Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
J Med Chem ; 67(13): 11086-11102, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38924492

RESUMEN

Photoactivated chemotherapy agents form a new branch of physically targeted anticancer agents with potentially lower systemic side effects for patients. On the other hand, limited information exists on the intracellular interactions between the photoreleased metal cage and the photoreleased anticancer inhibitor. In this work, we report a new biological study of the known photoactivated compound Ru-STF31 in the glioblastoma cancer cell line, U87MG. Ru-STF31 targets nicotinamide phosphoribosyltransferase (NAMPT), an enzyme overexpressed in U87MG. Ru-STF31 is activated by red light irradiation and releases two photoproducts: the ruthenium cage and the cytotoxic inhibitor STF31. This study shows that Ru-STF31 can significantly decrease intracellular NAD+ levels in both normoxic (21% O2) and hypoxic (1% O2) U87MG cells. Strikingly, NAD+ depletion by light activation of Ru-STF31 in hypoxic U87MG cells could not be rescued by the addition of extracellular NAD+. Our data suggest an oxygen-dependent active role of the ruthenium photocage released by light activation.


Asunto(s)
Antineoplásicos , NAD , Nicotinamida Fosforribosiltransferasa , Oxígeno , Rutenio , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Humanos , Rutenio/química , Rutenio/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Oxígeno/metabolismo , NAD/metabolismo , Citocinas/metabolismo , Luz , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química
2.
Molecules ; 29(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930900

RESUMEN

The malignancy of breast cancer poses a global challenge, with existing treatments often falling short of desired efficacy. Extensive research has underscored the effectiveness of targeting the metabolism of nicotinamide adenine dinucleotide (NAD), a pivotal molecule crucial for cancer cell survival and growth, as a promising anticancer strategy. Within mammalian cells, sustaining optimal NAD concentrations relies on two key enzymes, namely nicotinamide phosphoribosyltransferase (NAMPT) and poly(ADP-ribose) polymer 1 (PARP1). Recent studies have accentuated the potential benefits of combining NAMPT inhibitors and PARP1 inhibitors to enhance therapeutic outcomes, particularly in breast cancer. In this study, we designed and synthesized eleven novel NAMPT/PARP1 dual-target inhibitors. Among them, compound DDY02 exhibited acceptable inhibitory activities against both NAMPT and PARP1, with IC50 values of 0.01 and 0.05 µM, respectively. Moreover, in vitro evaluations revealed that treatment with DDY02 resulted in proliferation inhibition, NAD depletion, DNA damage, apoptosis, and migration inhibition in MDA-MB-468 cells. These results posit DDY02, by targeting NAD metabolism through inhibiting both NAMPT and PARP1, as a promising lead compound for the development of breast cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Proliferación Celular , NAD , Nicotinamida Fosforribosiltransferasa , Poli(ADP-Ribosa) Polimerasa-1 , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Humanos , NAD/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Femenino , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Diseño de Fármacos , Citocinas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Simulación del Acoplamiento Molecular
3.
Cell Chem Biol ; 31(6): 1203-1218.e17, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906111

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the biosynthesis of nicotinamide adenine dinucleotide (NAD+), making it a potential target for cancer therapy. Two challenges hinder its translation in the clinic: targeting the extracellular form of NAMPT (eNAMPT) remains insufficient, and side effects are observed in normal tissues. We previously utilized proteolysis-targeting chimera (PROTAC) to develop two compounds capable of simultaneously degrading iNAMPT and eNAMPT. Unfortunately, the pharmacokinetic properties were inadequate, and toxicities similar to those associated with traditional inhibitors arose. We have developed a next-generation PROTAC molecule 632005 to address these challenges, demonstrating exceptional target selectivity and bioavailability, improved in vivo exposure, extended half-life, and reduced clearance rate. When combined with nicotinic acid, 632005 exhibits safety and robust efficacy in treating NAPRT-deficient pan-cancers, including xenograft models with hematologic malignancy and prostate cancer and patient-derived xenograft (PDX) models with liver cancer. Our findings provide clinical references for patient selection and treatment strategies involving NAMPT-targeting PROTACs.


Asunto(s)
Antineoplásicos , Niacina , Nicotinamida Fosforribosiltransferasa , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Humanos , Animales , Niacina/química , Niacina/farmacología , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Masculino , Proteolisis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Citocinas/metabolismo , Línea Celular Tumoral , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Estructura Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología
4.
ACS Chem Biol ; 19(6): 1339-1350, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38829020

RESUMEN

N-Pyridinylthiophene carboxamide (compound 21) displays activity against peripheral nerve sheath cancer cells and mouse xenografts by an unknown mechanism. Through medicinal chemistry, we identified a more active derivative, compound 9, and found that only analogues with structures similar to nicotinamide retained activity. Genetic screens using compound 9 found that both NAMPT and NMNAT1, enzymes in the NAD salvage pathway, are necessary for activity. Compound 9 is metabolized by NAMPT and NMNAT1 into an adenine dinucleotide (AD) derivative in a cell-free system, cultured cells, and mice, and inhibition of this metabolism blocked compound activity. AD analogues derived from compound 9 inhibit IMPDH in vitro and cause cell death by inhibiting IMPDH in cells. These findings nominate these compounds as preclinical candidates for the development of tumor-activated IMPDH inhibitors to treat neuronal cancers.


Asunto(s)
NAD , Niacinamida , Tiofenos , Animales , NAD/metabolismo , Humanos , Ratones , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Niacinamida/farmacología , Niacinamida/química , Tiofenos/farmacología , Tiofenos/química , Tiofenos/metabolismo , Línea Celular Tumoral , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Neoplasias de la Vaina del Nervio/tratamiento farmacológico , Neoplasias de la Vaina del Nervio/metabolismo , Neoplasias de la Vaina del Nervio/patología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/antagonistas & inhibidores
5.
Bioorg Chem ; 149: 107509, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824699

RESUMEN

In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.


Asunto(s)
Antineoplásicos , Inhibidores Enzimáticos , Neoplasias , Nicotinamida Fosforribosiltransferasa , Animales , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Estructura Molecular , Neoplasias/tratamiento farmacológico , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Relación Estructura-Actividad , NAD/química , NAD/metabolismo , Niacinamida/química
6.
Expert Opin Ther Pat ; 34(7): 565-582, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38861278

RESUMEN

INTRODUCTION: Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions. AREAS COVERED: By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date. EXPERT OPINION: Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.


Asunto(s)
Antineoplásicos , Citocinas , Inhibidores Enzimáticos , NAD , Neoplasias , Nicotinamida Fosforribosiltransferasa , Patentes como Asunto , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/enzimología , Animales , NAD/metabolismo , Antineoplásicos/farmacología , Citocinas/metabolismo , Citocinas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Desarrollo de Medicamentos , Diseño de Fármacos
7.
Eur J Med Chem ; 271: 116444, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691889

RESUMEN

The NAPRT-induced increase in NAD+ levels was proposed as a mechanism contributing to hepatocellular carcinoma (HCC) resistance to NAMPT inhibitors. Thus, concurrently targeting NAMPT and NAPRT could be considered to overcome drug resistance. A BRD4 inhibitor downregulates the expression of NAPRT in HCC, and the combination of NAMPT inhibitors with BRD4 inhibitors simultaneously blocks NAD+ generation via salvage and the PH synthesis pathway. Moreover, the combination of the two agents significantly downregulated the expression of tumor-promoting genes and strongly promoted apoptosis. The present work identified various NAMPT/BRD4 dual inhibitors based on the multitargeted drug rationale. Among them, compound A2, which demonstrated the strongest effect, exhibited potent inhibition of NAMPT and BRD4 (IC50 = 35 and 58 nM, respectively). It significantly suppressed the growth and migration of HCC cells and facilitated their apoptosis. Furthermore, compound A2 also manifested a robust anticancer effect in HCCLM3 xenograft mouse models, with no apparent toxic effects. Our findings in this study provide an effective approach to target NAD+ metabolism for HCC treatment.


Asunto(s)
Antineoplásicos , Apoptosis , Carcinoma Hepatocelular , Proteínas de Ciclo Celular , Proliferación Celular , Citocinas , Neoplasias Hepáticas , Nicotinamida Fosforribosiltransferasa , Factores de Transcripción , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Citocinas/antagonistas & inhibidores , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Relación Dosis-Respuesta a Droga , Ratones Desnudos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Proteínas que Contienen Bromodominio
8.
J Med Chem ; 67(10): 8099-8121, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38722799

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is an attractive therapeutic target for treating select cancers. There are two forms of NAMPT: intracellular NAMPT (iNAMPT, the rate-limiting enzyme in the mammalian NAD+ main synthetic pathway) and extracellular NAMPT (eNAMPT, a cytokine with protumorigenic function). Reported NAMPT inhibitors only inhibit iNAMPT and show potent activities in preclinical studies. Unfortunately, they failed to show efficacy due to futility and toxicity. We developed a series of FK866-based NAMPT-targeting PROTACs and identified LYP-8 as a potent and effective NAMPT degrader that simultaneously diminished iNAMPT and eNAMPT. Importantly, LYP-8 demonstrated superior efficacy and safety in mice when compared to the clinical candidate, FK866. This study highlights the importance and feasibility of applying PROTACs as a superior strategy for interfering with both the enzymatic function of NAMPT (iNAMPT) and nonenzymatic function of NAMPT (eNAMPT), which is difficult to achieve with conventional NAMPT inhibitors.


Asunto(s)
Acrilamidas , Diseño de Fármacos , Nicotinamida Fosforribosiltransferasa , Piperidinas , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Acrilamidas/farmacología , Acrilamidas/química , Acrilamidas/síntesis química , Animales , Humanos , Piperidinas/farmacología , Piperidinas/química , Ratones , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Citocinas/metabolismo , Línea Celular Tumoral , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química
9.
Mol Cancer Ther ; 23(8): 1176-1187, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691846

RESUMEN

The treatment of primary central nervous system tumors is challenging due to the blood-brain barrier and complex mutational profiles, which is associated with low survival rates. However, recent studies have identified common mutations in gliomas [isocitrate dehydrogenase (IDH)-wild-type and mutant, WHO grades II-IV; with grade IV tumors referred to as glioblastomas (GBM)]. These mutations drive epigenetic changes, leading to promoter methylation at the nicotinic acid phosphoribosyl transferase (NAPRT) gene locus, which encodes an enzyme involved in generating NAD+. Importantly, NAPRT silencing introduces a therapeutic vulnerability to inhibitors targeting another NAD+ biogenesis enzyme, nicotinamide phosphoribosyl transferase (NAMPT), rationalizing a treatment for these malignancies. Multiple systemically administered NAMPT inhibitors (NAMPTi) have been developed and tested in clinical trials, but dose-limiting toxicities-including bone marrow suppression and retinal toxicity-have limited their efficacy. Here, we report a novel approach for the treatment of NAPRT-silenced GBMs using nanoparticle (NP)-encapsulated NAMPTis administered by convection-enhanced delivery (CED). We demonstrate that GMX1778 (a NAMPTi) can be formulated in degradable polymer NPs with retention of potency for NAMPT inhibition and anticancer activity in vitro, plus sustained drug release in vitro and in vivo. Direct injection of these drugs via CED into the brain is associated with reduced retinal toxicity compared with systemic administration. Finally, we show that CED of NP-encapsulated GMX1778 to NAPRT-silenced intracranial GBM xenografts in mice exhibit significant tumor growth delay and extends survival. These data support an approach to treat gliomas harboring defects in NAD+ metabolism using CED of NP-encapsulated NAMPTis to greatly improve the therapeutic index and treatment efficacy for this class of drugs.


Asunto(s)
Glioma , Nanopartículas , Nicotinamida Fosforribosiltransferasa , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Humanos , Animales , Ratones , Nanopartículas/química , Glioma/tratamiento farmacológico , Glioma/patología , Citocinas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología
10.
J Med Chem ; 67(8): 5999-6026, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38580317

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in NAD+ biosynthesis via salvage of NAM formed from catabolism of NAD+ by proteins with NADase activity (e.g., PARPs, SIRTs, CD38). Depletion of NAD+ in aging, neurodegeneration, and metabolic disorders is addressed by NAD+ supplementation. Conversely, NAMPT inhibitors have been developed for cancer therapy: many discovered by phenotypic screening for cancer cell death have low nanomolar potency in cellular models. No NAMPT inhibitor is yet FDA-approved. The ability of inhibitors to act as NAMPT substrates may be associated with efficacy and toxicity. Some 3-pyridyl inhibitors become 4-pyridyl activators or "NAD+ boosters". NAMPT positive allosteric modulators (N-PAMs) and boosters may increase enzyme activity by relieving substrate/product inhibition. Binding to a "rear channel" extending from the NAMPT active site is key for inhibitors, boosters, and N-PAMs. A deeper understanding may fulfill the potential of NAMPT ligands to regulate cellular life and death.


Asunto(s)
Inhibidores Enzimáticos , Nicotinamida Fosforribosiltransferasa , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Animales , Neoplasias/tratamiento farmacológico , NAD/metabolismo , Regulación Alostérica/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Citocinas/metabolismo
11.
J Med Chem ; 67(11): 8667-8692, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38651495

RESUMEN

The targeting of cancer cell intrinsic metabolism has emerged as a promising strategy for antitumor intervention. In the study, we identified the first-in-class small molecules that effectively inhibit both mutant isocitrate dehydrogenase 1 (mIDH1) and nicotinamide phosphoribosyltransferase (NAMPT), two crucial targets in cancer metabolism, through structure-based drug design. Notably, compound 23h exhibits excellent and balanced inhibitory activities against both mIDH1 (IC50 = 14.93 nM) and NAMPT (IC50 = 12.56 nM), leading to significant suppression of IDH1-mutated glioma cell (U87 MG-IDH1R132H) proliferation. Significantly, compound 23h has the ability to cross the blood-brain barrier (B/P ratio, 0.76) and demonstrates remarkable in vivo antitumor efficacy (20 mg/kg) in the U87 MG-IDH1R132H orthotopic transplantation mouse models without any notable toxicity. This proof-of-concept investigation substantiates the viability of discovering small molecules that concurrently target mIDH1 and NAMPT, providing valuable leads for the treatment of glioma and an efficient approach for the discovery of multitarget antitumor drugs.


Asunto(s)
Antineoplásicos , Proliferación Celular , Citocinas , Glioma , Isocitrato Deshidrogenasa , Nicotinamida Fosforribosiltransferasa , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Glioma/tratamiento farmacológico , Glioma/patología , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Antineoplásicos/síntesis química , Ratones , Citocinas/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Mutación , Descubrimiento de Drogas , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/síntesis química , Ratones Desnudos
12.
Cancer Gene Ther ; 31(5): 721-735, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424218

RESUMEN

Ovarian cancer follows a characteristic progression pattern, forming multiple tumor masses enriched with cancer stem cells (CSCs) within the abdomen. Most patients develop resistance to standard platinum-based drugs, necessitating better treatment approaches. Targeting CSCs by inhibiting NAD+ synthesis has been previously explored. Nicotinamide phosphoribosyltransferase (NAMPT), which is the rate limiting enzyme in the salvage pathway for NAD+ synthesis is an attractive drug target in this pathway. KPT-9274 is an innovative drug targeting both NAMPT and p21 activated kinase 4 (PAK4). However, its effectiveness against ovarian cancer has not been validated. Here, we show the efficacy and mechanisms of KPT-9274 in treating 3D-cultured spheroids that are resistant to platinum-based drugs. In these spheroids, KPT-9274 not only inhibited NAD+ production in NAMPT-dependent cell lines, but also suppressed NADPH and ATP production, indicating reduced mitochondrial function. It also downregulated of inflammation and DNA repair-related genes. Moreover, the compound reduced PAK4 activity by altering its mostly cytoplasmic localization, leading to NAD+-dependent decreases in phosphorylation of S6 Ribosomal protein, AKT, and ß-Catenin in the cytoplasm. These findings suggest that KPT-9274 could be a promising treatment for ovarian cancer patients who are resistant to platinum drugs, emphasizing the need for precision medicine to identify the specific NAD+ producing pathway that a tumor relies upon before treatment.


Asunto(s)
Citocinas , Resistencia a Antineoplásicos , Nicotinamida Fosforribosiltransferasa , Neoplasias Ováricas , Esferoides Celulares , Quinasas p21 Activadas , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Citocinas/metabolismo , Línea Celular Tumoral , Esferoides Celulares/efectos de los fármacos , NAD/metabolismo , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Aminopiridinas
13.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838885

RESUMEN

Targeting cancer cells that are highly dependent on the nicotinamide adenine dinucleotide (NAD+) metabolite is a promising therapeutic strategy. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme catalyzing NAD+ production. Despite the high efficacy of several developed NAMPT inhibitors (i.e., FK866 (APO866)) in preclinical studies, their clinical activity was proven to be limited. Here, we report the synthesis of new NAMPT Inhibitors, JJ08, FEI191 and FEI199, which exhibit a broad anticancer activity in vitro. Results show that these compounds are potent NAMPT inhibitors that deplete NAD+ and NADP(H) after 24 h of drug treatment, followed by an increase in reactive oxygen species (ROS) accumulation. The latter event leads to ATP loss and mitochondrial depolarization with induction of apoptosis and necrosis. Supplementation with exogenous NAD+ precursors or catalase (ROS scavenger) abrogates the cell death induced by the new compounds. Finally, in vivo administration of the new NAMPT inhibitors in a mouse xenograft model of human Burkitt lymphoma delays tumor growth and significantly prolongs mouse survival. The most promising results are collected with JJ08, which completely eradicates tumor growth. Collectively, our findings demonstrate the efficient anticancer activity of the new NAMPT inhibitor JJ08 and highlight a strong interest for further evaluation of this compound in hematological malignancies.


Asunto(s)
Inhibidores Enzimáticos , Neoplasias Hematológicas , Nicotinamida Fosforribosiltransferasa , Animales , Humanos , Ratones , Línea Celular Tumoral , Citocinas/metabolismo , Inhibidores Enzimáticos/farmacología , Neoplasias Hematológicas/tratamiento farmacológico , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Especies Reactivas de Oxígeno
14.
J Med Chem ; 65(23): 15725-15737, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36442664

RESUMEN

Proteolysis-targeting chimera (PROTAC) is emerging as a promising technology in targeted protein degradation and drug discovery. However, there is still a lack of effective chemical tools to real-time detect and track the protein degradation. Herein, the first fluorescent and theranostic PROTACs were designed for imaging the degradation of nicotinamide phosphoribosyltransferase (NAMPT) in living cells. Compound B4 was proven to be an environmentally sensitive fluorescent PROTAC, which efficiently degraded NAMPT (DC50 = 8.4 nM) and enabled the visualization of degradation in A2780 cells. As a theranostic agent, PROTAC B4 led to significant reduction of nicotinamide adenine dinucleotide (NAD+) and exerted potent antitumor activities both in vitro and in vivo. Collectively, this proof-of-concept study provides a new strategy for the real-time visualization of the process of protein degradation and the improvement of diagnosis and therapeutic efficacy of PROTACs.


Asunto(s)
Nicotinamida Fosforribosiltransferasa , Quimera Dirigida a la Proteólisis , Femenino , Humanos , Línea Celular Tumoral/efectos de los fármacos , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/química , Neoplasias Ováricas , Proteolisis/efectos de los fármacos , Quimera Dirigida a la Proteólisis/química , Quimera Dirigida a la Proteólisis/farmacología
15.
Neurobiol Dis ; 171: 105808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779777

RESUMEN

Wallerian degeneration (WD) is a conserved axonal self-destruction program implicated in several neurological diseases. WD is driven by the degradation of the NAD+ synthesizing enzyme NMNAT2, the buildup of its substrate NMN, and the activation of the NAD+ degrading SARM1, eventually leading to axonal fragmentation. The regulation and amenability of these events to therapeutic interventions remain unclear. Here we explored pharmacological strategies that modulate NMN and NAD+ metabolism, namely the inhibition of the NMN-synthesizing enzyme NAMPT, activation of the nicotinic acid riboside (NaR) salvage pathway and inhibition of the NMNAT2-degrading DLK MAPK pathway in an axotomy model in vitro. Results show that NAMPT and DLK inhibition cause a significant but time-dependent delay of WD. These time-dependent effects are related to NMNAT2 degradation and changes in NMN and NAD+ levels. Supplementation of NAMPT inhibition with NaR has an enhanced effect that does not depend on timing of intervention and leads to robust protection up to 4 days. Additional DLK inhibition extends this even further to 6 days. Metabolite analyses reveal complex effects indicating that NAMPT and MAPK inhibition act by reducing NMN levels, ameliorating NAD+ loss and suppressing SARM1 activity. Finally, the axonal NAD+/NMN ratio is highly predictive of cADPR levels, extending previous cell-free evidence on the allosteric regulation of SARM1. Our findings establish a window of axon protection extending several hours following injury. Moreover, we show prolonged protection by mixed treatments combining MAPK and NAMPT inhibition that proceed via complex effects on NAD+ metabolism and inhibition of SARM1.


Asunto(s)
Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida-Nucleótido Adenililtransferasa , Degeneración Walleriana , Animales , Proteínas del Dominio Armadillo/metabolismo , Axones/patología , Proteínas del Citoesqueleto/metabolismo , Humanos , Mamíferos/metabolismo , NAD/metabolismo , Degeneración Nerviosa/patología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Inhibidores de Proteínas Quinasas , Degeneración Walleriana/metabolismo
16.
Bioconjug Chem ; 33(6): 1210-1221, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35658441

RESUMEN

Inhibition of intracellular nicotinamide phosphoribosyltransferase (NAMPT) represents a new mode of action for cancer-targeting antibody-drug conjugates (ADCs) with activity also in slowly proliferating cells. To extend the repertoire of available effector chemistries, we have developed a novel structural class of NAMPT inhibitors as ADC payloads. A structure-activity relationship-driven approach supported by protein structural information was pursued to identify a suitable attachment point for the linker to connect the NAMPT inhibitor with the antibody. Optimization of scaffolds and linker structures led to highly potent effector chemistries which were conjugated to antibodies targeting C4.4a (LYPD3), HER2 (c-erbB2), or B7H3 (CD276) and tested on antigen-positive and -negative cancer cell lines. Pharmacokinetic studies, including metabolite profiling, were performed to optimize the stability and selectivity of the ADCs and to evaluate potential bystander effects. Optimized NAMPTi-ADCs demonstrated potent in vivo antitumor efficacy in target antigen-expressing xenograft mouse models. This led to the development of highly potent NAMPT inhibitor ADCs with a very good selectivity profile compared with the corresponding isotype control ADCs. Moreover, we demonstrate─to our knowledge for the first time─the generation of NAMPTi payload metabolites from the NAMPTi-ADCs in vitro and in vivo. In conclusion, NAMPTi-ADCs represent an attractive new payload class designed for use in ADCs for the treatment of solid and hematological cancers.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Nicotinamida Fosforribosiltransferasa , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antígenos B7 , Línea Celular Tumoral , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/química , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
17.
PLoS Biol ; 19(11): e3001455, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748530

RESUMEN

Several studies have revealed a correlation between chronic inflammation and nicotinamide adenine dinucleotide (NAD+) metabolism, but the precise mechanism involved is unknown. Here, we report that the genetic and pharmacological inhibition of nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the salvage pathway of NAD+ biosynthesis, reduced oxidative stress, inflammation, and keratinocyte DNA damage, hyperproliferation, and cell death in zebrafish models of chronic skin inflammation, while all these effects were reversed by NAD+ supplementation. Similarly, genetic and pharmacological inhibition of poly(ADP-ribose) (PAR) polymerase 1 (Parp1), overexpression of PAR glycohydrolase, inhibition of apoptosis-inducing factor 1, inhibition of NADPH oxidases, and reactive oxygen species (ROS) scavenging all phenocopied the effects of Nampt inhibition. Pharmacological inhibition of NADPH oxidases/NAMPT/PARP/AIFM1 axis decreased the expression of pathology-associated genes in human organotypic 3D skin models of psoriasis. Consistently, an aberrant induction of NAMPT and PARP activity, together with AIFM1 nuclear translocation, was observed in lesional skin from psoriasis patients. In conclusion, hyperactivation of PARP1 in response to ROS-induced DNA damage, fueled by NAMPT-derived NAD+, mediates skin inflammation through parthanatos cell death.


Asunto(s)
Inflamación/patología , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Parthanatos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Piel/patología , Animales , Factor Inductor de la Apoptosis/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Daño del ADN , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/genética , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Larva/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Parthanatos/efectos de los fármacos , Parthanatos/genética , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Inhibidoras de Proteinasas Secretoras/deficiencia , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Psoriasis/genética , Psoriasis/patología , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/metabolismo
18.
Cell Cycle ; 20(18): 1812-1827, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34382917

RESUMEN

The hypoxia-induced transcription factor HIF1 inhibits cell growth in normoxia through poorly understood mechanisms. A constitutive upregulation of hypoxia response is associated with increased malignancy, indicating a loss of antiproliferative effects of HIF1 in cancer cells. To understand these differences, we examined the control of cell cycle in primary human cells with activated hypoxia response in normoxia. Activated HIF1 caused a global slowdown of cell cycle progression through G1, S and G2 phases leading to the loss of mitotic cells. Cell cycle inhibition required a prolonged HIF1 activation and was not associated with upregulation of p53 or the CDK inhibitors p16, p21 or p27. Growth inhibition by HIF1 was independent of its Asn803 hydroxylation or the presence of HIF2. Antiproliferative effects of hypoxia response were alleviated by inhibition of lactate dehydrogenase and, more effectively, by boosting cellular production of NAD+, which was decreased by HIF1 activation. In comparison to normal cells, various cancer lines showed several fold-higher expressions of NAMPT, which is a rate-limiting enzyme in the main biosynthetic pathway for NAD+. Inhibition of NAMPT activity in overexpressor cancer cells sensitized them to antigrowth effects of HIF1. Thus, metabolic changes in cancer cells, such as enhanced NAD+ production, create resistance to growth-inhibitory activity of HIF1 permitting manifestation of its tumor-promoting properties.Abbreviations: DMOG: dimethyloxalylglycine, DM-NOFD: dimethyl N-oxalyl-D-phenylalanine, NMN: ß-nicotinamide mononucleotide.


Asunto(s)
Adenocarcinoma Bronquioloalveolar/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Hipoxia de la Célula/genética , Proliferación Celular/genética , Fibroblastos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/metabolismo , NAD/metabolismo , Transducción de Señal/genética , Células A549 , Adenocarcinoma Bronquioloalveolar/patología , Aminoácidos Dicarboxílicos/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Hipoxia de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , Neoplasias Pulmonares/patología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección
19.
Mol Cancer Ther ; 20(10): 1836-1845, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34253597

RESUMEN

Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response. The FDA-approved mTOR inhibitor everolimus does not shrink these tumors. It only delays disease progression in a subset of patients, while a significant fraction acquires resistance and shows disease progression. Thus, there is a need for more effective targeted approaches to sensitize PNETs to everolimus for better treatment outcomes. Previously, we showed that mTOR regulator p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyl transferase (NAMPT) were aberrantly expressed in PNET tissue and promoted everolimus resistance. In this report, we demonstrate that PAK4-NAMPT dual inhibitor KPT-9274 can synergize with everolimus (growth inhibition, colony suppression, and glucose uptake assays). KPT-9274-everolimus disrupted spheroid formation in multiple PNET models. Molecular analysis showed alteration of mTORC2 through downregulation of RICTOR as a mechanism supporting synergy with everolimus in vitro KPT-9274 suppressed ß-catenin activity via inhibition of PAK4, highlighting the cross-talk between Rho GTPases and Wnt signaling in PNETs. KPT-9274, given at 150 mg/kg in combination with sub-MTD everolimus (2.5 mg/kg), significantly suppressed two PNET-derived xenografts. These studies bring forward a well-grounded strategy for advanced PNETs that fail to respond to single-agent everolimus.


Asunto(s)
Acrilamidas/farmacología , Aminopiridinas/farmacología , Citocinas/antagonistas & inhibidores , Everolimus/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Tumores Neuroendocrinos/tratamiento farmacológico , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Quinasas p21 Activadas/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Femenino , Humanos , Ratones , Ratones Endogámicos ICR , Ratones SCID , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cell Stem Cell ; 28(10): 1851-1867.e8, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34293334

RESUMEN

Current treatments for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), which perpetuate the disease. Here, we performed a metabolic drug screen to identify LSC-specific vulnerabilities and found that nicotinamide phosphoribosyltransferase (NAMPT) inhibitors selectively killed LSCs, while sparing normal hematopoietic stem and progenitor cells. Treatment with KPT-9274, a NAMPT inhibitor, suppressed the conversion of saturated fatty acids to monounsaturated fatty acids, a reaction catalyzed by the stearoyl-CoA desaturase (SCD) enzyme, resulting in apoptosis of AML cells. Transcriptomic analysis of LSCs treated with KPT-9274 revealed an upregulation of sterol regulatory-element binding protein (SREBP)-regulated genes, including SCD, which conferred partial protection against NAMPT inhibitors. Inhibition of SREBP signaling with dipyridamole enhanced the cytotoxicity of KPT-9274 on LSCs in vivo. Our work demonstrates that altered lipid homeostasis plays a key role in NAMPT inhibitor-induced apoptosis and identifies NAMPT inhibition as a therapeutic strategy for targeting LSCs in AML.


Asunto(s)
Leucemia Mieloide Aguda , Nicotinamida Fosforribosiltransferasa , Apoptosis , Homeostasis , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Lípidos , Células Madre Neoplásicas , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA