Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.787
Filtrar
1.
J Transl Med ; 22(1): 526, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822352

RESUMEN

BACKGROUND: Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS: We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS: We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION: Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.


Asunto(s)
Antígenos CD34 , Neutrófilos , Humanos , Neutrófilos/metabolismo , Neutrófilos/citología , Antígenos CD34/metabolismo , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Edición Génica , Degranulación de la Célula , Células Madre/metabolismo , Células Madre/citología , Citocinas/metabolismo , Fenotipo
2.
Cells ; 13(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38786019

RESUMEN

Myeloid-derived suppressor cells (MDSCs) play an essential role in suppressing the antitumor activity of T lymphocytes in solid tumors, thus representing an attractive therapeutic target to enhance the efficacy of immunotherapy. However, the differences in protein expression between MDSCs and their physiological counterparts, particularly polymorphonuclear neutrophils (PMNs), remain inadequately characterized, making the specific identification and targeting of MDSCs difficult. PMNs and PMN-MDSCs share markers such as CD11b+CD14-CD15+/CD66b+, and some MDSC-enriched markers are emerging, such as LOX-1 and CD84. More proteomics studies are needed to identify the signature and markers for MDSCs. Recently, we reported the induced differentiation of isogenic PMNs or MDSCs (referred to as iPMNs and iMDSCs, respectively) from the human promyelocytic cell line HL60. Here, we profiled the global proteomics and membrane proteomics of these cells with quantitative mass spectrometry, which identified a 41-protein signature ("cluster 6") that was upregulated in iMDSCs compared with HL60 and iPMN. We further integrated our cell line-based proteomics data with a published proteomics dataset of normal human primary monocytes and monocyte-derived MDSCs induced by cancer-associated fibroblasts. The analysis identified a 38-protein signature that exhibits an upregulated expression pattern in MDSCs compared with normal monocytes or PMNs. These signatures may provide a hypothesis-generating platform to identify protein biomarkers that phenotypically distinguish MDSCs from their healthy counterparts, as well as potential therapeutic targets that impair MDSCs without harming normal myeloid cells.


Asunto(s)
Diferenciación Celular , Células Supresoras de Origen Mieloide , Neutrófilos , Proteómica , Humanos , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/citología , Neutrófilos/metabolismo , Neutrófilos/citología , Proteómica/métodos , Células HL-60 , Línea Celular
3.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2336-2344, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812134

RESUMEN

This study aims to optimize the conditions for the formation of neutrophil extracellular traps(NETs) in vitro, so as to establish a relatively stable experimental research platform. Different conditions were compared, including commonly used laboratory animals(rats and mice) and a variety of cell sources(bone marrow neutrophils and peripheral blood neutrophils separated by percoll density gradient centrifugation). Different inducers like lipopolysaccharide(LPS) and phorbol 12-myristate 13-acetate(PMA) were used for induction in vitro. Myeloperoxidase(MPO)/citrullinated histone H3(CitH3)/DAPI immunofluorescence and cell free DNA(cf-DNA) content determination were used for comprehensive evaluation to screen the optimal conditions for the formation of NETs induced in vitro. Furthermore, the stability of the selected conditions for inducing the formation of NETs in vitro was evaluated by tetramethylpyrazine(TMP), an active component in Chinese herbal medicines. The results showed that coated poly-D-lysine(PDL) induced the formation of NETs in bone marrow neutrophils of mice to a certain extent. Both LPS and PMA significantly up-regulated the protein levels of MPO and CitH3 in mouse bone marrow neutrophils and elevated the cfDNA level in the supernatant of rat peripheral blood neutrophils. The cfDNA level in the PMA-induced group increased more significantly than that in the LPS-induced group(P<0.05). The results of immunofluorescence staining showed that the expression of MPO and CitH3 in mouse bone marrow neutrophils, rat bone marrow neutrophils, and rat peripheral blood neutrophils were significantly increased after PMA induction, especially in rat peripheral blood neutrophils. TMP significantly down-regulated the protein levels of MPO, CitH3, and neutrophil elastase(NE) in rat peripheral blood neutrophils induced by PMA. In conclusion, treating the peripheral blood neutrophils of rats with PMA is the optimal condition for inducing the formation of NETs in vitro. This study provides an optimal platform for in vitro studies based on NETs and a basis for studying the effects of traditional Chinese medicines targeting NETs.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Peroxidasa , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Animales , Neutrófilos/efectos de los fármacos , Neutrófilos/citología , Ratones , Ratas , Peroxidasa/metabolismo , Peroxidasa/genética , Acetato de Tetradecanoilforbol/farmacología , Masculino , Lipopolisacáridos/farmacología , Ratas Sprague-Dawley , Histonas/metabolismo , Histonas/genética , Humanos
4.
J Vis Exp ; (206)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38738905

RESUMEN

The primary aim of this research was to develop a reliable and efficient approach for isolating neutrophil extracellular traps (NETs) from rat bone marrow. This effort arose due to limitations associated with the traditional method of extracting NETs from peripheral blood, mainly due to the scarcity of available neutrophils for isolation. The study revealed two distinct methodologies for obtaining rat neutrophils from bone marrow: a streamlined one-step procedure that yielded satisfactory purification levels, and a more time-intensive two-step process that exhibited enhanced purification efficiency. Importantly, both techniques yielded a substantial quantity of viable neutrophils, ranging between 50 to 100 million per rat. This efficiency mirrored the results obtained from isolating neutrophils from both human and murine sources. Significantly, neutrophils derived from rat bone marrow exhibited comparable abilities to secrete NETs when compared with neutrophils obtained from peripheral blood. However, the bone marrow-based method consistently produced notably larger quantities of both neutrophils and NETs. This approach demonstrated the potential to obtain significantly greater amounts of these cellular components for further downstream applications. Notably, these isolated NETs and neutrophils hold promise for a range of applications, spanning the realms of inflammation, infection, and autoimmune diseases.


Asunto(s)
Células de la Médula Ósea , Trampas Extracelulares , Neutrófilos , Animales , Neutrófilos/citología , Ratas , Células de la Médula Ósea/citología , Técnicas Citológicas/métodos
5.
Biochem Med (Zagreb) ; 34(2): 020802, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38665873

RESUMEN

We present two cases from the neonatal department with cerebrospinal fluid examination. We revealed a striking discrepancy in polymorphonuclear (PMN) and mononuclear (MN) cell counts using conventional light microscopy in comparison with automated analyzer Sysmex XN-1000 (PMNs - 13 vs. 173x106/L, MNs - 200 vs. 67x106/L in case 1 and PMNs - 13 vs. 372x106/L, MNs - 411 vs. 179x106/L in case 2). We revealed the dominant presence of hemosiderophages in both cases in cytospin slide. Even though Sysmex XN-1000 offers fast examination with a low sample volume, there is possibility of misdiagnosis, with negative impact on the patient.


Asunto(s)
Microscopía , Humanos , Recién Nacido , Microscopía/métodos , Masculino , Femenino , Neutrófilos/citología , Neutrófilos/patología , Líquido Cefalorraquídeo/citología , Recuento de Leucocitos , Leucocitos Mononucleares/patología , Leucocitos Mononucleares/citología
6.
Nature ; 628(8008): 604-611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538784

RESUMEN

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Macrófagos , Neutrófilos , Nociceptores , Cicatrización de Heridas , Animales , Ratones , Comunicación Autocrina , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Eferocitosis , Macrófagos/citología , Macrófagos/metabolismo , Monocitos/citología , Monocitos/metabolismo , Músculo Esquelético , Canal de Sodio Activado por Voltaje NAV1.8/deficiencia , Canal de Sodio Activado por Voltaje NAV1.8/genética , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Nociceptores/metabolismo , Comunicación Paracrina , Enfermedades del Sistema Nervioso Periférico/complicaciones , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Regeneración/efectos de los fármacos , Piel , Trombospondina 1/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/inmunología , Humanos , Masculino , Femenino
7.
Nature ; 627(8002): 196-203, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355805

RESUMEN

It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1-3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion-a motor-powered process that generates DNA loops by pulling in chromatin5-leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments.


Asunto(s)
Movimiento Celular , Forma del Núcleo Celular , Neutrófilos , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Conformación de Ácido Nucleico , Diferenciación Celular/genética , Inflamación/genética , Elementos de Facilitación Genéticos , Linaje de la Célula/genética
8.
Adv Healthc Mater ; 13(14): e2301966, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38345178

RESUMEN

Neutrophils are the first line of defense of the innate immune system. In response to methicillin-resistant Staphylococcus aureus infection in the skin, hematopoietic stem, and progenitor cells (HSPCs) traffic to wounds and undergo extramedullary granulopoiesis, producing neutrophils necessary to resolve the infection. This prompted the engineering of a gelatin methacrylate (GelMA) hydrogel that encapsulates HSPCs within a matrix amenable to subcutaneous delivery. The authors study the influence of hydrogel mechanical properties to produce an artificial niche for granulocyte-monocyte progenitors (GMPs) to efficiently expand into functional neutrophils that can populate infected tissue. Lin-cKIT+ HSPCs, harvested from fluorescent neutrophil reporter mice, are encapsulated in GelMA hydrogels of varying polymer concentration and UV-crosslinked to produce HSPC-laden gels of specific stiffness and mesh sizes. Softer 5% GelMA gels yield the most viable progenitors and effective cell-matrix interactions. Compared to suspension culture, 5% GelMA results in a twofold expansion of mature neutrophils that retain antimicrobial functions including degranulation, phagocytosis, and ROS production. When implanted dermally in C57BL/6J mice, luciferase-expressing neutrophils expanded in GelMA hydrogels are visualized at the site of implantation for over 5 days. They demonstrate the potential of GelMA hydrogels for delivering HSPCs directly to the site of skin infection to promote local granulopoiesis.


Asunto(s)
Gelatina , Células Madre Hematopoyéticas , Hidrogeles , Metacrilatos , Ratones Endogámicos C57BL , Neutrófilos , Animales , Gelatina/química , Hidrogeles/química , Hidrogeles/farmacología , Metacrilatos/química , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/citología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos
9.
Int J Lab Hematol ; 46(3): 466-473, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38263481

RESUMEN

INTRODUCTION: Cell population data (CPD) parameters may be putative biomarkers for the screening of various diseases including some infections and myelodysplastic syndrome. This study aimed to establish the age- and sex-specific reference intervals (RIs) for the CPD parameters in the Korean population. METHODS: The reference population for the RIs of CPD parameters comprised 124 856 subjects aged 20-99 years. CPD parameters were obtained from Sysmex XN-2000 (Kobe, Japan) datasets from 17 health promotion centers in 13 South Korean cities. We determined significant partitions for age and sex, and calculated RIs according to Clinical and Laboratory Standards Institute C28-A3 guidelines. RESULTS: The side scattered light intensity in the neutrophil area and the lymphocyte area did not require sex-related partitioning except in those over the age of 50, among whom the lower limit (LL) and upper limit (UL) were lower in females. However, the side scattered light distribution width in the lymphocyte area required age- and sex-related partitioning, in which LL and UL were higher in females. The LL and UL of the fluorescent light distribution width were higher in males in the neutrophil area and higher in females in the lymphocyte area, but age-related partitioning was not required. The forward scattered light intensity in the neutrophil area, lymphocyte area, and monocyte area did not require age-related partitioning in males. CONCLUSION: This study has determined comprehensive age- and sex-specific RIs for CPD parameters, which could help to prove the clinical significance of these parameters in the Sysmex XN-2000.


Asunto(s)
Neutrófilos , Humanos , Masculino , Femenino , Anciano , República de Corea , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , Valores de Referencia , Recuento de Células Sanguíneas/instrumentación , Recuento de Células Sanguíneas/normas , Recuento de Células Sanguíneas/métodos , Factores de Edad , Adulto Joven , Neutrófilos/citología , Envejecimiento
10.
ACS Appl Mater Interfaces ; 15(14): 17577-17591, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36976830

RESUMEN

Migrating neutrophils are found to leave behind subcellular trails in vivo, but the underlying mechanisms remain unclear. Here, an in vitro cell migration test plus an in vivo observation was applied to monitor neutrophil migration on intercellular cell adhesion molecule-1 (ICAM-1) presenting surfaces. Results indicated that migrating neutrophils left behind long-lasting, chemokine-containing trails. Trail formation tended to alleviate excessive cell adhesion enhanced by the trans-binding antibody and maintain efficient cell migration, which was associated with differential instantaneous edge velocity between the cell front and rear. CD11a and CD11b worked differently in inducing trail formation with polarized distributions on the cell body and uropod. Trail release at the cell rear was attributed to membrane ripping, in which ß2-integrin was disrupted from the cell membrane through myosin-mediated rear contraction and integrin-cytoskeleton dissociation, potentiating a specialized strategy of integrin loss and cell deadhesion to maintain efficient migration. Moreover, neutrophil trails left on the substrate served as immune forerunners to recruit dendritic cells. These results provided an insight in elucidating the mechanisms of neutrophil trail formation and deciphering the roles of trail formation in efficient neutrophil migration.


Asunto(s)
Movimiento Celular , Neutrófilos , Adhesión Celular , Neutrófilos/citología , Neutrófilos/metabolismo , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Células Cultivadas , Espectroscopía Infrarroja por Transformada de Fourier , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo
11.
Exp Gerontol ; 173: 112084, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634720

RESUMEN

To evaluate the association of inflammation (C-reactive protein (CRP) and neutrophil-lymphocyte ratio (NLR) levels) with muscle strength in older adults. We also aimed to evaluate whether these associations are sex-specific. A cross-sectional study was performed with data from the National Health and Nutrition Examination Survey (NHANES) 1999-2000 and 2001-2002. A total of 2387 individuals over 50 years of both sexes were evaluated, according to the eligibility criteria for the strength test. Muscle strength was measured by Kinetic Communicator isokinetic dynamometer; while the NLR was obtained by the ratio of the total neutrophil for lymphocyte count and CRP was quantified by latex nephelometry. Linear regression analyses, crude and adjusted for confounders, were used to estimate the coefficients and 95 % confidence intervals for peak strength (muscle strength) by tertiles of NLR and CRP. There was no association between NLR and peak strength for both sexes. CRP levels were inversely associated with peak force in men [2nd tertile ß = -3.33 (-15.92; 9.25); 3rd tertile ß = -24.69 (-41.18; -8.20), p for trend = 0.005], but not in women [2nd tertile ß = -3.22 (-15.00; 8.56); 3rd tertile ß = -9.23 (-28.40; -9.94), p for trend = 0.332]. In conclusion, NLR levels were not associated with muscle strength in both sexes. CRP levels were inversely associated with muscle strength in older men, but not in women, suggesting that the association between inflammation and muscle strength in older adults can be sex-specific.


Asunto(s)
Proteína C-Reactiva , Fuerza Muscular , Anciano , Femenino , Humanos , Masculino , Proteína C-Reactiva/análisis , Estudios Transversales , Inflamación/metabolismo , Linfocitos/citología , Neutrófilos/citología , Encuestas Nutricionales , Recuento de Leucocitos
12.
Biomolecules ; 12(12)2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36551191

RESUMEN

In this study, we have tested the hypothesis that the expression and secretion of galectins are driven through mechanisms globally impacted by homeostatic regulation involving the post-translational modification of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc). We showed that neutrophilic differentiation of HL-60 cells induced by all-trans retinoic acid (ATRA) and 6-diazo-5-oxo-L-norleucine (DON) was associated with a significant drop of cellular O-GlcNAc levels in serum-contained and serum-free cell culture media. Galectin gene and protein expression profiles in HL-60 cells were specifically modified by ATRA and by inhibitors of O-GlcNAc cycle enzymes, however overall trends for each drug were similar between cells growing in the presence or absence of serum except for LGALS9 and LGALS12. The secretion of four galectins (-1, -3, -9, and -10) by HL-60 cells in a serum-free medium was stimulated by O-GlcNAc-reducing ATRA and DON while O-GlcNAc-elevating thiamet G (O-GlcNAcase inhibitor) failed to change the basal levels of extracellular galectins. Taken together, these results demonstrate that O-GlcNAc homeostasis is essential not only for regulation of galectin expression in cells but also for the secretion of multiple members of this protein family, which can be an important novel aspect of unconventional secretion mechanisms.


Asunto(s)
Acetilglucosamina , Galectinas , Neutrófilos , Procesamiento Proteico-Postraduccional , Humanos , Acetilglucosamina/metabolismo , Diferenciación Celular , Galectinas/genética , Galectinas/metabolismo , Células HL-60 , N-Acetilglucosaminiltransferasas/genética , Neutrófilos/citología , Neutrófilos/metabolismo
13.
Nature ; 612(7938): 141-147, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36352227

RESUMEN

The heterogeneity of the tumour immune microenvironment (TIME), organized by various immune and stromal cells, is a major contributing factor of tumour metastasis, relapse and drug resistance1-3, but how different TIME subtypes are connected to the clinical relevance in liver cancer remains unclear. Here we performed single-cell RNA-sequencing (scRNA-seq) analysis of 189 samples collected from 124 patients and 8 mice with liver cancer. With more than 1 million cells analysed, we stratified patients into five TIME subtypes, including immune activation, immune suppression mediated by myeloid or stromal cells, immune exclusion and immune residence phenotypes. Different TIME subtypes were spatially organized and associated with chemokine networks and genomic features. Notably, tumour-associated neutrophil (TAN) populations enriched in the myeloid-cell-enriched subtype were associated with an unfavourable prognosis. Through in vitro induction of TANs and ex vivo analyses of patient TANs, we showed that CCL4+ TANs can recruit macrophages and that PD-L1+ TANs can suppress T cell cytotoxicity. Furthermore, scRNA-seq analysis of mouse neutrophil subsets revealed that they are largely conserved with those of humans. In vivo neutrophil depletion in mouse models attenuated tumour progression, confirming the pro-tumour phenotypes of TANs. With this detailed cellular heterogeneity landscape of liver cancer, our study illustrates diverse TIME subtypes, highlights immunosuppressive functions of TANs and sheds light on potential immunotherapies targeting TANs.


Asunto(s)
Neoplasias Hepáticas , Neutrófilos , Microambiente Tumoral , Animales , Humanos , Ratones , Inmunoterapia , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Recurrencia Local de Neoplasia , Neutrófilos/citología , Neutrófilos/inmunología , Microambiente Tumoral/inmunología , Linfocitos T/inmunología , Macrófagos/inmunología , Pronóstico , Progresión de la Enfermedad
14.
Cells ; 11(18)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36139476

RESUMEN

Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may identify therapeutic targets. Objectives: Examine neutrophil phenotype and function in 41 hospitalised, non-ICU COVID-19 patients versus 23 age-matched controls (AMC) and 26 community acquired pneumonia patients (CAP). Methods: Isolated neutrophils underwent ex vivo analyses for migration, bacterial phagocytosis, ROS generation, NETosis and receptor expression. Circulating DNAse 1 activity, levels of cfDNA, MPO, VEGF, IL-6 and sTNFRI were measured and correlated to clinical outcome. Serial sampling on day three to five post hospitalization were also measured. The effect of ex vivo PI3K inhibition was measured in a further cohort of 18 COVID-19 patients. Results: Compared to AMC and CAP, COVID-19 neutrophils demonstrated elevated transmigration (p = 0.0397) and NETosis (p = 0.0332), and impaired phagocytosis (p = 0.0036) associated with impaired ROS generation (p < 0.0001). The percentage of CD54+ neutrophils (p < 0.001) was significantly increased, while surface expression of CD11b (p = 0.0014) and PD-L1 (p = 0.006) were significantly decreased in COVID-19. COVID-19 and CAP patients showed increased systemic markers of NETosis including increased cfDNA (p = 0.0396) and impaired DNAse activity (p < 0.0001). The ex vivo inhibition of PI3K γ and δ reduced NET release by COVID-19 neutrophils (p = 0.0129). Conclusions: COVID-19 is associated with neutrophil dysfunction across all main effector functions, with altered phenotype, elevated migration and NETosis, and impaired antimicrobial responses. These changes highlight that targeting neutrophil function may help modulate COVID-19 severity.


Asunto(s)
COVID-19 , Neutrófilos , Antígeno B7-H1 , COVID-19/inmunología , Ácidos Nucleicos Libres de Células , Desoxirribonucleasas , Humanos , Interleucina-6/farmacología , Neutrófilos/citología , Fenotipo , Fosfatidilinositol 3-Quinasas , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2
15.
Proc Natl Acad Sci U S A ; 119(32): e2111726119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914162

RESUMEN

A large number of neutrophils infiltrate the lymph node (LN) within 4 h after Staphylococcus aureus skin infection (4 h postinfection [hpi]) and prevent systemic S. aureus dissemination. It is not clear how infection in the skin can remotely and effectively recruit neutrophils to the LN. Here, we found that lymphatic vessel occlusion substantially reduced neutrophil recruitment to the LN. Lymphatic vessels effectively transported bacteria and proinflammatory chemokines (i.e., Chemokine [C-X-C motif] motif 1 [CXCL1] and CXCL2) to the LN. However, in the absence of lymph flow, S. aureus alone in the LN was insufficient to recruit neutrophils to the LN at 4 hpi. Instead, lymph flow facilitated the earliest neutrophil recruitment to the LN by delivering chemokines (i.e., CXCL1, CXCL2) from the site of infection. Lymphatic dysfunction is often found during inflammation. During oxazolone (OX)-induced skin inflammation, CXCL1/2 in the LN was reduced after infection. The interrupted LN conduits further disrupted the flow of lymph and impeded its communication with high endothelial venules (HEVs), resulting in impaired neutrophil migration. The impaired neutrophil interaction with bacteria contributed to persistent infection in the LN. Our studies showed that both the flow of lymph from lymphatic vessels to the LN and the distribution of lymph in the LN are critical to ensure optimal neutrophil migration and timely innate immune protection in S. aureus infection.


Asunto(s)
Quimiocinas , Infiltración Neutrófila , Enfermedades Cutáneas Bacterianas , Infecciones Estafilocócicas , Animales , Quimiocinas/inmunología , Inmunidad Innata , Inflamación/patología , Linfa/inmunología , Ganglios Linfáticos/citología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/citología , Enfermedades Cutáneas Bacterianas/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus
16.
Nature ; 609(7925): 166-173, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35948634

RESUMEN

During infection, inflammatory monocytes are thought to be key for bacterial eradication, but this is hard to reconcile with the large numbers of neutrophils that are recruited for each monocyte that migrates to the afflicted tissue, and the much more robust microbicidal functions of the neutrophils. However, unlike neutrophils, monocytes have the capacity to convert to situationally specific macrophages that may have critical functions beyond infection control1,2. Here, using a foreign body coated with Staphylococcus aureus and imaging over time from cutaneous infection to wound resolution, we show that monocytes and neutrophils are recruited in similar numbers with low-dose infection but not with high-dose infection, and form a localization pattern in which monocytes surround the infection site, whereas neutrophils infiltrate it. Monocytes did not contribute to bacterial clearance but converted to macrophages that persisted for weeks after infection, regulating hypodermal adipocyte expansion and production of the adipokine hormone leptin. In infected monocyte-deficient mice there was increased persistent hypodermis thickening and an elevated leptin level, which drove overgrowth of dysfunctional blood vasculature and delayed healing, with a thickened scar. Ghrelin, which opposes leptin function3, was produced locally by monocytes, and reduced vascular overgrowth and improved healing post-infection. In sum, we find that monocytes function as a cellular rheostat by regulating leptin levels and revascularization during wound repair.


Asunto(s)
Leptina , Monocitos , Neovascularización Fisiológica , Infecciones Estafilocócicas , Staphylococcus aureus , Cicatrización de Heridas , Adipocitos/citología , Adipocitos/metabolismo , Animales , Cicatriz , Ghrelina/metabolismo , Leptina/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Monocitos/citología , Monocitos/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/fisiología
17.
J Leukoc Biol ; 112(3): 425-435, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35815539

RESUMEN

With the concept of the gut-lung axis reinforced in recent years, emerging evidence has shown that intestinal homeostasis is vital for lung health. Nevertheless, the impacts of lung homeostasis on intestinal tracts and their mechanism are rarely studied. Our results showed that papain-induced asthmatic mice exhibited apparent colonic injuries compared with controls, including increased intestinal permeability, neutrophil and Th17 infiltration in the colonic lamina propria. Moreover, the intranasal administration of papain aggravated such colonic injuries in mice with dextran sulfate sodium-induced colitis, as evidenced by increased occult blood scores, shortened colon length, and accumulated neutrophils. The level of IL-17A was also higher in the serum of asthmatic mice than wild-type mice. Interestingly, the pathologic scores, the proportion of Th17 cells, and neutrophil infiltration in the colon were markedly reduced after IL-17A blocking. Similarly, longer length, lower pathologic scores, and fewer neutrophils were also observed in the colon of IL-17-deficient asthmatic mice. More importantly, we demonstrated that severe gastrointestinal symptoms could accompany clinical asthmatics. The frequencies of Th17 cells and the mRNA expression of IL-17A in the peripheral blood of these patients were significantly enhanced. Besides, the gastrointestinal symptom rating scale scores positively correlated with the frequencies of Th17 in asthmatics. These findings enlighten that IL-17A aggravates asthma-induced intestinal immune injury by promoting neutrophil trafficking, which facilitates the exploration of new potential biomarkers to treat asthma.


Asunto(s)
Asma , Colitis , Interleucina-17 , Neutrófilos , Animales , Asma/complicaciones , Colitis/etiología , Colitis/inmunología , Sulfato de Dextran , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/citología , Papaína/metabolismo , Células Th17
18.
J Cell Biol ; 221(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35856919

RESUMEN

Reading, interpreting and crawling along gradients of chemotactic cues is one of the most complex questions in cell biology. In this issue, Georgantzoglou et al. (2022. J. Cell. Biol.https://doi.org/10.1083/jcb.202103207) use in vivo models to map the temporal sequence of how neutrophils respond to an acutely arising gradient of chemoattractant.


Asunto(s)
Factores Quimiotácticos , Quimiotaxis , Neutrófilos , Factores Quimiotácticos/química , Neutrófilos/citología
19.
Cell Rep ; 39(12): 110987, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732131

RESUMEN

The liver is one of the most-favored distant metastatic sites for solid tumors, and interactions between cancer cells and components of the hepatic microenvironment are essential for liver metastasis (LM). Although sex is one of the determinants for primary liver cancer, sexual dimorphism in LM (SDLM) and the underlying mechanisms remain unclear. We herein demonstrate a significant male-biased SDLM, which is attributed to host androgen/androgen receptor (Ar) signaling that promotes hepatic seeding of tumor cells and subsequent outgrowth in a neutrophil-dependent manner. Mechanistically, androgen/Ar signaling promotes hepatic accumulation of neutrophils by promoting proliferation and development of neutrophil precursors in the bone marrow, as well as modulating hepatic recruitment of neutrophils and their functions. Antagonizing the androgen/Ar/neutrophil axis significantly mitigates LM in males. Our data thus reveal an important role of androgen in LM and suggest that androgen/Ar modulation represents a promising target for LM therapy in men.


Asunto(s)
Andrógenos , Neoplasias Hepáticas , Neutrófilos , Caracteres Sexuales , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Masculino , Neutrófilos/citología , Receptores Androgénicos , Microambiente Tumoral
20.
Nature ; 607(7919): 585-592, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732737

RESUMEN

The regenerative potential of mammalian peripheral nervous system neurons after injury is critically limited by their slow axonal regenerative rate1. Regenerative ability is influenced by both injury-dependent and injury-independent mechanisms2. Among the latter, environmental factors such as exercise and environmental enrichment have been shown to affect signalling pathways that promote axonal regeneration3. Several of these pathways, including modifications in gene transcription and protein synthesis, mitochondrial metabolism and the release of neurotrophins, can be activated by intermittent fasting (IF)4,5. However, whether IF influences the axonal regenerative ability remains to be investigated. Here we show that IF promotes axonal regeneration after sciatic nerve crush in mice through an unexpected mechanism that relies on the gram-positive gut microbiome and an increase in the gut bacteria-derived metabolite indole-3-propionic acid (IPA) in the serum. IPA production by Clostridium sporogenes is required for efficient axonal regeneration, and delivery of IPA after sciatic injury significantly enhances axonal regeneration, accelerating the recovery of sensory function. Mechanistically, RNA sequencing analysis from sciatic dorsal root ganglia suggested a role for neutrophil chemotaxis in the IPA-dependent regenerative phenotype, which was confirmed by inhibition of neutrophil chemotaxis. Our results demonstrate the ability of a microbiome-derived metabolite, such as IPA, to facilitate regeneration and functional recovery of sensory axons through an immune-mediated mechanism.


Asunto(s)
Indoles , Regeneración Nerviosa , Propionatos , Cicatrización de Heridas , Animales , Ratones , Axones/efectos de los fármacos , Axones/fisiología , Quimiotaxis de Leucocito , Clostridium/metabolismo , Ayuno , Ganglios Espinales/metabolismo , Microbioma Gastrointestinal , Indoles/sangre , Indoles/metabolismo , Indoles/farmacología , Compresión Nerviosa , Factores de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Neutrófilos/citología , Neutrófilos/inmunología , Propionatos/sangre , Propionatos/metabolismo , Propionatos/farmacología , Recuperación de la Función , Nervio Ciático/lesiones , Análisis de Secuencia de ARN , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA