseases; however, the relationship between these two diseases remains unclear. In this study, we aimed to investigate the ability of melatonin, a hormone produced by the pineal gland, to alleviate the effects of ischemic stroke leading to AD by observing the pathogenesis of AD hallmarks. We utilized SH-SY5Y cells under the conditions of oxygen-glucose deprivation (OGD) and oxygen-glucose deprivation and reoxygenation (OGD/R) to establish ischemic stroke conditions. We detected that hypoxia-inducible factor-1α (HIF-1α), an indicator of ischemic stroke, was highly upregulated at both the protein and mRNA levels under OGD conditions. Melatonin significantly downregulated both HIF-1α mRNA and protein expression under OGD/R conditions. We detected the upregulation of ß-site APP-cleaving enzyme 1 (BACE1) mRNA and protein expression under both OGD and OGD/R conditions, while 10 µM of melatonin attenuated these effects and inhibited beta amyloid (Aß) production. Furthermore, we demonstrated that OGD/R conditions were able to activate the BACE1 promoter, while melatonin inhibited this effect. The present results indicate that melatonin has a significant impact on preventing the aberrant development of ischemic stroke, which can lead to the development of AD, providing new insight into the prevention of AD and potential stroke treatments.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Melatonina , Neuroblastoma , Melatonina/farmacología , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Neuroblastoma/metabolismo , Neuroblastoma/patología , Línea Celular Tumoral , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Glucosa/metabolismo , Péptidos beta-Amiloides/metabolismo , Oxígeno/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Hipoxia/metabolismo
3.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791513

RESUMEN

Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumors that originate from cells of neural crest origin committed to the sympathoadrenal progenitor cell lineage. Stress- and drug-resistance mechanisms drive post-therapeutic relapse and metastatic progression, the characterization and inhibition of which are major goals in improving therapeutic responses. Stress- and drug-resistance mechanisms in NBs include alternative TrkAIII splicing of the neurotrophin receptor tropomyosin-related kinase A (NTRK1/TrkA), which correlates with post-therapeutic relapse and advanced-stage metastatic disease. The TrkAIII receptor variant exerts oncogenic activity in NB models by mechanisms that include stress-induced mitochondrial importation and activation. In this study, we characterize novel targetable and non-targetable participants in this pro-survival mechanism in TrkAIII-expressing SH-SY5Y NB cells, using dithiothreitol (DTT) as an activator and a variety of inhibitors by regular and immunoprecipitation Western blotting of purified mitochondria and IncuCyte cytotoxicity assays. We report that stress-induced TrkAIII misfolding initiates this mechanism, resulting in Grp78, Ca2+-calmodulin, adenosine ribosylating factor (Arf) and Hsp90-regulated mitochondrial importation. TrkAIII imported into inner mitochondrial membranes is cleaved by Omi/high temperature requirement protein A2 (HtrA2) then activated by a mechanism dependent upon calmodulin kinase II (CaMKII), alpha serine/threonine kinase (Akt), mitochondrial Ca2+ uniporter and reactive oxygen species (ROS), involving inhibitory mitochondrial protein tyrosine phosphatase (PTPase) oxidation, resulting in phosphoinositide 3 kinase (PI3K) activation of mitochondrial Akt, which enhances stress resistance. This novel pro-survival function for misfolded TrkAIII mitigates the cytotoxicity of mitochondrial Ca2+ homeostasis disrupted during integrated stress responses, and is prevented by clinically approved Trk and Akt inhibitors and also by inhibitors of 78kDa glucose regulated protein (Grp78), heat shock protein 90 (Hsp90), Ca2+-calmodulin and PI3K. This identifies Grp78, Ca2+-calmodulin, Hsp90, PI3K and Akt as novel targetable participants in this mechanism, in addition to TrkAIII, the inhibition of which has the potential to enhance the stress-induced elimination of TrkAIII-expressing NB cells, with the potential to improve therapeutic outcomes in NBs that exhibit TrkAIII expression and activation.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Mitocondrias , Neuroblastoma , Receptor trkA , Humanos , Chaperón BiP del Retículo Endoplásmico/metabolismo , Receptor trkA/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Pliegue de Proteína , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
4.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792167

RESUMEN

Methylglyoxal-induced ROS elevation is the primary cause of neuronal damage. Metformin is a traditional hypoglycemic drug that has been reported to be beneficial to the nervous system. In this study, flavonoids were found to enhance the protective effect of metformin when added at a molar concentration of 0.5%. The structure-activity relationship (SAR) analysis indicated that ortho- substitution in the B ring, and the absence of double bonds between the 2 and 3 position combined with the gallate substitution with R configuration at the 3 position in the C ring played crucial roles in the synergistic effects, which could be beneficial for designing a combination of the compounds. Additionally, the mechanism study revealed that a typical flavonoid, EGCG, enhanced ROS scavenging and anti-apoptotic ability via the BCL2/Bax/Cyto C/Caspase-3 pathway, and synergistically inhibited the expression of GSK-3ß, BACE-1, and APP in PC-12 cells when used in combination with metformin. The dose of metformin used in the combination was only 1/4 of the conventional dose when used alone. These results suggested that ROS-mediated apoptosis and the pathways related to amyloid plaques (Aß) formation can be the targets for the synergistic neuroprotective effects of flavonoids and metformin.


Asunto(s)
Apoptosis , Sinergismo Farmacológico , Flavonoides , Metformina , Piruvaldehído , Especies Reactivas de Oxígeno , Metformina/farmacología , Metformina/química , Ratas , Flavonoides/farmacología , Flavonoides/química , Células PC12 , Animales , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuroblastoma/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Transducción de Señal/efectos de los fármacos
5.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732012

RESUMEN

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Asunto(s)
Catequina , MicroARNs , Neuroblastoma , Proteínas de Unión al ARN , Catequina/análogos & derivados , Catequina/farmacología , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , Neuroblastoma/tratamiento farmacológico , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Animales , Ratones , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos
6.
J Exp Clin Cancer Res ; 43(1): 141, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745192

RESUMEN

BACKGROUND: Neuroblastoma (NB) patients with amplified MYCN often face a grim prognosis and are resistant to existing therapies, yet MYCN protein is considered undruggable. KAP1 (also named TRIM28) plays a crucial role in multiple biological activities. This study aimed to investigate the relationship between KAP1 and MYCN in NB. METHODS: Transcriptome analyses and luciferase reporter assay identified that KAP1 was a downstream target of MYCN. The effects of KAP1 on cancer cell proliferation and colony formation were explored using the loss-of-function assays in vitro and in vivo. RNA stability detection was used to examine the influence of KAP1 on MYCN expression. The mechanisms of KAP1 to maintain MYCN mRNA stabilization were mainly investigated by mass spectrum, immunoprecipitation, RIP-qPCR, and western blotting. In addition, a xenograft mouse model was used to reveal the antitumor effect of STM2457 on NB. RESULTS: Here we identified KAP1 as a critical regulator of MYCN mRNA stability by protecting the RNA N6-methyladenosine (m6A) reader YTHDC1 protein degradation. KAP1 was highly expressed in clinical MYCN-amplified NB and was upregulated by MYCN. Reciprocally, KAP1 knockdown reduced MYCN mRNA stability and inhibited MYCN-amplified NB progression. Mechanistically, KAP1 regulated the stability of MYCN mRNA in an m6A-dependent manner. KAP1 formed a complex with YTHDC1 and RNA m6A writer METTL3 to regulate m6A-modified MYCN mRNA stability. KAP1 depletion decreased YTHDC1 protein stability and promoted MYCN mRNA degradation. Inhibiting MYCN mRNA m6A modification synergized with chemotherapy to restrain tumor progression in MYCN-amplified NB. CONCLUSIONS: Our research demonstrates that KAP1, transcriptionally activated by MYCN, forms a complex with YTHDC1 and METTL3, which in turn maintain the stabilization of MYCN mRNA in an m6A-dependent manner. Targeting m6A modification by STM2457, a small-molecule inhibitor of METTL3, could downregulate MYCN expression and attenuate tumor proliferation. This finding provides a new alternative putative therapeutic strategy for MYCN-amplified NB.


Asunto(s)
Proteína Proto-Oncogénica N-Myc , Neuroblastoma , Proteína 28 que Contiene Motivos Tripartito , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Ratones , Animales , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Proteína 28 que Contiene Motivos Tripartito/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN , Línea Celular Tumoral , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/genética , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Adenosina/análogos & derivados , Adenosina/metabolismo
7.
Free Radic Biol Med ; 220: 192-206, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734265

RESUMEN

Enhanced formation of advanced glycation end products (AGEs) is a pivotal factor in diabetes pathophysiology, increasing the risk of diabetic complications. Nε-carboxy-methyl-lysine (CML) is one of the most relevant AGEs found in several tissues including the peripheral blood of diabetic subjects. Despite recognizing diabetes as a risk factor for neurodegenerative diseases and the documented role of mitochondrial abnormalities in this connection, the impact of CML on neuronal mitochondria and its contribution to diabetes-related neurodegeneration remain uncertain. Here, we evaluated the effects of CML in differentiated SH-SY5Y human neuroblastoma cells. Due to the association between mitochondrial dysfunction and increased production of reactive oxygen species (ROS), the possible protective effects of MitoTempo, a mitochondria-targeted antioxidant, were also evaluated. Several parameters were assessed namely cells viability, mitochondrial respiration and membrane potential, ATP and ROS production, Ca2+ levels, mitochondrial biogenesis and dynamics, mito/autophagy, endoplasmic reticulum (ER) stress and amyloidogenic and synaptic integrity markers. CML caused pronounced mitochondrial defects characterized by a significant decrease in mitochondrial respiration, membrane potential, and ATP production and an increase in ROS production. An accumulation of individual mitochondria associated with disrupted mitochondrial networks was also observed. Furthermore, CML caused mitochondrial fusion and a decrease in mitochondrial mass and induced ER stress associated with altered unfolded protein response and Ca2+ dyshomeostasis. Moreover, CML increased the protein levels of ß-secretase-1 and amyloid precursor protein, key proteins involved in Alzheimer's Disease pathophysiology. All these effects contributed to the decline in neuronal cells viability. Notable, MitoTempo was able to counteract most of CML-mediated mitochondrial defects and neuronal cells injury and death. Overall, these findings suggest that CML induces pronounced defects in neuronal mitochondria and ER stress, predisposing to neurodegenerative events. More, our observations suggest that MitoTempo holds therapeutic promise in mitigating CML-induced mitochondrial imbalance and neuronal damage and death.


Asunto(s)
Estrés del Retículo Endoplásmico , Lisina , Potencial de la Membrana Mitocondrial , Mitocondrias , Neuronas , Compuestos Organofosforados , Especies Reactivas de Oxígeno , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neuronas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Compuestos Organofosforados/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Productos Finales de Glicación Avanzada/metabolismo , Homeostasis , Antioxidantes/farmacología , Antioxidantes/metabolismo , Neuroblastoma/patología , Neuroblastoma/metabolismo , Piperidinas
8.
J Cell Mol Med ; 28(10): e18360, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38785199

RESUMEN

Neuroblastoma (NB), a common solid tumour in young children originating from the sympathetic nervous system during embryonic development, poses challenges despite therapeutic advances like high-dose chemotherapy and immunotherapy. Some survivors still grapple with severe side effects and drug resistance. The role of lncRNA NUTM2A-AS1 has been explored in various cancers, but its function in drug-resistant NB progression is unclear. Our study found that NUTM2A-AS1 expression in cisplatin-resistant NB cells increased in a time- and dose-dependent manner. Knockdown of NUTM2A-AS1 significantly improved NB cell sensitivity to cisplatin and inhibited metastatic abilities. Additionally, we identified B7-H3, an immune checkpoint-related protein, as a NUTM2A-AS1-associated protein in NB cells. NUTM2A-AS1 was shown to inhibit the protein degradation of B7-H3. Moreover, NUTM2A-AS1 modulated immune evasion in cisplatin-resistant NB cells through B7-H3. Furthermore, NUTM2A-AS1 expression in cisplatin-resistant NB cells was transactivated by NR1D1. In summary, our results unveil the molecular or biological relationship within the NR1D1/NUTM2A-AS1/B7-H3 axis in NB cells under cisplatin treatment, providing an intriguing avenue for fundamental research into cisplatin-resistant NB.


Asunto(s)
Antígenos B7 , Cisplatino , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neuroblastoma , ARN Largo no Codificante , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Resistencia a Antineoplásicos/genética , Antígenos B7/metabolismo , Antígenos B7/genética , ARN Largo no Codificante/genética , Cisplatino/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Evasión Inmune , Animales , Proteolisis/efectos de los fármacos , Ratones
9.
Sci Rep ; 14(1): 12113, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802572

RESUMEN

SH-SY5Y, a neuroblastoma cell line, can be converted into mature neuronal phenotypes, characterized by the expression of mature neuronal and neurotransmitter markers. However, the mature phenotypes described across multiple studies appear inconsistent. As this cell line expresses common neuronal markers after a simple induction, there is a high chance of misinterpreting its maturity. Therefore, sole reliance on common neuronal markers is presumably inadequate. The Alzheimer's disease (AD) central gene, amyloid precursor protein (APP), has shown contrasting transcript variant dynamics in various cell types. We differentiated SH-SY5Y cells into mature neuron-like cells using a concise protocol and observed the upregulation of total APP throughout differentiation. However, APP transcript variant-1 was upregulated only during the early to middle stages of differentiation and declined in later stages. We identified the maturity state where this post-transcriptional shift occurs, terming it "true maturity." At this stage, we observed a predominant expression of mature neuronal and cholinergic markers, along with a distinct APP variant pattern. Our findings emphasize the necessity of using a differentiation state-sensitive marker system to precisely characterize SH-SY5Y differentiation. Moreover, this study offers an APP-guided, alternative neuronal marker system to enhance the accuracy of the conventional markers.


Asunto(s)
Precursor de Proteína beta-Amiloide , Diferenciación Celular , Neuronas , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Neuronas/metabolismo , Neuronas/citología , Línea Celular Tumoral , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Biomarcadores/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Empalme Alternativo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
10.
FASEB J ; 38(10): e23689, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38785406

RESUMEN

Neuroblastoma, a prevalent extracranial solid tumor in children, arises from undifferentiated nerve cells. While tumor vasculature, often characterized by increased permeability, influences metastasis and recurrence, the direct impact of blood-borne molecules on tumor progression remains unclear. In the present study, we focused on the effect of exposure to albumin, one of the most abundant proteins in the serum, on human neuroblastoma cells. Albumin exposure elevated oxidative stress and led to mitochondria dysfunction via the activation of TGFß and PI3K pathways, accompanied by an increase in the metastatic and invasive properties of neuroblastoma cells. Proteins relevant to the induction of autophagy were upregulated in response to prolonged albumin exposure. Additionally, pre-exposure to albumin before treatment resulted in increased resistance to paclitaxel. Two valeriana-type iridoid glycosides, patrisophoroside and patrinalloside, recently isolated from Nardostachys jatamansi significantly mitigated the effect of albumin on oxidative stress, cell invasiveness, and chemoresistance. These findings illuminate the potential role of blood-borne molecules, such as albumin, in the progression and metastasis of neuroblastoma, as well as the possible therapeutic implications of valeriana-type iridoid glycosides in anti-cancer treatment.


Asunto(s)
Resistencia a Antineoplásicos , Glicósidos Iridoides , Neuroblastoma , Paclitaxel , Humanos , Neuroblastoma/patología , Neuroblastoma/metabolismo , Neuroblastoma/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Paclitaxel/farmacología , Glicósidos Iridoides/farmacología , Línea Celular Tumoral , Invasividad Neoplásica , Estrés Oxidativo/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Valeriana/química , Albúmina Sérica/metabolismo
11.
Front Immunol ; 15: 1382931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736882

RESUMEN

Background: Neuroblastoma (NB) is characterized by both adrenergic (ADRN) and undifferentiated mesenchymal (MES) subsets. The ganglioside sialic acid-containing glycosphingolipid (GD2) is widely overexpressed on tumors of neuroectodermal origin promoting malignant phenotypes. MES cells are greatly enriched in post-therapy and relapsing tumors and are characterized by decreased expression of GD2. This event may cause failure of GD2-based immunotherapy. NK cells represent a key innate cell subset able to efficiently kill tumors. However, the tumor microenvironment (TME) that includes tumor cells and tumor-associated (TA) cells could inhibit their effector function. Methods: We studied eight NB primary cultures that, in comparison with commercial cell lines, more faithfully reflect the tumor cell characteristics. We studied four primary NB-MES cell cultures and two pairs of MES/ADRN (691 and 717) primary cultures, derived from the same patient. In particular, in the six human NB primary cultures, we assessed their phenotype, the expression of GD2, and the enzymes that control its expression, as well as their interactions with NK cells, using flow cytometry, RT-qPCR, and cytotoxicity assays. Results: We identified mature (CD105+/CD133-) and undifferentiated (CD133+/CD105-) NB subsets that express high levels of the MES transcripts WWTR1 and SIX4. In addition, undifferentiated MES cells display a strong resistance to NK-mediated killing. On the contrary, mature NB-MES cells display an intermediate resistance to NK-mediated killing and exhibit some immunomodulatory capacities on NK cells but do not inhibit their cytolytic activity. Notably, independent from their undifferentiated or mature phenotype, NB-MES cells express GD2 that can be further upregulated in undifferentiated NB-MES cells upon co-culture with NK cells, leading to the generation of mature mesenchymal GD2bright neuroblasts. Concerning 691 and 717, they show high levels of GD2 and resistance to NK cell-mediated killing that can be overcome by the administration of dinutuximab beta, the anti-GD2 monoclonal antibody applied in the clinic. Conclusions: NB is a heterogeneous tumor representing a further hurdle in NB immunotherapy. However, different from what was reported with NB commercial cells and independent of their MES/ADRN phenotype, the expression of GD2 and its displayed sensitivity to anti-GD2 mAb ADCC indicated the possible effectiveness of anti-GD2 immunotherapy.


Asunto(s)
Gangliósidos , Células Asesinas Naturales , Neuroblastoma , Escape del Tumor , Microambiente Tumoral , Humanos , Neuroblastoma/inmunología , Neuroblastoma/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Gangliósidos/inmunología , Gangliósidos/metabolismo , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica , Células Tumorales Cultivadas , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo
12.
Cancer Immunol Immunother ; 73(7): 122, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714539

RESUMEN

Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.


Asunto(s)
Hexoquinasa , Neuroblastoma , Macrófagos Asociados a Tumores , Neuroblastoma/metabolismo , Neuroblastoma/patología , Humanos , Hexoquinasa/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Proliferación Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Quimiocinas CXC/metabolismo , Animales , Microambiente Tumoral/inmunología
13.
Cancer Lett ; 591: 216882, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636893

RESUMEN

Super enhancers (SEs) are genomic regions comprising multiple closely spaced enhancers, typically occupied by a high density of cell-type-specific master transcription factors (TFs) and frequently enriched in key oncogenes in various tumors, including neuroblastoma (NB), one of the most prevalent malignant solid tumors in children originating from the neural crest. Cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) is a newly identified super-enhancer-driven gene regulated by master TFs in NB; however, its function in NB remains unclear. Through an integrated study of publicly available datasets and microarrays, we observed a significantly elevated CDK5RAP3 expression level in NB, associated with poor patient prognosis. Further research demonstrated that CDK5RAP3 promotes the growth of NB cells, both in vitro and in vivo. Mechanistically, defective CDK5RAP3 interfered with the UFMylation system, thereby triggering endoplasmic reticulum (ER) phagy. Additionally, we provide evidence that CDK5RAP3 maintains the stability of MEIS2, a master TF in NB, and in turn, contributes to the high expression of CDK5RAP3. Overall, our findings shed light on the molecular mechanisms by which CDK5RAP3 promotes tumor progression and suggest that its inhibition may represent a novel therapeutic strategy for NB.


Asunto(s)
Proteínas de Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , Animales , Línea Celular Tumoral , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Elementos de Facilitación Genéticos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proliferación Celular , Ratones Desnudos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pronóstico
14.
PLoS One ; 19(4): e0298748, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630734

RESUMEN

Although histone proteins are widely known for their intranuclear functions where they organize DNA, all five histone types can also be released into the extracellular space from damaged cells. Extracellular histones can interact with pattern recognition receptors of peripheral immune cells, including toll-like receptor 4 (TLR4), causing pro-inflammatory activation, which indicates they may act as damage-associated molecular patterns (DAMPs) in peripheral tissues. Very limited information is available about functions of extracellular histones in the central nervous system (CNS). To address this knowledge gap, we applied mixed histones (MH) to cultured cells modeling neurons, microglia, and astrocytes. Microglia are the professional CNS immunocytes, while astrocytes are the main support cells for neurons. Both these cell types are critical for neuroimmune responses and their dysregulated activity contributes to neurodegenerative diseases. We measured effects of extracellular MH on cell viability and select neuroimmune functions of microglia and astrocytes. MH were toxic to cultured primary murine neurons and also reduced viability of NSC-34 murine and SH-SY5Y human neuron-like cells in TLR4-dependent manner. MH did not affect the viability of resting or immune-stimulated BV-2 murine microglia or U118 MG human astrocytic cells. When applied to BV-2 cells, MH enhanced secretion of the potential neurotoxin glutamate, but did not modulate the release of nitric oxide (NO), tumor necrosis factor-α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), or the overall cytotoxicity of lipopolysaccharide (LPS)- and/or interferon (IFN)-γ-stimulated BV-2 microglial cells towards NSC-34 neuron-like cells. We demonstrated, for the first time, that MH downregulated phagocytic activity of LPS-stimulated BV-2 microglia. However, MH also exhibited protective effect by ameliorating the cytotoxicity of LPS-stimulated U118 MG astrocytic cells towards SH-SY5Y neuron-like cells. Our data demonstrate extracellular MH could both damage neurons and alter neuroimmune functions of glial cells. These actions of MH could be targeted for treatment of neurodegenerative diseases.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Ratones , Humanos , Animales , Histonas/metabolismo , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/farmacología , Neuroblastoma/metabolismo , Microglía/metabolismo , Células Cultivadas , Enfermedades Neurodegenerativas/metabolismo
15.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653778

RESUMEN

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Asunto(s)
Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Neuroblastoma , Factores de Transcripción SOXC , Tretinoina , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Tretinoina/farmacología , Tretinoina/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Humanos , Animales , Línea Celular Tumoral , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética , Linaje de la Célula/genética , Factor de Transcripción GATA2/metabolismo , Factor de Transcripción GATA2/genética , Sistemas CRISPR-Cas , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética
17.
Biol Pharm Bull ; 47(4): 796-800, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38583951

RESUMEN

Previous reports indicated that zinc deficiency could increase the risk of infectious diseases and developmental retardation in children. In experimental study, it has been reported that zinc deficiency during the embryonic period inhibited fetal growth, and disturbed neural differentiation and higher brain function later in adulthood. Although it has been suggested that zinc deficiency during development can have significant effects on neuronal differentiation and maturation, the molecular mechanisms of the effects of low zinc on neuronal differentiation during development have not been elucidated in detail. This study was performed to determine the effects of low zinc status on neurite outgrowth and collapsin response mediator protein 2 (CRMP2) signal pathway. Low zinc suppressed neurite outgrowth, and caused increase levels of phosphorylated CRMP2 (pCRMP2) relative to CRMP2, and decrease levels of phosphorylated glycogen synthase kinase 3ß (pGSK3ß) relative to GSK3ß in human neuroblastoma cell line (SH-SY5Y) cells on days 1, 2, and 3 of neuronal differentiation induction. Neurite outgrowth inhibited by low zinc was restored by treatment with the GSK3ß inhibitor CHIR99021. These results suggested that low zinc causes neurite outgrowth inhibition via phosphorylation of CRMP2 by GSK3ß. In conclusion, this study is the first to demonstrate that CRMP signaling is involved in the suppression of neurite outgrowth by low zinc.


Asunto(s)
Neuritas , Neuroblastoma , Niño , Humanos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neuritas/metabolismo , Neuroblastoma/metabolismo , Fosforilación , Transducción de Señal , Zinc/metabolismo
18.
Nat Commun ; 15(1): 3422, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653965

RESUMEN

Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.


Asunto(s)
Quinasa de Linfoma Anaplásico , Dibenzocicloheptenos , Farnesiltransferasa , GTP Fosfohidrolasas , MicroARNs , Neuroblastoma , Piperidinas , Inhibidores de Proteínas Quinasas , Piridinas , Animales , Femenino , Humanos , Ratones , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , Piperidinas/farmacología , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cancer Med ; 13(9): e7207, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686627

RESUMEN

BACKGROUND: Most high-risk neuroblastoma patients who relapse succumb to disease despite the existing therapy. We recently reported increased event-free and overall survival in neuroblastoma patients receiving difluoromethylornithine (DFMO) during maintenance therapy. The effect of DFMO on cellular processes associated with neuroblastoma tumorigenesis needs further elucidation. Previous studies have shown cytotoxicity with IC50 values >5-15 mM, these doses are physiologically unattainable in patients, prompting further mechanistic studies at therapeutic doses. METHODS: We characterized the effect of DFMO on cell viability, cell cycle, apoptosis, neurosphere formation, and protein expression in vitro using five established neuroblastoma cell lines (BE2C, CHLA-90, SHSY5Y, SMS-KCNR, and NGP) at clinically relevant doses of 0, 50, 100, 500, 1000, and 2500 µM. Limiting Dilution studies of tumor formation in murine models were performed. Statistical analysis was done using GraphPad and the level of significance set at p = 0.05. RESULTS: There was not a significant loss of cell viability or gain of apoptotic activity in the in vitro assays (p > 0.05). DFMO treatment initiated G1 to S phase cell cycle arrest. There was a dose-dependent decrease in frequency and size of neurospheres and a dose-dependent increase in beta-galactosidase activity in all cell lines. Tumor formation was decreased in xenografts both with DFMO-pretreated cells and in mice treated with DFMO. CONCLUSION: DFMO treatment is cytostatic at physiologically relevant doses and inhibits tumor initiation and progression in mice. This study suggests that DFMO, inhibits neuroblastoma by targeting cellular processes integral to neuroblastoma tumorigenesis at clinically relevant doses.


Asunto(s)
Apoptosis , Supervivencia Celular , Eflornitina , Neuroblastoma , Ensayos Antitumor por Modelo de Xenoinjerto , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Neuroblastoma/metabolismo , Humanos , Animales , Línea Celular Tumoral , Ratones , Apoptosis/efectos de los fármacos , Eflornitina/farmacología , Eflornitina/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Femenino
20.
J Pharmacol Sci ; 155(2): 52-62, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677786

RESUMEN

The ubiquitin-proteasome system (UPS) is a major proteolytic system that plays an important role in the regulation of various cell processes, such as cell cycle, stress response, and transcriptional regulation, especially in neurons, and dysfunction of UPS is considered to be a cause of neuronal cell death in neurodegenerative diseases. However, the mechanism of neuronal cell death caused by UPS dysfunction has not yet been fully elucidated. In this study, we investigated the mechanism of neuronal cell death induced by proteasome inhibitors using human neuroblastoma SH-SY5Y cells. Z-Leu-D-Leu-Leu-al (MG132), a proteasome inhibitor, induced apoptosis in SH-SY5Y cells in a concentration- and time-dependent manner. Antioxidants N-acetylcysteine and EUK-8 attenuated MG132-induced apoptosis. Apocynin and diphenyleneiodonium, inhibitors of NADPH oxidase (NOX), an enzyme that produces superoxide anions, also attenuated MG132-induced apoptosis. It was also found that MG132 treatment increased the expression of NOX5, a NOX family member, and that siRNA-mediated silencing of NOX5 and BAPTA-AM, which inhibits NOX5 by chelating calcium, suppressed MG132-induced apoptosis and production of reactive oxygen species in SH-SY5Y cells. These results suggest that MG132 induces apoptosis in SH-SY5Y cells through the production of superoxide anion by NOX5.


Asunto(s)
Apoptosis , Leupeptinas , NADPH Oxidasa 5 , NADPH Oxidasas , Neuroblastoma , Inhibidores de Proteasoma , Superóxidos , Humanos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Inhibidores de Proteasoma/farmacología , Superóxidos/metabolismo , Línea Celular Tumoral , Neuroblastoma/patología , Neuroblastoma/metabolismo , Leupeptinas/farmacología , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , Antioxidantes/farmacología , Relación Dosis-Respuesta a Droga , Acetilcisteína/farmacología , Neuronas/metabolismo , Neuronas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA