Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Neurosci ; 41(18): 3948-3957, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33789918

RESUMEN

Drosophila odorant receptors (Ors) are ligand gated ion channels composed of a common receptor subunit Or co-receptor (ORCO) and one of 62 "tuning" receptor subunits that confer odorant specificity to olfactory neuron responses. Like other sensory systems studied to date, exposing Drosophila olfactory neurons to activating ligands results in reduced responses to subsequent exposures through a process called desensitization. We recently showed that phosphorylation of serine 289 on the common Or subunit ORCO is required for normal peak olfactory neuron responses. Dephosphorylation of this residue occurs on prolonged odorant exposure, and underlies the slow modulation of olfactory neuron responses we term "slow desensitization." Slow desensitization results in the reduction of peak olfactory neuron responses and flattening of dose-response curves, implicating changes in ORCOS289 phosphorylation state as an important modulator of olfactory neuron responses. Here, we report the identification of the primary kinase responsible for ORCOS289 phosphorylation, PKC98E. Antiserum localizes the kinase to the dendrites of the olfactory neurons. Deletion of the kinase from olfactory neurons in the naive state (the absence of prolonged odor exposure) reduces ORCOS289 phosphorylation and reduces peak odorant responses without altering receptor localization or expression levels. Genetic rescue with a PKC98E predicted to be constitutively active restores ORCO S289 phosphorylation and olfactory neuron sensitivity to the PKC98E mutants in the naive state. However, the dominant kinase is defective for slow desensitization. Together, these findings reveal that PKC98E is an important regulator of ORCO receptors and olfactory neuron function.SIGNIFICANCE STATEMENT We have identified PKC98E as the kinase responsible for phosphorylation of the odorant receptor co-receptor (ORCO) at S289 that is required for normal odorant response kinetics of olfactory neurons. This is a significant step toward revealing the enzymology underlying the regulation of odorant response regulation in insects.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Neuronas Receptoras Olfatorias/fisiología , Proteína Quinasa C/fisiología , Animales , Dendritas/enzimología , Relación Dosis-Respuesta a Droga , Proteínas de Drosophila/genética , Fenómenos Electrofisiológicos , Eliminación de Gen , Mutación/genética , Odorantes , Neuronas Receptoras Olfatorias/enzimología , Fosforilación , Proteína Quinasa C/genética , Interferencia de ARN , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
2.
eNeuro ; 6(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31387876

RESUMEN

The mammalian PIM family of serine/threonine kinases regulate several cellular functions, such as cell survival and motility. Because PIM expression is observed in sensory organs, such as olfactory epithelium, we now wanted to explore the physiological roles of PIM kinases there. As our model organism, we used the Caenorhabditis elegans nematodes, which express two PIM-related kinases, PRK-1 and PRK-2. We demonstrated PRKs to be true PIM orthologs with similar substrate specificity as well as sensitivity to PIM-inhibitory compounds. When we analyzed the effects of pan-PIM inhibitors on C. elegans sensory functions, we observed that PRK activity is selectively required to support olfactory sensations to volatile repellents and attractants sensed by AWB and AWCON neurons, respectively, but is dispensable for gustatory sensations. Analyses of prk-deficient mutant strains confirmed these findings and suggested that PRK-1, but not PRK-2 is responsible for the observed effects on olfaction. This regulatory role of PRK-1 is further supported by its observed expression in the head and tail neurons, including AWB and AWC neurons. Based on the evolutionary conservation of PIM-related kinases, our data may have implications in regulation of also mammalian olfaction.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Neuronas Receptoras Olfatorias/enzimología , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Olfato/fisiología , Secuencia de Aminoácidos , Animales , Evolución Molecular , Odorantes , Especificidad de la Especie
3.
Brain Behav ; 9(6): e01295, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31041850

RESUMEN

OBJECTIVE: This study aimed to investigate the effect of the p38 mitogen-activated protein kinase (p38MAPK) signaling pathway on olfactory mucosa function and apoptosis of olfactory sensory neurons (OSNs) in an allergic rhinitis (AR) mouse model. METHOD: Fifty-five BALB/c mice were used to establish AR models by ovalbumin, and their olfactory function was confirmed by the buried food pellet test. Then, 28 mice with hyposmia were selected. SB203580, a p38MAPK inhibitor, and normal saline (NS) were injected into mice with olfactory defects. The olfactory function, apoptosis of OSNs in olfactory mucosa, and the expression of the olfaction marker protein (OMP), p38MAPK, and p-p38MAPK were detected after the intervention. RESULT: SB203580 treatment significantly upregulated OMP expression and significantly improved the olfactory function of AR mice by reducing the percentage of apoptotic OSNs. In addition, SB203580 attenuated the activation of the p38MAPK signaling pathway. CONCLUSION: SB203580 protected olfactory function in an AR mouse model. This protective effect may be associated with the antiapoptotic effects of SB203580 via the p38MAPK signaling pathway.


Asunto(s)
Imidazoles/farmacología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Olfato/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Femenino , Irritantes/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos BALB C , Trastornos del Olfato/tratamiento farmacológico , Neuronas Receptoras Olfatorias/enzimología , Ovalbúmina/toxicidad , Rinitis Alérgica/inducido químicamente , Transducción de Señal/efectos de los fármacos
4.
Genes Dev ; 31(10): 1054-1065, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28637694

RESUMEN

Proper function of the neural network results from the precise connections between axons and dendrites of presynaptic and postsynaptic neurons, respectively. In the Drosophila olfactory system, the dendrites of projection neurons (PNs) stereotypically target one of ∼50 glomeruli in the antennal lobe (AL), the primary olfactory center in the brain, and form synapses with the axons of olfactory receptor neurons (ORNs). Here, we show that Eph and Ephrin, the well-known axon guidance molecules, instruct the dendrodendritic segregation during the discrete olfactory map formation. The Eph receptor tyrosine kinase is highly expressed and localized in the glomeruli related to reproductive behavior in the developing AL. In one of the pheromone-sensing glomeruli (DA1), the Eph cell-autonomously regulates its dendrites to reside in a single glomerulus by interacting with Ephrins expressed in adjacent PN dendrites. Our data demonstrate that the trans interaction between dendritic Eph and Ephrin is essential for the PN dendritic boundary formation in the DA1 olfactory circuit, potentially enabling strict segregation of odor detection between pheromones and the other odors.


Asunto(s)
Drosophila melanogaster/fisiología , Receptor EphA1/metabolismo , Animales , Dendritas/enzimología , Dendritas/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/enzimología , Neuronas Receptoras Olfatorias/fisiología , Interferencia de ARN , Receptor EphA1/genética
5.
Physiol Rev ; 96(2): 751-804, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27030537

RESUMEN

cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.


Asunto(s)
Péptidos Natriuréticos/metabolismo , Receptores Acoplados a la Guanilato-Ciclasa/metabolismo , Secuencia de Aminoácidos , Animales , GMP Cíclico/metabolismo , Diarrea/enzimología , Epitelio/fisiología , Pleiotropía Genética , Humanos , Datos de Secuencia Molecular , Miocardio/metabolismo , Neuronas Receptoras Olfatorias/enzimología , Células Fotorreceptoras de Vertebrados/enzimología
6.
Mol Cell Neurosci ; 65: 114-24, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25701815

RESUMEN

Chemoreception in the mouse olfactory system occurs primarily at two chemosensory epithelia in the nasal cavity: the main olfactory epithelium (MOE) and the vomeronasal epithelium. The canonical chemosensory neurons in the MOE, the olfactory sensory neurons (OSNs), express the odorant receptor (OR) gene repertoire, and depend on Adcy3 and Cnga2 for chemosensory signal transduction. The canonical chemosensory neurons in the vomeronasal epithelium, the vomeronasal sensory neurons (VSNs), express two unrelated vomeronasal receptor (VR) gene repertoires, and involve Trpc2 for chemosensory signal transduction. Recently we reported the discovery of two types of neurons in the mouse MOE that express Trcp2 in addition to Cnga2. These cell types can be distinguished at the single-cell level by expression of Adcy3: positive, type A and negative, type B. Some type A cells express OR genes. Thus far there is no specific gene or marker for type B cells, hampering further analyses such as physiological recordings. Here, we show that among MOE cells, type B cells are unique in their expression of the soluble guanylate cyclase Gucy1b2. We came across Gucy1b2 in an explorative approach based on Long Serial Analysis of Gene Expression (LongSAGE) that we applied to single red-fluorescent cells isolated from whole olfactory mucosa and vomeronasal organ of mice of a novel Trcp2-IRES-taumCherry gene-targeted strain. The generation of a novel Gucy1b2-IRES-tauGFP gene-targeted strain enabled us to visualize coalescence of axons of type B cells into glomeruli in the main olfactory bulb. Our molecular and anatomical analyses define Gucy1b2 as a marker for type B cells within the MOE. The Gucy1b2-IRES-tauGFP strain will be useful for physiological, molecular, cellular, and anatomical studies of this newly described chemosensory subsystem.


Asunto(s)
Guanilato Ciclasa/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Canales Catiónicos TRPC/metabolismo , Secuencia de Aminoácidos , Animales , Guanilato Ciclasa/genética , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/enzimología , Receptores Citoplasmáticos y Nucleares/genética , Guanilil Ciclasa Soluble , Canales Catiónicos TRPC/genética
7.
Toxins (Basel) ; 6(6): 1813-36, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24918360

RESUMEN

Harmful algal blooms expose humans and animals to microcystins (MCs) through contaminated drinking water. While hepatotoxicity following acute exposure to MCs is well documented, neurotoxicity after sub-lethal exposure is poorly understood. We developed a novel statistical approach using a generalized linear model and the quasibinomial family to analyze neurotoxic effects in adult Caenorhabditis elegans exposed to MC-LR or MC-LF for 24 h. Selective effects of toxin exposure on AWA versus AWC sensory neuron function were determined using a chemotaxis assay. With a non-monotonic response MCs altered AWA but not AWC function, and MC-LF was more potent than MC-LR. To probe a potential role for protein phosphatases (PPs) in MC neurotoxicity, we evaluated the chemotactic response in worms exposed to the PP1 inhibitor tautomycin or the PP2A inhibitor okadaic acid for 24 h. Okadaic acid impaired both AWA and AWC function, while tautomycin had no effect on function of either neuronal cell type at the concentrations tested. These findings suggest that MCs alter the AWA neuron at concentrations that do not cause AWC toxicity via mechanisms other than PP inhibition.


Asunto(s)
Toxinas Bacterianas/farmacología , Caenorhabditis elegans/efectos de los fármacos , Células Quimiorreceptoras/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Microcistinas/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neurotoxinas/farmacología , Animales , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Células Quimiorreceptoras/enzimología , Células Quimiorreceptoras/metabolismo , Inhibidores Enzimáticos/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Toxinas Marinas , Proteínas del Tejido Nervioso/metabolismo , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/enzimología , Neuronas Receptoras Olfatorias/metabolismo , Concentración Osmolar , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Reproducibilidad de los Resultados
8.
Anat Rec (Hoboken) ; 296(9): 1333-45, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23907783

RESUMEN

At the periphery of the olfactory system, the binding of odorants on olfactory receptors (ORs) is usually thought to be the first level of the perception of smell. However, at this stage, there is evidence that other molecular mechanisms also interfere with this chemoreception by ORs. These perireceptor events are mainly supported by two groups of proteins present in the olfactory nasal mucus or in the nasal epithelium. Odorant-binding proteins (OBPs), the first group of proteins have been investigated for many years. OBPs are small carrier proteins capable of binding odorants with affinities in the micromolar range. Although there is no absolute evidence to support their functional roles in vertebrates, OBPs are good candidates for the transport of inhaled odorants towards the ORs via the nasal mucus. The second group of proteins involves xenobiotic metabolizing enzymes, which are strongly expressed in the olfactory epithelium and supposed to be involved in odorant transformation, degradation, and/or olfactory signal termination. Following an overview of these proteins, this review explores their roles, which are still a matter of debate.


Asunto(s)
Enzimas/metabolismo , Odorantes , Neuronas Receptoras Olfatorias/enzimología , Receptores Odorantes/metabolismo , Olfato , Secuencia de Aminoácidos , Animales , Enzimas/química , Humanos , Inactivación Metabólica , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Vías Olfatorias/metabolismo , Percepción Olfatoria , Conformación Proteica , Receptores Odorantes/química , Transducción de Señal
9.
Chem Senses ; 38(5): 391-7, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23564012

RESUMEN

Rodents rely on olfactory stimuli to communicate information between conspecifics that is critical for health and survival. For example, rodents that detect a food odor simultaneously with the social odor carbon disulfide (CS(2)) will acquire a preference for that food. Disruption of the chemosensory transduction cascade in CS(2-)sensitive olfactory sensory neurons (OSNs) that express the receptor guanylyl cyclase type D (GC-D; GC-D+ OSNs) will prevent mice from acquiring these preferences. GC-D+ OSNs also respond to the natriuretic peptide uroguanylin, which is excreted into urine and feces. We analyzed if uroguanylin could also act as a social stimulus to promote the acquisition of food preferences. We found that feces of mice that had eaten odored food, but not unodored food, promoted a strong preference for that food in mice exposed to the feces. Olfactory exploration of uroguanylin presented with a food odor similarly produced a preference that was absent when mice were exposed to the food odor alone. Finally, the acquisition of this preference was dependent on GC-D+ OSNs, as mice lacking GC-D (Gucy2d(-)(/-) mice) showed no preference for the demonstrated food. Together with our previous findings, these results demonstrate that the diverse activators of GC-D+ OSNs elicit a common behavioral result and suggest that this specialized olfactory subsystem acts as a labeled line for a type of associative olfactory learning.


Asunto(s)
Preferencias Alimentarias/efectos de los fármacos , Guanilato Ciclasa/metabolismo , Péptidos Natriuréticos/farmacología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Animales , Guanilato Ciclasa/deficiencia , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Receptoras Olfatorias/enzimología , Neuronas Receptoras Olfatorias/metabolismo , Receptores de Superficie Celular/deficiencia
10.
Cell Tissue Res ; 350(2): 239-50, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22965226

RESUMEN

The response of insect olfactory receptor neurons (ORNs) involves an increase in intracellular Ca(2+) concentration, as in vertebrate ORNs. In order to decipher the Ca(2+) clearance mechanisms in insect ORNs, we have investigated the presence of a plasma membrane Ca(2+) ATPase (PMCA) in the peripheral olfactory system of the moth Spodoptera littoralis. From an analysis of a male antennal expressed-sequence-tag database combined with a strategy of 5'/3' rapid amplification of cDNA ends plus the polymerase chain reaction, we have cloned a full-length cDNA encoding a PMCA. In adult males, the PMCA transcript has been found in various tissues, including the antennae in which its presence has been detected in the sensilla trichodea, and in cultured ORNs. The PMCA gene is slightly expressed at the end of the pupal stage, reaches a maximum at emergence and is maintained at a high level during the adult period. Taken together, these results provide, for the first time, molecular evidence for the putative participation of a PMCA in signalling pathways responsible for the establishment and functioning of the insect peripheral olfactory system.


Asunto(s)
Neuronas Receptoras Olfatorias/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Spodoptera/metabolismo , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Transporte Iónico , Masculino , Neuronas Receptoras Olfatorias/enzimología , Oxidación-Reducción , ATPasas Transportadoras de Calcio de la Membrana Plasmática/biosíntesis , Spodoptera/citología
11.
PLoS One ; 7(8): e42907, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927938

RESUMEN

We developed a mathematical model of a hypothetical neuronal signal transduction pathway to better understand olfactory perception in Caenorhabditis elegans. This worm has only three pairs of olfactory receptor neurons. Intracellular Ca(2+) decreases in one pair of olfactory neurons in C. elegans, the AWC neurons, following application of an attractive odor and there is a transient increase in intracellular Ca(2+) following removal of odor. The magnitude of this increase is positively correlated with the duration of odor stimulation. Additionally, this Ca(2+) transient is induced by a cGMP second messenger system. We identified likely candidates for the signal transduction molecules functioning in this system based on available gene expression and physiological data from AWCs. Our model incorporated a G-protein-coupled odor receptor, a G-protein, a guanylate cyclase as the G-protein effector, and a single phosphodiesterase. Additionally, a cyclic-nucleotide-gated ion channel and a voltage-gated ion channel that mediated calcium influx were incorporated into the model. We posited that, upon odor stimulation, guanylate cyclase was suppressed by the G-protein and that, upon cessation of the stimulus, the G-protein-induced suppression ceased and cGMP synthesis was restored. A key element of our model was a Ca(2+)-dependent negative feedback loop that ensured that the calcium increases were transient. Two guanylate cyclase-activating proteins acted on the effector guanylate cyclase to negatively regulate cGMP signaling and the resulting calcium influx. Our model was able to closely replicate in silico three important features of the calcium dynamics of AWCs. Specifically, in our simulations, [Ca(2+)] increased rapidly and reached its peak within 10 s after the odor stimulus was removed, peak [Ca(2+)] increased with longer odor exposure, and [Ca(2+)] decreased during a second stimulus that closely followed an initial stimulus. However, application of random background signal ('noise') showed that certain components of the pathway were particularly sensitive to this noise.


Asunto(s)
Caenorhabditis elegans/citología , Espacio Intracelular/metabolismo , Modelos Biológicos , Odorantes , Neuronas Receptoras Olfatorias/citología , Animales , Tampones (Química) , Calcio/metabolismo , Canales de Calcio/metabolismo , GMP Cíclico/metabolismo , Retroalimentación Fisiológica , Guanilato Ciclasa/metabolismo , Neuronas Receptoras Olfatorias/enzimología , Neuronas Receptoras Olfatorias/metabolismo , Sistemas de Mensajero Secundario
12.
Neurosci Res ; 72(2): 140-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22134050

RESUMEN

Amphibian metamorphosis is characterized by rapid tissue remodeling and drastic changes in the body structure and function. Like other organs, olfactory system also undergoes a dramatic rearrangement as the animal experiences transition from aquatic to terrestrial habitat. Reactive oxygen species (ROS) are known to play an important role during anuran metamorphosis and role of antioxidant enzymes like catalase and superoxide dismutase (SOD) are believed to play a major role in these processes. Therefore, we hypothesize that antioxidant enzymes in the olfactory system may undergo changes that reflect metamorphic processes. Immunohistochemical study revealed the presence of catalase and SOD in the olfactory receptor neurons and also granular reaction in olfactory epithelium of medial diverticulum during metamorphosis. Catalase and SOD immunoreactivity were seen in the epithelium of lateral diverticulum, vomeronasal organ as metamorphosis proceeds and in the apical lining of olfactory epithelium of adult frog. Biochemical study showed that catalase activity gradually increases in the olfactory system from metamorphic stage 40-46 and adult, while SOD activity decreases from stage 40 to 46 and increases in adult. Thus, the localization and relative levels of catalase and SOD during metamorphosis in the olfactory system suggests that these enzymes may be involved in protection from oxidative damage.


Asunto(s)
Catalasa/biosíntesis , Metamorfosis Biológica/fisiología , Mucosa Olfatoria/enzimología , Neuronas Receptoras Olfatorias/enzimología , Ranidae/crecimiento & desarrollo , Superóxido Dismutasa/biosíntesis , Animales , Western Blotting , Inmunohistoquímica , Mucosa Olfatoria/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Ranidae/metabolismo
13.
Naturwissenschaften ; 99(1): 71-5, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22101840

RESUMEN

In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.


Asunto(s)
Ciclohexenos/farmacología , Dípteros/enzimología , Dípteros/genética , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Terpenos/farmacología , Animales , Perfilación de la Expresión Génica , Limoneno , Neuronas Receptoras Olfatorias/enzimología , Tirosina Descarboxilasa/genética , Tirosina Descarboxilasa/metabolismo
14.
J Neurochem ; 119(3): 532-43, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21812780

RESUMEN

The formation and refinement of synaptic connections are key steps of neural development to establish elaborate brain networks. To investigate the functional role of protein tyrosine phosphatase (PTP) σ, we employed an olfactory sensory neuron (OSN)-specific gene manipulation system in combination with in vivo imaging of transparent zebrafish embryos. Knockdown of PTPσ enhanced the accumulation of synaptic vesicles in the axon terminals of OSNs. The exaggerated accumulation of synaptic vesicles was restored to the normal level by the OSN-specific expression of PTPσ, indicating that presynaptic PTPσ is responsible for the regulation of synaptic vesicle accumulation. Consistently, transient expression of a dominant-negative form of PTPσ in OSNs enhanced the accumulation of synaptic vesicles. The exaggerated accumulation of synaptic vesicles was reproduced in transgenic zebrafish lines carrying an OSN-specific expression vector of the dominant-negative PTPσ. By electron microscopic analysis of the transgenic line, we found the significant increase of the number of OSN-mitral cell synapses in the central zone of the olfactory bulb. The density of docked vesicles at the active zone was also increased significantly. Our results suggest that presynaptic PTPσ controls the number of OSN-mitral cell synapses by suppressing their excessive increase.


Asunto(s)
Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/enzimología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/fisiología , Células Receptoras Sensoriales/enzimología , Sinapsis/enzimología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Recuento de Células , Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Técnicas de Silenciamiento del Gen , Vectores Genéticos/química , Neuronas Receptoras Olfatorias/embriología , Regiones Promotoras Genéticas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Células Receptoras Sensoriales/citología , Sinapsis/genética , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/deficiencia
15.
J Neurosci ; 31(1): 273-80, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21209212

RESUMEN

Phosphoinositide signaling, in particular, phosphoinositide 3-kinase (PI3K) signaling, has been implicated in mediating inhibitory odorant input to mammalian olfactory receptor neurons (ORNs). To better understand this phenomenon we investigated PI3K-dependent inhibition between single odorant pairs. The concentration-dependent inhibition of the response of native rat ORNs to octanol by citral is PI3K dependent; blocking PI3K activity with the ß and γ isoform-specific inhibitors AS252424 (5-[5-(4-fluoro-2-hydroxy-phenyl)-furan-2-ylmethylene]-thiazolidine-2,4-dione) and TGX221(7-methyl-2-(4-morpholinyl)-9-[1-(phenylamino)ethyl]-4H-pyrido [1,2-a]pyrimidin-4-one) eliminated or strongly reduced the inhibition. Interestingly, blocking PI3K also changed the apparent agonist strength of the otherwise noncompetitive antagonist citral. The excitation evoked by citral after blocking PI3K, could be suppressed by the adenylate cyclase III (ACIII) blockers MDL12330A (cis-N-(2-phenylcyclopentyl)-azacyclotridec-1-en-2-amine hydrochloride) and SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine], indicating that citral could also activate ACIII, presumably through the canonical olfactory receptor (OR). The G-protein G(ß)γ subunit blockers suramin (8,8'-[carbonylbis[imino-3,1-phenylen ecarbonylimino(4-methyl-3,1-phenylene)carbonylimino]]bis-1,3,5-naphthalenetrisulfonic acid), gallein (3',4',5',6'-tetrahydroxyspiro[isobenzofuran-1(3H),9'-(9H)xanthen]-3-one), and M119 (cyclohexanecarboxylic acid [2-(4,5,6-trihydroxy-3-oxo-3H-xanthen-9-yl)-(9CI)]) suppressed citral's inhibition of the response to octanol, indicating that the activation of PI3K by citral was G-protein dependent, consistent with the idea that inhibition acts via the canonical OR. Lilial similarly antagonized the response to isoamyl acetate in other ORNs, indicating the effect generalizes to at least one other odorant pair. The ability of methyl-isoeugenol, limonene, α-pinene, isovaleric acid, and isosafrole to inhibit the response of other ORNs to IBMX (3-isobutyl-1-methylxanthine)/forskolin in a PI3K-dependent manner argues the effect generalizes to yet other structurally dissimilar odorants. Our findings collectively raise the interesting possibility that the OR serves as a molecular logic gate when mammalian ORNs are activated by natural, complex mixtures containing both excitatory and inhibitory odorants.


Asunto(s)
Neuronas Receptoras Olfatorias/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal/fisiología , Monoterpenos Acíclicos , Animales , Calcio/metabolismo , Ciclohexanos/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Modelos Biológicos , Monoterpenos/farmacología , Odorantes , Mucosa Olfatoria/citología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Suramina/farmacología , Xantenos/farmacología
16.
PLoS One ; 5(11): e15026, 2010 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-21124773

RESUMEN

BACKGROUND: Carboxyl/cholinesterases (CCEs) are highly diversified in insects. These enzymes have a broad range of proposed functions, in neuro/developmental processes, dietary detoxification, insecticide resistance or hormone/pheromone degradation. As few functional data are available on purified or recombinant CCEs, the physiological role of most of these enzymes is unknown. Concerning their role in olfaction, only two CCEs able to metabolize sex pheromones have been functionally characterized in insects. These enzymes are only expressed in the male antennae, and secreted into the lumen of the pheromone-sensitive sensilla. CCEs able to hydrolyze other odorants than sex pheromones, such as plant volatiles, have not been identified. METHODOLOGY: In Spodoptera littoralis, a major crop pest, a diversity of antennal CCEs has been previously identified. We have employed here a combination of molecular biology, biochemistry and electrophysiology approaches to functionally characterize an intracellular CCE, SlCXE10, whose predominant expression in the olfactory sensilla suggested a role in olfaction. A recombinant protein was produced using the baculovirus system and we tested its catabolic properties towards a plant volatile and the sex pheromone components. CONCLUSION: We showed that SlCXE10 could efficiently hydrolyze a green leaf volatile and to a lesser extent the sex pheromone components. The transcript level in male antennae was also strongly induced by exposure to this plant odorant. In antennae, SlCXE10 expression was associated with sensilla responding to the sex pheromones and to plant odours. These results suggest that a CCE-based intracellular metabolism of odorants could occur in insect antennae, in addition to the extracellular metabolism occurring within the sensillar lumen. This is the first functional characterization of an Odorant-Degrading Enzyme active towards a host plant volatile.


Asunto(s)
Carboxilesterasa/metabolismo , Proteínas de Insectos/metabolismo , Plantas/metabolismo , Spodoptera/enzimología , Animales , Western Blotting , Carboxilesterasa/genética , Línea Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Interacciones Huésped-Parásitos , Hidrólisis , Hibridación in Situ , Proteínas de Insectos/genética , Cinética , Masculino , Odorantes , Neuronas Receptoras Olfatorias/enzimología , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Plantas/parasitología , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Atractivos Sexuales/metabolismo , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Compuestos Orgánicos Volátiles/metabolismo
17.
Anat Histol Embryol ; 39(3): 201-6, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20331592

RESUMEN

NADPH-diaphorase (NADPH-d) staining of the bovine olfactory epithelium was compared with the immunohistochemical localization of nitric oxide synthase (NOS), soluble guanylyl cyclase, and cGMP (cyclic guanosine 3',5'-monophosphate). Out of the three isoforms, only the inducible NOS (NOS-II) was found at the epithelial surface correlating with the strong labelling for NADPH-d. In contrast, light diaphorase staining associated with deeper epithelial regions did not coincide with any NOS immunoreactivity. As there is overlapping expression of NOS-II, soluble guanylyl cyclase and cGMP at the luminal surface morphologically occupied by dendritic knobs of olfactory receptor neurons and microvillar endings of supporting cells, the nitric oxide (NO)/cGMP pathway is likely to be involved in modulating the odour signals during olfactory transduction.


Asunto(s)
NADPH Deshidrogenasa/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Mucosa Olfatoria/enzimología , Animales , Bovinos , GMP Cíclico/metabolismo , Dendritas/enzimología , Guanilato Ciclasa/metabolismo , Inmunohistoquímica , Óxido Nítrico/metabolismo , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/enzimología , Neuronas Receptoras Olfatorias/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Guanilil Ciclasa Soluble
18.
Chem Senses ; 35(4): 301-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20190008

RESUMEN

Phosphatidylinositol 3-kinase (PI3K)-dependent signaling couples to receptors for many different ligands in diverse cellular systems. Recent findings suggest that PI3K-dependent signaling also mediates inhibition of odorant responses in rat olfactory receptor neurons (ORNs). Here, we present evidence that murine ORNs show PI3K-dependent calcium responses to odorant stimulation, they express 2 G protein-coupled receptor (GPCR)-activated isoforms of PI3K, PI3Kbeta and PI3Kgamma, and they exhibit odorant-induced PI3K activity. These findings support our use of a transgenic mouse model to begin to investigate the mechanisms underlying PI3K-mediated inhibition of odorant responses in mammalian ORNs. Mice deficient in PI3Kgamma, a class IB PI3K that is activated via GPCRs, lack detectable odorant-induced PI3K activity in their olfactory epithelium and their ORNs are less sensitive to PI3K inhibition. We conclude that odorant-dependent PI3K signaling generalizes to the murine olfactory system and that PI3Kgamma plays a role in mediating inhibition of odorant responses in mammalian ORNs.


Asunto(s)
Neuronas Receptoras Olfatorias/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Calcio/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Odorantes , Neuronas Receptoras Olfatorias/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Transducción de Señal
19.
Biochem Biophys Res Commun ; 391(3): 1379-84, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20026308

RESUMEN

In a subset of the olfactory sensory neurons ONE-GC($) membrane guanylate cyclase is a central component of two odorant-dependent cyclic GMP signaling pathways. These odorants are uroguanylin and CO(2). The present study was designed to decipher the biochemical and molecular differences between these two odorant signaling mechanisms. The study shows (1) in contrast to uroguanylin, CO(2) transduction mechanism is Ca(2+)-independent. (2) CO(2) transduction site, like that of uroguanylin-neurocalcin delta, resides in the core catalytic domain, aa 880-1028, of ONE-GC. (3) The site, however, does not overlap the signature neurocalcin delta signal transduction domain, (908)LSEPIE(913). Finally, (4) this study negates the prevailing concept that CO(2) uniquely signals ONE-GC activity (Sun et al. [19]; Guo et al. [21]). It demonstrates that it also signals the activation of photoreceptor membrane guanylate cyclase ROS-GC1. These results show an additional new transduction mechanism of the membrane guanylate cyclases and broaden our understanding of the molecular mechanisms by which different odorants using a single guanylate cyclase can regulate diverse cyclic GMP signaling pathways.


Asunto(s)
Dióxido de Carbono/metabolismo , Guanilato Ciclasa/metabolismo , Péptidos Natriuréticos/metabolismo , Odorantes , Neuronas Receptoras Olfatorias/enzimología , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Animales , Bicarbonatos/farmacología , Células COS , Dominio Catalítico/genética , Membrana Celular/enzimología , Chlorocebus aethiops , GMP Cíclico/metabolismo , Guanilato Ciclasa/genética , Neuronas Receptoras Olfatorias/efectos de los fármacos , Receptores de Superficie Celular/genética
20.
Insect Mol Biol ; 19(1): 87-97, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20002215

RESUMEN

Recent studies have suggested that pheromone-degrading enzymes belonging to the carboxylesterase family could play a role in the dynamics of the olfactory response to acetate sex pheromones in insects. Bioinformatic analyses of a male antennal expressed sequence tag library allowed the identification of 19 putative esterase genes expressed in the antennae of the moth Spodoptera littoralis. Phylogenetic analysis revealed that these genes belong to different insect esterase clades, defined by their putative cellular localization and substrate preferences. Interestingly, two of the 19 genes appeared to be antennal specific, suggesting a specific role in olfactory processing. This high esterase diversity suggested that the antennae are the location for intense esterase-based metabolism, against potentially a large range of exogenous and endogenous molecules.


Asunto(s)
Carboxilesterasa/metabolismo , Proteínas de Insectos/metabolismo , Neuronas Receptoras Olfatorias/enzimología , Spodoptera/enzimología , Animales , Carboxilesterasa/genética , Femenino , Proteínas de Insectos/genética , Larva/enzimología , Masculino , Filogenia , Reacción en Cadena de la Polimerasa , Pupa/enzimología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Caracteres Sexuales , Spodoptera/genética , Spodoptera/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA