Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.647
Filtrar
1.
Crit Care Nurs Clin North Am ; 36(2): 167-184, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705686

RESUMEN

Caring for extremely preterm infants in the neonatal intensive care unit (NICU) is a multidisciplinary team effort. A clear understanding of roles for each member of the delivery team, anticipation of challenges, and standardized checklists support improved outcomes for this population. Physicians and nursing leaders are responsible for being role models and holding staff accountable for creating a unit culture of Neuroprotective Infant and Family-Centered Developmental Care. It is essential for parents to be included as part of the care team and babies to be acknowledged for their efforts in coping with the developmentally unexpected NICU environment.


Asunto(s)
Unidades de Cuidado Intensivo Neonatal , Humanos , Unidades de Cuidado Intensivo Neonatal/organización & administración , Recién Nacido , Recien Nacido Extremadamente Prematuro , Grupo de Atención al Paciente , Padres/psicología , Padres/educación , Neuroprotección , Desarrollo Infantil/fisiología , Cuidado Intensivo Neonatal/organización & administración
2.
J Nanobiotechnology ; 22(1): 251, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750597

RESUMEN

BACKGROUND: Hypothermia is a promising therapy for traumatic brain injury (TBI) in the clinic. However, the neuroprotective outcomes of hypothermia-treated TBI patients in clinical studies are inconsistent due to several severe side effects. Here, an injectable refrigerated hydrogel was designed to deliver 3-iodothyronamine (T1AM) to achieve a longer period of local hypothermia for TBI treatment. Hydrogel has four advantages: (1) It can be injected into injured sites after TBI, where it forms a hydrogel and avoids the side effects of whole-body cooling. (2) Hydrogels can biodegrade and be used for controlled drug release. (3) Released T1AM can induce hypothermia. (4) This hydrogel has increased medical value given its simple operation and ability to achieve timely treatment. METHODS: Pol/T hydrogels were prepared by a low-temperature mixing method and characterized. The effect of the Pol/T hydrogel on traumatic brain injury in mice was studied. The degradation of the hydrogel at the body level was observed with a small animal imager. Brain temperature and body temperature were measured by brain thermometer and body thermometer, respectively. The apoptosis of peripheral nerve cells was detected by immunohistochemical staining. The protective effect of the hydrogels on the blood-brain barrier (BBB) after TBI was evaluated by the Evans blue penetration test. The protective effect of hydrogel on brain edema after injury in mice was detected by Magnetic resonance (MR) in small animals. The enzyme linked immunosorbent assay (ELISA) method was used to measure the levels of inflammatory factors. The effects of behavioral tests on the learning ability and exercise ability of mice after injury were evaluated. RESULTS: This hydrogel was able to cool the brain to hypothermia for 12 h while maintaining body temperature within the normal range after TBI in mice. More importantly, hypothermia induced by this hydrogel leads to the maintenance of BBB integrity, the prevention of cell death, the reduction of the inflammatory response and brain edema, and the promotion of functional recovery after TBI in mice. This cooling method could be developed as a new approach for hypothermia treatment in TBI patients. CONCLUSION: Our study showed that injectable and biodegradable frozen Pol/T hydrogels to induce local hypothermia in TBI mice can be used for the treatment of traumatic brain injury.


Asunto(s)
Barrera Hematoencefálica , Lesiones Traumáticas del Encéfalo , Hidrogeles , Hipotermia Inducida , Animales , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Ratones , Hidrogeles/química , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Masculino , Hipotermia Inducida/métodos , Neuroprotección/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Temperatura Corporal , Ratones Endogámicos C57BL
3.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791160

RESUMEN

While primarily produced in the pineal gland, melatonin's influence goes beyond its well-known role in regulating sleep, nighttime metabolism, and circadian rhythms, in the field of chronobiology. A plethora of new data demonstrates melatonin to be a very powerful molecule, being a potent ROS/RNS scavenger with anti-inflammatory, immunoregulatory, and oncostatic properties. Melatonin and its metabolites exert multiple beneficial effects in cutaneous and systemic aging. This review is focused on the neuroprotective role of melatonin during aging. Melatonin has an anti-aging capacity, retarding the rate of healthy brain aging and the development of age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. Melatonin, as well as its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), can reduce oxidative brain damage by shielding mitochondria from dysfunction during the aging process. Melatonin could also be implicated in the treatment of neurodegenerative conditions, by modifying their characteristic low-grade neuroinflammation. It can either prevent the initiation of inflammatory responses or attenuate the ongoing inflammation. Drawing on the current knowledge, this review discusses the potential benefits of melatonin supplementation in preventing and managing cognitive impairment and neurodegenerative diseases.


Asunto(s)
Envejecimiento , Encéfalo , Melatonina , Enfermedades Neurodegenerativas , Neuroprotección , Fármacos Neuroprotectores , Melatonina/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Humanos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Envejecimiento/metabolismo , Envejecimiento/efectos de los fármacos , Animales , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Kinuramina/metabolismo , Kinuramina/análogos & derivados
4.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791487

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) is a major cause of newborn brain damage stemming from a lack of oxygenated blood flow in the neonatal period. Twenty-five to fifty percent of asphyxiated infants who develop HIE die in the neonatal period, and about sixty percent of survivors develop long-term neurological disabilities. From the first minutes to months after the injury, a cascade of events occurs, leading to blood-brain barrier (BBB) opening, neuronal death and inflammation. To date, the only approach proposed in some cases is therapeutic hypothermia (TH). Unfortunately, TH is only partially protective and is not applicable to all neonates. This review synthesizes current knowledge on the basic molecular mechanisms of brain damage in hypoxia-ischemia (HI) and on the different therapeutic strategies in HI that have been used and explores a major limitation of unsuccessful therapeutic approaches.


Asunto(s)
Hipoxia-Isquemia Encefálica , Neuroprotección , Animales , Humanos , Recién Nacido , Barrera Hematoencefálica/metabolismo , Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica/terapia , Hipoxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Animales Recién Nacidos
5.
Brain Res ; 1834: 148906, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570152

RESUMEN

Alzherimer's disease (AD) is an age-dependent ubiquitous ailment worldwide with limited therapies that only alleviate the symptoms of AD but do not cure them entirely because of the restricted blood-brain barrier passage of the drug. Hence with new advanced technology, nanoparticles can offer an opportunity as the active candidate to overcome the above limitations. Aurothioglucose, a synthetic glucose derivative of the gold compound, has been clinically proven to be an effective anti-inflammatory drug for rheumatic arthritis. Recently, several scientific groups have developed gold nanoparticle preparations and tested them for the treatment of dementia. This study was planned to prepare the PLGA nanoparticles of aurothioglucose (ATG) and check the neuroprotective potential against STZ-induced AD in rats. The nanoparticles were prepared using the double emulsion solvent evaporation method and characterized for various parameters such as drug-excipient interaction, particle size, zeta potential, and morphology. Then, rats were injected STZ (3 mg/kg/i.c.v., days 1 and 3) and ATG (5 and 10 mg/kg/s.c.), ATG NPs (2.5 and 5 mg/kg/s.c.) and donepezil (2 mg/kg/p.o) from 15th to 29th day. Behavior parameters were performed using an actophotometer, MWM, and ORT. On the 30th day, all the animals were sacrificed, and the brains were isolated for estimating biochemical, neurochemical, and proinflammatory markers. It was observed that ATG NPs significantly restored all behavior and neurotransmitter alterations caused by STZ. Also, it increased antioxidant levels and decreased inflammatory cytokines significantly, then ATG alone. Thus, the study suggests that ATG loaded PLGA NPs could be used as a novel therapeutic strategy to slow the process of AD.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Fármacos Neuroprotectores , Estreptozocina , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratas , Fármacos Neuroprotectores/farmacología , Estreptozocina/farmacología , Masculino , Nanopartículas/administración & dosificación , Ratas Wistar , Neuroprotección/efectos de los fármacos , Modelos Animales de Enfermedad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 563-570, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597448

RESUMEN

OBJECTIVE: To observe neuroprotective effects of Ca2+/calmodulin-dependent kinase Ⅱ (CaMK Ⅱ)γ and CaMkII δ against acute neuronal ischemic reperfusion injury in mice and explore the underlying mechanism. METHODS: Primary cultures of brain neurons isolated from fetal mice (gestational age of 18 days) were transfected with two specific siRNAs (si-CAMK2G and si-CAMK2D) or a control sequence (si-NT). After the transfection, the cells were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) conditions for 1 h followed by routine culture. The expressions of phosphatidylinositol-3-kinase/extracellular signal-regulated kinase (PI3K/Akt/Erk) signaling pathway components in the neurons were detected using immunoblotting. The expressions of the PI3K/Akt/Erk signaling pathway proteins were also detected in the brain tissues of mice receiving middle cerebral artery occlusion (MCAO) or sham operation. RESULTS: The neuronal cells transfected with siCAMK2G showed significantly lower survival rates than those with si-NT transfection at 12, 24, 48, and 72 h after OGD/R (P < 0.01), and si-CAMK2G transfection inhibited OGD/R-induced upregulation of CaMKⅡγ expression. Compared to si-NT, transfection with si-CAMK2G and si-CAMK2D both significantly inhibited the expressions of PI3K/Akt/Erk signaling pathway components (P < 0.01). In the mouse models of MCAO, the expressions of CaMKⅡδ and CaMKⅡγ were significantly increased in the brain, where activation of the PI3K/Akt/Erk signaling pathway was detected. The expression levels of CaMKⅡδ, CaMKⅡγ, Erk, phosphorylated Erk, Akt, and phosphorylated Akt were all significantly higher in MCAO mice than in the sham-operated mice at 24, 48, 72, and 96 h after reperfusion (P < 0.05). CONCLUSION: The neuroprotective effects of CaMKⅡδ and CaMKⅡγ against acute neuronal ischemic reperfusion injury are mediated probably by the PI3K/Akt/Erk pathway.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Ratones , Ratas , Isquemia Encefálica/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Infarto de la Arteria Cerebral Media , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Transducción de Señal
8.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612476

RESUMEN

The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more pronounced neuroprotective effect compared to their separate application. Some signaling systems are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others (NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood-brain barrier permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms involved in the formation of brain tolerance to ischemia are due to the contribution of both excess carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia. Recent clinical studies have demonstrated the effectiveness of hypercapnic-hypoxic training in the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling pathways is likely to be promising for translating experimental research into clinical medicine.


Asunto(s)
Neuroprotección , Fármacos Neuroprotectores , Niño , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Hipercapnia , Dióxido de Carbono , Hipoxia
9.
Neurosurg Rev ; 47(1): 193, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662220

RESUMEN

This critique examines a 12-year retrospective study on serum magnesium concentration-guided administration of magnesium sulfate in 548 patients with aneurysmal subarachnoid hemorrhage (aSAH). The study reported that maintaining serum magnesium levels between 2 and 2.5 mmol/L reduced rates of delayed cerebral infarction and improved clinical outcomes. However, limitations due to its retrospective nature, single-center design, and unequal treatment group sizes may affect generalizability. Future multicentric randomized controlled trials are recommended to validate these findings and refine magnesium dosing strategies for aSAH treatment.


Asunto(s)
Sulfato de Magnesio , Fármacos Neuroprotectores , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/complicaciones , Sulfato de Magnesio/administración & dosificación , Estudios Retrospectivos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Resultado del Tratamiento , Femenino , Administración Intravenosa , Persona de Mediana Edad , Masculino , Neuroprotección/efectos de los fármacos , Infarto Cerebral/prevención & control , Infarto Cerebral/tratamiento farmacológico , Adulto
10.
Cells ; 13(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38607082

RESUMEN

Basal forebrain cholinergic dysfunction, most likely linked with tau protein aggregation, is a characteristic feature of Alzheimer's disease (AD). Recent evidence suggests that tau protein is a putative target for the treatment of dementia, and the tau aggregation inhibitor, hydromethylthionine mesylate (HMTM), has emerged as a potential disease-modifying treatment. However, its efficacy was diminished in patients already receiving approved acetylcholinesterase inhibitors. In this study, we ask whether this negative interaction can also be mimicked in experimental tau models of AD and whether the underlying mechanism can be understood. From a previous age profiling study, 6-month-old line 1 (L1) tau transgenic mice were characterized by a severe reduction in several cholinergic markers. We therefore assessed whether long-term pre-exposure with the acetylcholinesterase inhibitor rivastigmine alone and in conjunction with the tau aggregation inhibitor HMTM can reverse cholinergic deficits in L1. Rivastigmine and HMTM, and combinations of the two compounds were administered orally for 11 weeks to both L1 and wild-type mice. The brains were sectioned with a focus on the basal forebrain, motor cortex and hippocampus. Immunohistochemical staining and quantification of choline acetyltransferase (ChAT), tyrosine kinase A (TrkA)-positive neurons and relative optical intensity (ROI) for vesicular acetylcholine transporter (VAChT), and acetylcholinesterase (AChE) reactivity confirmed reversal of the diminished cholinergic phenotype of interneurons (nucleus accumbens, striatum) and projection neurons (medial septum, nucleus basalis magnocellularis) by HMTM, to a greater extent than by rivastigmine alone in L1 mice. Combined administration did not yield additivity but, in most proxies, led to antagonistic effects in which rivastigmine decreased the benefits shown with HMTM alone. Local markers (VAChT and AChE) in target structures of the basal forebrain, motor cortex and hippocampal CA3 seemed to be normalized by HMTM, but not by rivastigmine or the combination of both drugs. HMTM, which was developed as a tau aggregation inhibitor, strongly decreased the tau load in L1 mice, however, not in combination with rivastigmine. Taken together, these data confirm a cholinergic phenotype in L1 tau transgenic mice that resembles the deficits observed in AD patients. This phenotype is reversible by HMTM, but at the same time appears to be subject to a homeostatic regulation induced by chronic pre-treatment with an acetylcholinesterase inhibitor, which interferes with the efficacy of HMTM. The strongest phenotypic reversal coincided with a normalization of the tau load in the cortex and hippocampus of L1, suggesting that tau accumulation underpins the loss of cholinergic markers in the basal forebrain and its projection targets.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Ratones , Animales , Lactante , Rivastigmina/farmacología , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/metabolismo , Neuroprotección , Neuronas Colinérgicas/metabolismo , Tauopatías/tratamiento farmacológico , Colinérgicos , Ratones Transgénicos
11.
Sci Rep ; 14(1): 7973, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575687

RESUMEN

In patients suffering from cerebral ischemic stroke, there is an urgent need for treatments to protect stressed yet viable brain cells. Recently, treatment strategies that induce neuronal activity have been shown to be neuroprotective. Here, we hypothesized that neuronal activation might maintain or trigger the astrocyte-to-neuron lactate shuttle (ANLS), whereby lactate is released from astrocytes to support the energy requirements of ATP-starved hypoxic neurons, and this leads to the observed neuroprotection. We tested this by using a human cell based in vitro model of the ischemic penumbra and investigating whether lactate might be neuroprotective in this setting. We found that lactate transporters are involved in the neuroprotective effect mediated by neuronal activation. Furthermore, we showed that lactate exogenously administered before hypoxia correlated with neuroprotection in our cellular model. In addition, stimulation of astrocyte with consequent endogenous production of lactate resulted in neuroprotection. To conclude, here we presented evidence that lactate transport into neurons contributes to neuroprotection during hypoxia providing a potential basis for therapeutic approaches in ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ácido Láctico , Neuroprotección , Encéfalo , Astrocitos , Hipoxia
12.
Acta Neuropathol Commun ; 12(1): 65, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649962

RESUMEN

The progressive and irreversible degeneration of retinal ganglion cells (RGCs) and their axons is the major characteristic of glaucoma, a leading cause of irreversible blindness worldwide. Nicotinamide adenine dinucleotide (NAD) is a cofactor and metabolite of redox reaction critical for neuronal survival. Supplementation with nicotinamide (NAM), a precursor of NAD, can confer neuroprotective effects against glaucomatous damage caused by an age-related decline of NAD or mitochondrial dysfunction, reflecting the high metabolic activity of RGCs. However, oral supplementation of drug is relatively less efficient in terms of transmissibility to RGCs compared to direct delivery methods such as intraocular injection or delivery using subconjunctival depots. Neither method is ideal, given the risks of infection and subconjunctival scarring without novel techniques. By contrast, extracellular vesicles (EVs) have advantages as a drug delivery system with low immunogeneity and tissue interactions. We have evaluated the EV delivery of NAM as an RGC protective agent using a quantitative assessment of dendritic integrity using DiOlistics, which is confirmed to be a more sensitive measure of neuronal health in our mouse glaucoma model than the evaluation of somatic loss via the immunostaining method. NAM or NAM-loaded EVs showed a significant neuroprotective effect in the mouse retinal explant model. Furthermore, NAM-loaded EVs can penetrate the sclera once deployed in the subconjunctival space. These results confirm the feasibility of using subconjunctival injection of EVs to deliver NAM to intraocular targets.


Asunto(s)
Vesículas Extracelulares , Glaucoma , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Niacinamida , Células Ganglionares de la Retina , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Niacinamida/administración & dosificación , Niacinamida/farmacología , Ratones , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Glaucoma/metabolismo , Glaucoma/tratamiento farmacológico , Neuroprotección/efectos de los fármacos , Esclerótica/metabolismo , Esclerótica/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Masculino
13.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674030

RESUMEN

Age-associated deep-subcortical white matter lesions (DSCLs) are an independent risk factor for dementia, displaying high levels of CD68+ microglia. This study aimed to characterize the transcriptomic profile of microglia in DSCLs and surrounding radiologically normal-appearing white matter (NAWM) compared to non-lesional control white matter. CD68+ microglia were isolated from white matter groups (n = 4 cases per group) from the Cognitive Function and Ageing Study neuropathology cohort using immuno-laser capture microdissection. Microarray gene expression profiling, but not RNA-sequencing, was found to be compatible with immuno-LCM-ed post-mortem material in the CFAS cohort and identified significantly differentially expressed genes (DEGs). Functional grouping and pathway analysis were assessed using the Database for Annotation Visualization and Integrated Discovery (DAVID) software, and immunohistochemistry was performed to validate gene expression changes at the protein level. Transcriptomic profiling of microglia in DSCLs compared to non-lesional control white matter identified 181 significant DEGs (93 upregulated and 88 downregulated). Functional clustering analysis in DAVID revealed dysregulation of haptoglobin-haemoglobin binding (Enrichment score 2.5, p = 0.017), confirmed using CD163 immunostaining, suggesting a neuroprotective microglial response to blood-brain barrier dysfunction in DSCLs. In NAWM versus control white matter, microglia exhibited 347 DEGs (209 upregulated, 138 downregulated), with significant dysregulation of protein de-ubiquitination (Enrichment score 5.14, p < 0.001), implying an inability to maintain protein homeostasis in NAWM that may contribute to lesion spread. These findings enhance understanding of microglial transcriptomic changes in ageing white matter pathology, highlighting a neuroprotective adaptation in DSCLs microglia and a potentially lesion-promoting phenotype in NAWM microglia.


Asunto(s)
Envejecimiento , Barrera Hematoencefálica , Microglía , Transcriptoma , Sustancia Blanca , Humanos , Microglía/metabolismo , Microglía/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Masculino , Femenino , Envejecimiento/genética , Anciano , Perfilación de la Expresión Génica/métodos , Anciano de 80 o más Años , Neuroprotección/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos CD/metabolismo , Antígenos CD/genética
14.
J Pineal Res ; 76(3): e12951, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572848

RESUMEN

Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.


Asunto(s)
Melatonina , Animales , Melatonina/metabolismo , Neuroprotección , Retina/metabolismo , Receptores de Melatonina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Mamíferos/metabolismo
15.
Exp Neurol ; 377: 114784, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38642665

RESUMEN

Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1ß, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.


Asunto(s)
Exosomas , Macrófagos , Ratones Endogámicos C57BL , Microglía , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/genética , Exosomas/metabolismo , Exosomas/trasplante , Ratones , Macrófagos/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Femenino , Neuroprotección/fisiología , Transducción de Señal/efectos de los fármacos , Quimiocinas/metabolismo
16.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38612761

RESUMEN

The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.


Asunto(s)
Acetilcisteína/análogos & derivados , Enfermedad de Parkinson , Sinucleinopatías , Humanos , Animales , Ratas , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , alfa-Sinucleína/genética , Chaperón BiP del Retículo Endoplásmico , Administración Intranasal , Neuroprotección
17.
Brain Res Bull ; 212: 110964, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670471

RESUMEN

Ischemic stroke (IS), primarily caused by cerebrovascular obstruction, results in severe neurological deficits and has emerged as a leading cause of death and disability worldwide. Recently, there has been increasing exploration of the neuroprotective properties of the inert gas argon. Argon has exhibited impressive neuroprotection in many in vivo and ex vivo experiments without signs of adverse effects, coupled with the advantages of being inexpensive and easily available. However, the efficient administration strategy and underlying mechanisms of neuroprotection by argon in IS are still unclear. This review summarizes current research on the neuroprotective effects of argon in IS with the goal to provide effective guidance for argon application and to elucidate the potential mechanisms of argon neuroprotection. Early and appropriate argon administration at as high a concentration as possible offers favorable neuroprotection in IS. Argon inhalation has been shown to provide some long-term protection benefits. Argon provides the anti-oxidative stress, anti-inflammatory and anti-apoptotic cytoprotective effects mainly around Toll-like receptor 2/4 (TLR2/4), mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor kappa-B (NF-ĸB) and B-cell leukemia/lymphoma 2 (Bcl-2). Therefore, argon holds significant promise as a novel clinical neuroprotective gas agent for ischemic stroke after further researches to identify the optimal application strategy and elucidate the underlying mechanism.


Asunto(s)
Argón , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Argón/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Animales , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Neuroprotección/fisiología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo
18.
Prog Neurobiol ; 237: 102612, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642602

RESUMEN

Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.


Asunto(s)
Precursor de Proteína beta-Amiloide , Giro Dentado , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-fos , Convulsiones , Animales , Giro Dentado/metabolismo , Ratones , Convulsiones/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Neuroprotección/fisiología , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/metabolismo , Masculino , Ratones Endogámicos C57BL , Humanos
19.
Basic Clin Pharmacol Toxicol ; 134(6): 770-777, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566316

RESUMEN

Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are characterised by the progressive loss of specific neuronal cell populations due to multifactorial factors, including neurochemical and immunological disturbances. Consequently, patients can develop cognitive, motor and behavioural dysfunctions, which lead to impairments in their quality of life. Over the years, studies have reported on the neuroprotective properties inherent in phenolic compounds. Therefore, this review highlights the most recent scientific findings regarding phenolic compounds as promising neuroprotective molecules against neurodegenerative diseases.


Asunto(s)
Fármacos Neuroprotectores , Fenoles , Fármacos Neuroprotectores/farmacología , Animales , Humanos , Fenoles/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Modelos Animales de Enfermedad , Enfermedad de Parkinson/tratamiento farmacológico , Neuroprotección/efectos de los fármacos
20.
Biol Sex Differ ; 15(1): 30, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566248

RESUMEN

BACKGROUND: Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS: We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS: Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS: OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.


Asunto(s)
Receptor alfa de Estrógeno , Fármacos Neuroprotectores , Niño , Femenino , Animales , Masculino , Ratones , Humanos , Receptor alfa de Estrógeno/metabolismo , Neuroprotección , Caracteres Sexuales , Testosterona/farmacología , Testosterona/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Isquemia , Hipoxia/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA