Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Neuron ; 83(4): 823-38, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25123312

RESUMEN

During differentiation, neurons exhibit a reorganization of DNA modification patterns across their genomes. The de novo DNA methyltransferase Dnmt3a is implicated in this process, but the effects of its absence have not been fully characterized in a purified neuronal population. To better understand how DNA modifications contribute to neuronal function, we performed a comprehensive analysis of the epigenetic and transcriptional landscapes of Dnmt3a-deficient mature olfactory sensory neurons (mOSNs), the primary sensory neurons of the olfactory epithelium. Dnmt3a is required for both 5-methylcytosine and 5-hydroxymethylcytosine patterning within accessible genomic regions, including hundreds of neurodevelopmental genes and neural enhancers. Loss of Dnmt3a results in the global disruption of gene expression via activation of silent genes and reduction of mOSN-expressed transcripts. Importantly, the DNA modification state and inducibility of odorant-activated genes are markedly impaired in Dnmt3a knockouts, suggesting a crucial role for this enzyme in establishing an epigenetic landscape compatible with neuronal plasticity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación de la Expresión Génica , Percepción Olfatoria/genética , Neuronas Receptoras Olfatorias/metabolismo , Olfato/genética , Animales , Células Cultivadas , Metilación de ADN/genética , ADN Metiltransferasa 3A , Epigenómica , Ratones , Plasticidad Neuronal/genética , Neuronas Receptoras Olfatorias/crecimiento & desarrollo
4.
Science ; 344(6180): 194-7, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24723610

RESUMEN

The mammalian olfactory system has the natural capacity to regenerate throughout the animal's life span. Despite constant neurogenesis, olfactory sensory neurons project to precise, stereotypical positions in the brain. Here, we identify a critical period of olfactory sensory axon targeting during postnatal development in mouse. Perturbing axon projection beyond postnatal day 7 permanently disrupts targeting specificity of the sensory neurons. In addition, we find that the establishment of the convergence map requires perinatal sensory neurons. Late-born neurons appear to connect with prospective glomeruli based on homotypic interactions among neurons expressing the same odorant receptor. Our results reveal a developmental switch in axon guidance and a mechanism of circuit integration of adult-born neurons.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Bulbo Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Animales , Doxorrubicina/farmacología , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Mutantes , Regeneración Nerviosa/genética , Bulbo Olfatorio/fisiología , Canales de Potasio de Rectificación Interna/genética , Receptores Odorantes/genética , Receptores Odorantes/fisiología , Transactivadores/antagonistas & inhibidores
5.
Dev Neurobiol ; 74(7): 657-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24318978

RESUMEN

Calcium-activated chloride channels are involved in several physiological processes including olfactory perception. TMEM16A and TMEM16B, members of the transmembrane protein 16 family (TMEM16), are responsible for calcium-activated chloride currents in several cells. Both are present in the olfactory epithelium of adult mice, but little is known about their expression during embryonic development. Using immunohistochemistry we studied their expression in the mouse olfactory epithelium at various stages of prenatal development from embryonic day (E) 12.5 to E18.5 as well as in postnatal mice. At E12.5, TMEM16A immunoreactivity was present at the apical surface of the entire olfactory epithelium, but from E16.5 became restricted to a region near the transition zone with the respiratory epithelium, where localized at the apical part of supporting cells and in their microvilli. In contrast, TMEM16B immunoreactivity was present at E14.5 at the apical surface of the entire olfactory epithelium, increased in subsequent days, and localized to the cilia of mature olfactory sensory neurons. These data suggest different functional roles for TMEM16A and TMEM16B in the developing as well as in the postnatal olfactory epithelium. The presence of TMEM16A at the apical part and in microvilli of supporting cells is consistent with a role in the regulation of the chloride ionic composition of the mucus covering the apical surface of the olfactory epithelium, whereas the localization of TMEM16B to the cilia of mature olfactory sensory neurons is consistent with a role in olfactory signal transduction.


Asunto(s)
Canales de Cloruro/metabolismo , Mucosa Olfatoria/crecimiento & desarrollo , Mucosa Olfatoria/metabolismo , Animales , Anoctamina-1 , Anoctaminas , Desarrollo Embrionario , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Microvellosidades/metabolismo , Mucosa Olfatoria/embriología , Neuronas Receptoras Olfatorias/embriología , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/ultraestructura
6.
J Neurosci Res ; 92(1): 64-73, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24123277

RESUMEN

The unique ability of olfactory neurons to regenerate in vitro has allowed their use for the study of olfactory function, regeneration, and neurodegenerative disorders; thus, characterization of their properties is important. This present study attempts to establish the timeline of structural (protein expression) and functional (odorant sensitivity) maturation of human olfactory epithelial cells (hOE) in vitro using biopsy-derived cultured tissue. Cells were grown for 7 days; on each day, cells were tested for odorant sensitivity using calcium imaging techniques and then protein expression of each cell was tested using immunocytochemistry for proteins typically used for characterizing olfactory cells. Previous studies have shown that mature olfactory neurons in vitro attain a unique "phase-bright" morphology and express the olfactory marker protein (OMP). By day 3 in vitro, a variety of cells were odorant-sensitive, including both "phase-bright" and "phase-dark" cells that have previously been considered glial-like cells. The functional maturation of these hOEs appears to take place within 4 days. Interestingly, the emergence of an odorant sensitivity profile of both phase-bright and phase-dark cells preceded the expression of marker protein expression for OMP (which is expressed only by mature neurons in vivo). This structural maturation took 5 days, suggesting that the development of odorant sensitivity is not coincident with the expression of marker molecules that are hallmarks of structural maturation. These results have important implications for the use of hOEs as in vitro models of olfactory and neuronal function.


Asunto(s)
Proteína Marcadora Olfativa/metabolismo , Mucosa Olfatoria/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Calcio/metabolismo , Células Cultivadas , Humanos , Odorantes , Mucosa Olfatoria/citología , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/metabolismo , Factores de Tiempo
7.
J Neurosci ; 33(44): 17247-52, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24174658

RESUMEN

Olfactory receptor neurons extend axons into the olfactory bulb, where they face the challenge to integrate into existing circuitry. The consensus view is that in vertebrates individual receptor neurons project unbranched axons into one specific glomerulus of the olfactory bulb. We report here that, strikingly different from the generally assumed wiring principle in vertebrate olfactory systems, axons of single receptor neurons of Xenopus laevis regularly bifurcate and project into more than one glomerulus. Specifically, the innervation of multiple glomeruli is present in all ontogenetic stages of this species, from the larva to the postmetamorphic frog. Also, we show that this unexpected wiring pattern is not restricted to axons of immature receptor neurons, but that it is also a feature of mature neurons of both the main and accessory olfactory system. This glomerular innervation pattern is unique among vertebrates investigated so far and represents a new olfactory wiring strategy.


Asunto(s)
Axones/fisiología , Red Nerviosa/crecimiento & desarrollo , Bulbo Olfatorio/crecimiento & desarrollo , Vías Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Animales , Femenino , Masculino , Red Nerviosa/embriología , Bulbo Olfatorio/embriología , Vías Olfatorias/embriología , Neuronas Receptoras Olfatorias/embriología , Xenopus laevis
8.
Mol Cell Neurosci ; 57: 120-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23962816

RESUMEN

In the mouse, the sense of smell relies predominantly on the expression of ~1200 odorant receptor (OR) genes in the main olfactory epithelium (MOE). Each mature olfactory sensory neuron (OSN) in the MOE is thought to express just one of these OR genes; conversely, an OR gene is expressed in thousands to tens of thousands of OSNs per mouse. Here, we have characterized temporal patterns of OR gene expression in a cohort of inbred C57BL6/N mice from the Aged Rodent Colonies of the National Institute on Aging. We applied the NanoString multiplex platform to quantify RNA abundance for 531 OR genes in whole olfactory mucosa (WOM) tissue samples. The five study groups were females aged 2, 6, 12, 18, and 31 months (mo). We classified the 531 temporal patterns using a step-down quadratic regression method for time course analysis. The majority of OR genes (58.4%) are classified as flat: there is no significant difference from a horizontal line within this time window. There are 32.8% of OR genes with a downward profile, 7.2% with an upward profile, and 1.7% with a convex or concave profile. But the magnitude of these decreases and increases tends to be small: only 4.3% of OR genes are differentially expressed (DE) at 31 mo compared to 2 mo. Interestingly, the variances of NanoString counts for individual OR genes are homogeneous among the age groups. Our analyses of these 15,930 OR gene expression data of C57BL6/N mice that were raised and housed under well-controlled conditions indicate that OR gene expression at the MOE level is intrinsically stable.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Receptores Odorantes/genética , Transcripción Genética
9.
Proc Natl Acad Sci U S A ; 110(36): 14682-7, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23969834

RESUMEN

The modified DNA base 5-hydroxymethylcytosine (5hmC) is enriched in neurons where it may contribute to gene regulation and cellular identity. To determine how 5hmC influences gene expression in an in vivo neuronal population, we assessed the patterning and function of the base along the developmental lineage of the main olfactory epithelium-from multipotent stem cells through neuronal progenitors to mature olfactory sensory neurons (mOSNs). We find that 5hmC increases over gene bodies during mOSN development with substantial patterning occuring between the progenitor and mOSN stages. Although gene-body 5hmC levels correlate with gene expression in all three developmental cell types, this association is particularly pronounced within mOSNs. Overexpression of Tet3 in mOSNs markedly alters gene-body 5hmC levels and gene expression in a manner consistent with a positive role for 5hmC in transcription. Moreover, Tet3 overexpression disrupts olfactory receptor expression and the targeting of axons to the olfactory bulb, key molecular and anatomical features of the olfactory system. Our results suggest a physiologically significant role for gene-body 5hmC in transcriptional facilitation and the maintenance of cellular identity independent of its function as an intermediate to demethylation.


Asunto(s)
Citosina/análogos & derivados , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Neuronas Receptoras Olfatorias/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Diferenciación Celular/genética , Citosina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Mucosa Olfatoria/citología , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Eur J Neurosci ; 38(2): 2210-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23682908

RESUMEN

The mammalian olfactory system has developed some functionality by the time of birth. There is behavioral and limited electrophysiological evidence for prenatal olfaction in various mammalian species. However, there have been no reports, in any mammalian species, of recordings from prenatal olfactory sensory neurons (OSNs) that express a given odorant receptor (OR) gene. Here we have performed patch-clamp recordings from mouse OSNs that express the OR gene S1 or MOR23, using the odorous ligands 2-phenylethyl alcohol or lyral, respectively. We found that, out of a combined total of 20 OSNs from embryos of these two strains at embryonic day (E)16.5 or later, all responded to a cognate odorous ligand. By contrast, none of six OSNs responded to the ligand at E14.5 or E15.5. The kinetics of the odorant-evoked electrophysiological responses of prenatal OSNs are similar to those of postnatal OSNs. The S1 and MOR23 glomeruli in the olfactory bulb are formed postnatally, but the axon terminals of OSNs expressing these OR genes may be synaptically active in the olfactory bulb at embryonic stages. The upper limit of the acquisition of odorant responsiveness for S1 and MOR23 OSNs at E16.5 is consistent with the developmental expression patterns of components of the olfactory signaling pathway.


Asunto(s)
Bulbo Olfatorio/embriología , Neuronas Receptoras Olfatorias/embriología , Receptores Odorantes/metabolismo , Animales , Axones/metabolismo , Técnicas In Vitro , Ratones , Odorantes , Bulbo Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/metabolismo
11.
Neuron ; 78(4): 673-86, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23719164

RESUMEN

Neural circuit assembly requires selection of specific cell fates, axonal trajectories, and synaptic targets. By analyzing the function of a secreted semaphorin, Sema-2b, in Drosophila olfactory receptor neuron (ORN) development, we identified multiple molecular and cellular mechanisms that link these events. Notch signaling limits Sema-2b expression to ventromedial ORN classes, within which Sema-2b cell-autonomously sensitizes ORN axons to external semaphorins. Central-brain-derived Sema-2a and Sema-2b attract Sema-2b-expressing axons to the ventromedial trajectory. In addition, Sema-2b/PlexB-mediated axon-axon interactions consolidate this trajectory choice and promote ventromedial axon-bundle formation. Selecting the correct developmental trajectory is ultimately essential for proper target choice. These findings demonstrate that Sema-2b couples ORN axon guidance to postsynaptic target neuron dendrite patterning well before the final target selection phase, and exemplify how a single guidance molecule can drive consecutive stages of neural circuit assembly with the help of sophisticated spatial and temporal regulation.


Asunto(s)
Axones/fisiología , Proteínas de Drosophila/genética , Neurópilo/citología , Vías Olfatorias/citología , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Semaforinas/genética , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/fisiología , Neurópilo/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Señales de Clasificación de Proteína , Semaforinas/metabolismo
12.
Mech Dev ; 130(6-8): 373-80, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23085524

RESUMEN

With a microtubule-based axoneme supporting its plasma membrane-ensheathed projection from the basal body of almost all cell types in the human body, and present in only one copy per cell, the primary cilium can be considered an organelle sui generis. Although it was first observed and recorded in histological studies from the late 19th century, the tiny structure was essentially forgotten for many decades. In the past ten years, however, scientists have turned their eyes once again upon primary cilia and realized that they are very important for the development of almost all organs in the mammalian body, especially those dependent upon the signaling from members Hedgehog family, such as Indian and Sonic hedgehog. In this review, we outline the roles that primary cilia play in forebrain development, not just in the crucial transduction of Sonic hedgehog signaling, but also new results showing that cilia are important for cell cycle progression in proliferating neural precursors. We will focus upon cerebral cortex development but will also discuss the importance of cilia for the embryonic hippocampus, olfactory bulb, and diencephalon.


Asunto(s)
Corteza Cerebral/embriología , Cilios/fisiología , Proteínas Hedgehog/metabolismo , Hipocampo/embriología , Bulbo Olfatorio/embriología , Neuronas Receptoras Olfatorias/fisiología , Animales , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Hipocampo/citología , Hipocampo/fisiología , Humanos , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Organogénesis , Transducción de Señal
13.
Mech Dev ; 130(6-8): 336-46, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23010553

RESUMEN

The olfactory system has become a popular model to study the function of neuronal circuits and the molecular and cellular mechanisms underlying the development of neurons and their connections. An excellent model to combine studies of function and development is the zebrafish because it not only permits sophisticated molecular and genetic analyses of development, but also functional measurements of neuronal activity patterns in the intact brain. This article reviews insights into the functional development of the olfactory system that have been obtained in zebrafish. The focus is on the specification of olfactory sensory neurons (OSNs), the mechanisms controlling odorant receptor expression and OSN identity, the pathfinding of OSN axons towards target glomeruli in the olfactory bulb (OB), the development of glomeruli and functional topographic maps in the OB, and the development of inhibitory interneurons in the OB.


Asunto(s)
Morfogénesis/fisiología , Bulbo Olfatorio/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/metabolismo , Pez Cebra/fisiología , Animales , Axones/fisiología , Regulación del Desarrollo de la Expresión Génica , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/embriología , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Receptores Odorantes/genética , Pez Cebra/anatomía & histología , Pez Cebra/embriología
14.
Chem Senses ; 38(1): 77-89, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23125347

RESUMEN

Olfactory sensory deprivation during development has been shown to induce significant alterations in the neurophysiology of olfactory receptor neurons (ORNs), the primary sensory inputs to the brain's olfactory bulb. Deprivation has also been shown to alter the neurochemistry of the adult olfactory system, but the physiological consequences of these changes are poorly understood. Here we used in vivo synaptopHluorin (spH) imaging to visualize odorant-evoked neurotransmitter release from ORNs in adult transgenic mice that underwent 4 weeks of unilateral olfactory deprivation. Deprivation reduced odorant-evoked spH signals compared with sham-occluded mice. Unexpectedly, this reduction was equivalent between ORNs on the open and plugged sides. Changes in odorant selectivity of glomerular subpopulations of ORNs were also observed, but only in ORNs on the open side of deprived mice. These results suggest that naris occlusion in adult mice produces substantial changes in primary olfactory processing which may reflect not only the decrease in olfactory stimulation on the occluded side but also the alteration of response properties on the intact side. We also observed a modest effect of true sham occlusions that included noseplug insertion and removal, suggesting that conventional noseplug techniques may have physiological effects independent of deprivation per se and thus require more careful controls than has been previously appreciated.


Asunto(s)
Bulbo Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Receptores Odorantes/metabolismo , Privación Sensorial/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Bulbo Olfatorio/anatomía & histología , Neuronas Receptoras Olfatorias/anatomía & histología
15.
J Neurosci ; 32(48): 17306-20, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23197722

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 are prominently expressed in the olfactory epithelium (OE) and olfactory bulb (OB), but their importance for olfactory system development is completely unknown. We have investigated the consequences of GFRα1 deficiency for mouse olfactory system development and function. In the OE, GFRα1 was expressed in basal precursors, immature olfactory sensory neurons (OSNs), and olfactory ensheathing cells (OECs), but was excluded from mature OSNs. The OE of newborn Gfra1 knock-out mice was thinner and contained fewer OSNs, but more dividing precursors, suggesting deficient neurogenesis. Immature OSN axon bundles were enlarged and associated OECs increased, indicating impaired migration of OECs and OSN axons. In the OB, GFRα1 was expressed in immature OSN axons and OECs of the nerve layer, as well as mitral and tufted cells, but was excluded from GABAergic interneurons. In newborn knock-outs, the nerve layer was dramatically reduced, exhibiting fewer axons and OECs. Bulbs were smaller and presented fewer and disorganized glomeruli and a significant reduction in mitral cells. Numbers of tyrosine hydroxylase-, calbindin-, and calretinin-expressing interneurons were also reduced in newborn mice lacking Gfra1. At birth, the OE and OB of Gdnf knock-out mice displayed comparable phenotypes. Similar deficits were also found in adult heterozygous Gfra1(+/-) mutants, which in addition displayed diminished responses in behavioral tests of olfactory function. We conclude that GFRα1 is critical for the development and function of the main olfactory system, contributing to the development and allocation of all major classes of neurons and glial cells.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Neuroglía/metabolismo , Bulbo Olfatorio/metabolismo , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Animales , Axones/metabolismo , Conducta Animal/fisiología , Diferenciación Celular , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Ratones , Ratones Noqueados , Bulbo Olfatorio/crecimiento & desarrollo , Mucosa Olfatoria/crecimiento & desarrollo , Mucosa Olfatoria/metabolismo , Vías Olfatorias/crecimiento & desarrollo , Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Olfato/fisiología , Ácido gamma-Aminobutírico/metabolismo
16.
Mol Cell Neurosci ; 50(3-4): 272-82, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22732430

RESUMEN

Olfactory sensory neurons (OSNs) extend their axons from the nasal epithelium to their odorant receptor-dependent locations in the olfactory bulb. Previous studies have identified several membrane proteins along the projection pathway, and on OSN axons themselves, which regulate this process; however, little is known about the signaling mechanisms through which these factors act. We have identified and characterized Rap1gap2, a novel small GTPase regulator, in OSNs during early postnatal mouse development. Rap1gap2 overexpression limits neurite outgrowth and branching in Neuro-2a cells, and counteracts Rap1-induced augmentation of neurite outgrowth. Rap1gap2 expression is developmentally regulated within OSNs, with high expression in early postnatal stages that ultimately drops to undetectable levels by adulthood. This temporal pattern coincides with an early postnatal plastic period of OSN innervation refinement at the OB glomerular layer. Rap1gap2 stunts OSN axon outgrowth when overexpressed in vitro, while knock-down of Rap1gap2 transcript results in a significant increase in axon length. These results indicate an important role of Rap1gap2 in OSN axon growth dynamics during early postnatal development.


Asunto(s)
Axones/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Regulación del Desarrollo de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , ARN Interferente Pequeño , Transcripción Genética , Proteínas de Unión al GTP rap1/metabolismo
17.
Mol Cell Neurosci ; 50(3-4): 238-49, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22687584

RESUMEN

Here, we investigated an Immunoglobulin (Ig) superfamily protein IgSF8 which is abundantly expressed in olfactory sensory neuron (OSN) axons and their developing synapses. We demonstrate that expression of IgSF8 within synaptic neuropil is transitory, limited to the period of glomerular formation. Glomerular expression decreases after synaptic maturation and compartmental glomerular organization is achieved, although expression is maintained at high levels within the olfactory nerve layer (ONL). Immunoprecipitations indicate that IgSF8 interacts with tetraspanin CD9 in the olfactory bulb (OB). CD9 is a component of tetraspanin-enriched microdomains (TEMs), specialized microdomains of the plasma membrane known to regulate cell morphology, motility, invasion, fusion and signaling, in both the nervous and immune systems, as well as in tumors. In vitro, both IgSF8 and CD9 localize to puncta within axons and growth cones of OSNs, consistent with TEM localization. When the olfactory epithelium (OE) was lesioned, forcing OSN regeneration en masse, IgSF8 was once again able to be detected in OSN axon terminals as synapses were reestablished. Finally, we halted synaptic maturation within glomeruli by unilaterally blocking functional activity and found that IgSF8 did not undergo exclusion from this subcellular compartment and instead continued to be detected in adult glomeruli. These data support the hypothesis that IgSF8 facilitates OSN synapse formation.


Asunto(s)
Axones/metabolismo , Proteínas Portadoras/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Sinapsis/metabolismo , Animales , Axones/química , Proteínas Portadoras/análisis , Proteínas Portadoras/genética , Femenino , Inmunohistoquímica , Masculino , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos , Moléculas de Adhesión de Célula Nerviosa/análisis , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas Receptoras Olfatorias/embriología , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Embarazo , Tetraspanina 29/metabolismo , Transcripción Genética
18.
Neurosci Res ; 72(2): 140-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22134050

RESUMEN

Amphibian metamorphosis is characterized by rapid tissue remodeling and drastic changes in the body structure and function. Like other organs, olfactory system also undergoes a dramatic rearrangement as the animal experiences transition from aquatic to terrestrial habitat. Reactive oxygen species (ROS) are known to play an important role during anuran metamorphosis and role of antioxidant enzymes like catalase and superoxide dismutase (SOD) are believed to play a major role in these processes. Therefore, we hypothesize that antioxidant enzymes in the olfactory system may undergo changes that reflect metamorphic processes. Immunohistochemical study revealed the presence of catalase and SOD in the olfactory receptor neurons and also granular reaction in olfactory epithelium of medial diverticulum during metamorphosis. Catalase and SOD immunoreactivity were seen in the epithelium of lateral diverticulum, vomeronasal organ as metamorphosis proceeds and in the apical lining of olfactory epithelium of adult frog. Biochemical study showed that catalase activity gradually increases in the olfactory system from metamorphic stage 40-46 and adult, while SOD activity decreases from stage 40 to 46 and increases in adult. Thus, the localization and relative levels of catalase and SOD during metamorphosis in the olfactory system suggests that these enzymes may be involved in protection from oxidative damage.


Asunto(s)
Catalasa/biosíntesis , Metamorfosis Biológica/fisiología , Mucosa Olfatoria/enzimología , Neuronas Receptoras Olfatorias/enzimología , Ranidae/crecimiento & desarrollo , Superóxido Dismutasa/biosíntesis , Animales , Western Blotting , Inmunohistoquímica , Mucosa Olfatoria/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Ranidae/metabolismo
19.
Mol Neurodegener ; 6: 88, 2011 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22204380

RESUMEN

BACKGROUND: The ß-secretase, ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), is a prime therapeutic target for lowering cerebral ß-amyloid (Aß) levels in Alzheimer's disease (AD). Clinical development of BACE1 inhibitors is being intensely pursued. However, little is known about the physiological functions of BACE1, and the possibility exists that BACE1 inhibition may cause mechanism-based side effects. Indeed, BACE1-/- mice exhibit a complex neurological phenotype. Interestingly, BACE1 co-localizes with presynaptic neuronal markers, indicating a role in axons and/or terminals. Moreover, recent studies suggest axon guidance molecules are potential BACE1 substrates. Here, we used a genetic approach to investigate the function of BACE1 in axon guidance of olfactory sensory neurons (OSNs), a well-studied model of axon targeting in vivo. RESULTS: We bred BACE1-/- mice with gene-targeted mice in which GFP is expressed from the loci of two odorant-receptors (ORs), MOR23 and M72, and olfactory marker protein (OMP) to produce offspring that were heterozygous for MOR23-GFP, M72-GFP, or OMP-GFP and were either BACE1+/+ or BACE1-/-. BACE1-/- mice had olfactory bulbs (OBs) that were smaller and weighed less than OBs of BACE1+/+ mice. In wild-type mice, BACE1 was present in OSN axon terminals in OB glomeruli. In whole-mount preparations and tissue sections, many OB glomeruli from OMP-GFP; BACE1-/- mice were malformed compared to wild-type glomeruli. MOR23-GFP; BACE1-/- mice had an irregular MOR23 glomerulus that was innervated by randomly oriented, poorly fasciculated OSN axons compared to BACE1+/+ mice. Most importantly, M72-GFP; BACE1-/- mice exhibited M72 OSN axons that were mis-targeted to ectopic glomeruli, indicating impaired axon guidance in BACE1-/- mice. CONCLUSIONS: Our results demonstrate that BACE1 is required for the accurate targeting of OSN axons and the proper formation of glomeruli in the OB, suggesting a role for BACE1 in axon guidance. OSNs continually undergo regeneration and hence require ongoing axon guidance. Neurogenesis and the regeneration of neurons and axons occur in other adult populations of peripheral and central neurons that also require axon guidance throughout life. Therefore, BACE1 inhibitors under development for the treatment of AD may potentially cause axon targeting defects in these neuronal populations as well.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Axones/fisiología , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Axones/ultraestructura , Ratones , Ratones Noqueados , Bulbo Olfatorio/anomalías , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
20.
J Neurosci ; 31(38): 13357-75, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21940430

RESUMEN

To sense myriad environmental odors, animals have evolved multiple, large families of divergent olfactory receptors. How and why distinct receptor repertoires and their associated circuits are functionally and anatomically integrated is essentially unknown. We have addressed these questions through comprehensive comparative analysis of the Drosophila olfactory subsystems that express the ionotropic receptors (IRs) and odorant receptors (ORs). We identify ligands for most IR neuron classes, revealing their specificity for select amines and acids, which complements the broader tuning of ORs for esters and alcohols. IR and OR sensory neurons exhibit glomerular convergence in segregated, although interconnected, zones of the primary olfactory center, but these circuits are extensively interdigitated in higher brain regions. Consistently, behavioral responses to odors arise from an interplay between IR- and OR-dependent pathways. We integrate knowledge on the different phylogenetic and developmental properties of these receptors and circuits to propose models for the functional contributions and evolution of these distinct olfactory subsystems.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/genética , Vías Olfatorias/anatomía & histología , Vías Olfatorias/fisiología , Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Ionotrópicos de Glutamato/fisiología , Animales , Animales Modificados Genéticamente , Evolución Biológica , Proteínas de Drosophila/agonistas , Proteínas de Drosophila/genética , Ligandos , Aprendizaje por Laberinto/fisiología , Mutación , Odorantes , Vías Olfatorias/crecimiento & desarrollo , Percepción Olfatoria/genética , Neuronas Receptoras Olfatorias/anatomía & histología , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Receptores Ionotrópicos de Glutamato/agonistas , Receptores Ionotrópicos de Glutamato/genética , Receptores Odorantes/genética , Receptores Odorantes/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA