Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.053
Filtrar
1.
Glob Chang Biol ; 30(5): e17309, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747209

RESUMEN

Global soil nitrogen (N) cycling remains poorly understood due to its complex driving mechanisms. Here, we present a comprehensive analysis of global soil δ15N, a stable isotopic signature indicative of the N input-output balance, using a machine-learning approach on 10,676 observations from 2670 sites. Our findings reveal prevalent joint effects of climatic conditions, plant N-use strategies, soil properties, and other natural and anthropogenic forcings on global soil δ15N. The joint effects of multiple drivers govern the latitudinal distribution of soil δ15N, with more rapid N cycling at lower latitudes than at higher latitudes. In contrast to previous climate-focused models, our data-driven model more accurately simulates spatial changes in global soil δ15N, highlighting the need to consider the joint effects of multiple drivers to estimate the Earth's N budget. These insights contribute to the reconciliation of discordances among empirical, theoretical, and modeling studies on soil N cycling, as well as sustainable N management.


Asunto(s)
Ciclo del Nitrógeno , Suelo , Suelo/química , Isótopos de Nitrógeno/análisis , Aprendizaje Automático , Nitrógeno/análisis , Nitrógeno/metabolismo , Clima , Modelos Teóricos
2.
An Acad Bras Cienc ; 96(2): e20231145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747798

RESUMEN

Elephantgrass stands out for its high potential for forage production in different tropical and subtropical regions. In most properties, it is cultivated intensively with high doses of mineral fertilizers, mainly nitrogen, which makes production expensive and less sustainable. In this context, the mixtures of elephantgrass with forage legumes can make the system more efficient and with less environmental impact. Thus, the objective is to evaluate elephantgrass-based grazing systems,with or without a legume in terms of sward characteristics, herbage accumulation and nutritional value of pastures during one, agricultural year. Two grazing systems (treatments) were analyzed: (i) elephantgrass-based (EG) with mixed spontaneous-growing species (SGE) in the warm-season and ryegrass (R) in the cool-season; and (ii) EG + SGE + R + pinto peanut. The standardization criterion between the systems was the level of nitrogen fertilization (120 kg N/ha/year). The presence of pinto peanut positively affected the botanical composition of the pasture, with a reduction in SGE and dead material, and in the morphology of elephantgrass, with a greater proportion of leaf blades, and less stem + sheath and senescent material. In themixture with pinto peanut, there was an increase in herbage accumulation and greater nutritional value of forage.


Asunto(s)
Arachis , Valor Nutritivo , Estaciones del Año , Arachis/química , Fertilizantes/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Agricultura/métodos , Lolium
3.
Environ Monit Assess ; 196(6): 539, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733446

RESUMEN

Primary production is an important driver of marine carbon storage. Besides the major nutrient elements nitrogen, phosphorus, and silicon, primary production also depends on the availability of nutrient-type metals (e.g., Cu, Fe, Mo) and the absence of toxicologically relevant metals (e.g., Ni, Pb). Especially in coastal oceans, carbon storage and export to the open ocean is highly variable and influenced by anthropogenic eutrophication and pollution. To model future changes in coastal carbon storage processes, a solid baseline of nutrient and metal concentrations is crucial. The North Sea is an important shelf sea, influenced by riverine, atmospheric, Baltic Sea, and North Atlantic inputs. We measured the concentrations of dissolved nutrients (NH4+, NO3-, PO43-, and SiO44-) and 26 metals in 337 water samples from various depths within the entire North Sea and Skagerrak. A principal component analysis enabled us to categorize the analytes into three groups according to their predominant behavior: tracers for seawater (e.g., Mo, U, V), recycling (e.g., NO3-, PO43-, SiO44-), and riverine or anthropogenic input (e.g., Ni, Cu, Gd). The results further indicate an increasing P-limitation and increasing anthropogenic gadolinium input into the German Bight.


Asunto(s)
Monitoreo del Ambiente , Fósforo , Agua de Mar , Oligoelementos , Contaminantes Químicos del Agua , Mar del Norte , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Agua de Mar/química , Fósforo/análisis , Nutrientes/análisis , Nitrógeno/análisis , Metales/análisis , Eutrofización
4.
PeerJ ; 12: e17274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737742

RESUMEN

Background: This experiment was conducted in the Research and Application Field of Canakkale Onsekiz Mart University, Faculty of Agriculture, during the 2020 and 2021 summer period. The objective of this experiment was to determine the effects of different harvesting heights on forage yields and crude ash, fat, protein, and carbon and nitrogen content of leaves and stalks of sweet sorghum (SS) and sorghum sudangrass hybrid (SSH) cultivars. Methods: Nutri Honey and Nutrima varieties of SSH and the M81-E and Topper-76 varieties of SS were used in this study. The experiment was conducted using the randomized complete block design with four replications. The main plots each included two early and late varieties of SS and SSH cultivars, while the subplots were used to test different harvesting heights (30, 60, 90, 120, 150 cm) and physiological parameters of each crop. Results: The results of this study showed that dry forage yields increased with plant growth, with the amount of forage produced at the end of the growth cycle increasing 172.2% compared to the early growth stages. Carbon (C) content of leaves decreased by 6.5%, nitrogen (N) by 46%, crude protein (CP) by 54%, crude fat (CF) by 34%, while crude ash (CA) content increased by 6% due to the increase in plant height harvest. At the same time, in parallel with the increase in plant height at harvest, the nitrogen content of the stems of the plants decreased by 87%, crude protein by 65%, crude ash by 33% and crude fat by 41%, while the carbon content increased by 4%. As plant height at harvest increased, hay yield increased but nutrient contents of the hay decreased. However, the Nutrima, Nutri Honey and M81-E sorghum cultivars, harvested three times at heights of 90 to 120 cm, are recommended for the highest yield.


Asunto(s)
Sorghum , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Sorghum/química , Nitrógeno/metabolismo , Nitrógeno/análisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Carbono/metabolismo , Carbono/análisis , Alimentación Animal/análisis
5.
Food Res Int ; 186: 114306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729707

RESUMEN

The aim of this research was to find out the effect of different combinations of starter and non-starter cultures on the proteolysis of Castellano cheese during ripening. Four cheese batches were prepared, each containing autochthonous lactobacilli and or Leuconostoc, and were compared with each other and with a control batch, that used only a commercial starter. To achieve this, nitrogen fractions (pH 4.4-soluble nitrogen and 12 % trichloroacetic acid soluble nitrogen, polypeptide nitrogen and casein nitrogen), levels of free amino acids and biogenic amines were assessed. Texture and microstructure of cheeses were also evaluated. Significant differences in nitrogen fractions were observed between batches at different stages of ripening. The free amino acid content increased throughout the cheese ripening process, with a more significant increase occurring after the first 30 days. Cheeses containing non-starter lactic acid bacteria exhibited the highest values at the end of the ripening period. Among the main amino acids, GABA was particularly abundant, especially in three of the cheese batches at the end of ripening. The autochthonous lactic acid bacteria were previously selected as non-producers of biogenic amines and this resulted in the absence of these compounds in the cheeses. Analysis of the microstructure of the cheese reflected the impact of proteolysis. Additionally, the texture profile analysis demonstrated that the cheese's hardness intensified as the ripening period progressed. The inclusion of autochthonous non-starter lactic acid bacteria in Castellano cheese production accelerated the proteolysis process, increasing significantly the free amino acids levels and improving the sensory quality of the cheeses.


Asunto(s)
Aminoácidos , Aminas Biogénicas , Queso , Proteolisis , Queso/microbiología , Queso/análisis , Aminoácidos/análisis , Aminoácidos/metabolismo , Aminas Biogénicas/análisis , Microbiología de Alimentos , Manipulación de Alimentos/métodos , Leuconostoc/metabolismo , Leuconostoc/crecimiento & desarrollo , Lactobacillus/metabolismo , Lactobacillus/crecimiento & desarrollo , Nitrógeno/análisis , Calidad de los Alimentos , Fermentación
6.
Trop Anim Health Prod ; 56(4): 159, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730223

RESUMEN

Cell components soluble in neutral detergent are a diverse group, both compositionally and nutritionally. The present study aimed to evaluate production responses, behavior (eating, ruminating, and idling), and nitrogen balance of dairy goats fed different ratios of neutral detergent-soluble carbohydrate fractions. Five multiparous Alpine does with mean ± SD initial body mass of 49.5 ± 7.9 kg and 60 days of lactation were randomly assigned in a 5 × 5 Latin square design. The treatments were the ratios of starch (starch associated with soluble sugar [StSS]) to neutral detergent-soluble fiber (NDSF) (StSS:NDSF): 0.89, 1.05, 1.24, 1.73, and 2.92. No effect was observed (P > 0.05) of StSS:NDSF on the intakes of neutral detergent fiber (NDF) and NDSC. However, DM intake showed a quadratic behavior (P = 0.049). The ingestive behavior was affected by StSS:NDSF linearly increased (P = 0.002) the feeding efficiency. The increase in StSS:NDSF caused a linear increase in fecal (P = 0.011), urinary (P < 0.001), and milk nitrogen excretion (P = 0.024). The increase in StSS:NDSF affected (P = 0.048) milk yield and net energy lactation (P = 0.036). In conclusion, dairy goats experience reduced dry matter intake and milk yield when subjected to high-NDSC diets, specifically those above 1.24 StSS:NDSF ratio. Elevated NDSC levels in the diets lead to decreased feeding time, whereas rumination remains unaffected. Nitrogen losses in goats increase linearly with high-NDSC diets, and a significant impact on nitrogen balance.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Cabras , Lactancia , Leche , Nitrógeno , Animales , Cabras/fisiología , Femenino , Nitrógeno/metabolismo , Nitrógeno/análisis , Dieta/veterinaria , Leche/química , Alimentación Animal/análisis , Conducta Alimentaria/efectos de los fármacos , Distribución Aleatoria , Fibras de la Dieta/análisis , Fibras de la Dieta/administración & dosificación , Carbohidratos de la Dieta/análisis , Carbohidratos de la Dieta/administración & dosificación
7.
ScientificWorldJournal ; 2024: 6086730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715843

RESUMEN

Cabbage (Brassica oleracea var. capitata L.) holds significant agricultural and nutritional importance in Ethiopia; yet, its production faces challenges, including suboptimal nitrogen fertilizer management. The aim of this review was to review the possible effect of nitrogen fertilizer levels on the production of cabbage in Ethiopia. Nitrogen fertilization significantly influences cabbage yield and quality. Moderate to high levels of nitrogen application enhance plant growth, leaf area, head weight, and yield. However, excessive nitrogen levels can lead to adverse effects such as delayed maturity, increased susceptibility to pests and diseases, and reduced postharvest quality. In Ethiopia, small-scale farmers use different nitrogen levels for cabbage cultivation. In Ethiopia, NPSB or NPSBZN fertilizers are widely employed for the growing of various crops such as cabbage. 242 kg of NPS and 79 kg of urea are the blanket recommendation for the current production of cabbage in Ethiopia. The existing rate is not conducive for farmers. Therefore, small-scale farmers ought to utilize an optimal and cost-effective nitrogen rate to boost the cabbage yield. Furthermore, the effectiveness of nitrogen fertilization is influenced by various factors including the soil type, climate, cabbage variety, and agronomic practices. Integrated nutrient management approaches, combining nitrogen fertilizers with organic amendments or other nutrients, have shown promise in optimizing cabbage production while minimizing environmental impacts. The government ought to heed suggestions concerning soil characteristics such as the soil type, fertility, and additional factors such as the soil pH level and soil moisture contents.


Asunto(s)
Brassica , Fertilizantes , Nitrógeno , Agricultura/métodos , Brassica/crecimiento & desarrollo , Brassica/efectos de los fármacos , Brassica/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Etiopía , Fertilizantes/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Suelo/química
8.
J Chromatogr A ; 1726: 464946, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38744185

RESUMEN

On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak.


Asunto(s)
Hidrocarburos , Aceite Mineral , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Gases/métodos , Aceite Mineral/química , Aceite Mineral/análisis , Hidrocarburos/análisis , Nitrógeno/análisis , Helio/química , Hidrógeno/química , Ionización de Llama/métodos , Gases/química
9.
Environ Monit Assess ; 196(6): 567, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775991

RESUMEN

The study attempted to evaluate the agricultural soil quality using the Soil Quality Index (SQI) model in two Community Development Blocks, Ausgram-II and Memari-II of Purba Bardhaman District. Total 104 soil samples were collected (0-20 cm depth) from each Block to analyse 13 parameters (bulk density, soil porosity, soil aggregate stability, water holding capacity, infiltration rate, available nitrogen, available phosphorous, available potassium, soil pH, soil organic carbon, electrical conductivity, soil respiration and microbial biomass carbon) in this study. The Integrated Quality Index (IQI) was applied using the weighted additive approach and non-linear scoring technique to retain the Minimum Data Set (MDS). Principal Component Analysis (PCA) identified that SAS, BD, available K, pH, available N, and available P were the key contributing parameters to SQI in Ausgram-II. In contrast, WHC, SR, available N, pH, and SAS contributed the most to SQI in Memari-II. Results revealed that Ausgram-II (0.97) is notably higher SQI than Memari-II (0.69). In Ausgram-II, 99.72% of agricultural lands showed very high SQI (Grade I), whereas, in Memari-II, 49.95% of lands exhibited a moderate SQI (Grade III) and 49.90% showed a high SQI (Grade II). Sustainable Yield Index (SYI), Sensitivity Index (SI) and Efficiency Ratio (ER) were used to validate the SQIs. A positive correlation was observed between SQI and paddy ( R2 = 0.82 & 0.72) and potato yield (R2 = 0.71 & 0.78) in Ausgram-II and Memari-II Block, respectively. This study could evaluate the agricultural soil quality and provide insights for decision-making in fertiliser management practices to promote agricultural sustainability.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Oryza , Suelo , India , Suelo/química , Monitoreo del Ambiente/métodos , Oryza/crecimiento & desarrollo , Nitrógeno/análisis , Contaminantes del Suelo/análisis , Fósforo/análisis
10.
Environ Microbiol ; 26(5): e16631, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757479

RESUMEN

Peatlands, one of the oldest ecosystems, globally store significant amounts of carbon and freshwater. However, they are under severe threat from human activities, leading to changes in water, nutrient and temperature regimes in these delicate systems. Such shifts can trigger a substantial carbon flux into the atmosphere and diminish the water-holding capacity of peatlands. Microbes associated with moss in peatlands play a crucial role in providing these ecosystem services, which are at risk due to global change. Therefore, understanding the factors influencing microbial composition and function is vital. Our study focused on five peatlands along an altitudinal gradient in Switzerland, where we sampled moss on hummocks containing Sarracenia purpurea. Structural equation modelling revealed that habitat condition was the primary predictor of community structure and directly influenced other environmental variables. Interestingly, the microbial composition was not linked to the local moss species identity. Instead, microbial communities varied significantly between sites due to differences in acidity levels and nitrogen availability. This finding was also mirrored in a co-occurrence network analysis, which displayed a distinct distribution of indicator species for acidity and nitrogen availability. Therefore, peatland conservation should take into account the critical habitat characteristics of moss-associated microbial communities.


Asunto(s)
Bacterias , Briófitas , Ecosistema , Microbiota , Suiza , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Briófitas/microbiología , Suelo/química , Microbiología del Suelo , Nitrógeno/metabolismo , Nitrógeno/análisis , Humedales , Biodiversidad
11.
Environ Sci Technol ; 58(19): 8464-8479, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701232

RESUMEN

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 µm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.


Asunto(s)
Carbono , Clima , Microplásticos , Nitrógeno , Suelo , Nitrógeno/análisis , Suelo/química , Carbono/análisis , Contaminantes del Suelo/análisis
12.
BMJ Open Respir Res ; 11(1)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697675

RESUMEN

BACKGROUND: Methods used to assess ventilation heterogeneity through inert gas washout have been standardised and showed high sensitivity in diagnosing many respiratory diseases. We hypothesised that nitrogen single or multiple breath washout tests, respectively nitrogen single breath washout (N2SBW) and nitrogen multiple breath washout (N2MBW), may be pathological in patients with clinical suspicion of asthma but normal spirometry. Our aim was to assess whether N2SBW and N2MBW are associated with methacholine challenge test (MCT) results in this population. We also postulated that an alteration in SIII at N2SBW could be detected before the 20% fall of forced expiratory volume in the first second (FEV1) in MCT. STUDY DESIGN AND METHODS: This prospective, observational, single-centre study included patients with suspicion of asthma with normal spirometry. Patients completed questionnaires on symptoms and health-related quality-of-life and underwent the following lung function tests: N2SBW (SIII), N2MBW (Lung clearance index (LCI), Scond, Sacin), MCT (FEV1 and sGeff) as well as N2SBW between each methacholine dose. RESULTS: 182 patients were screened and 106 were included in the study, with mean age of 41.8±14 years. The majority were never-smokers (58%) and women (61%). MCT was abnormal in 48% of participants, N2SBW was pathological in 10.6% at baseline and N2MBW abnormality ranged widely (LCI 81%, Scond 18%, Sacin 43%). The dose response rate of the MCT showed weak to moderate correlation with the subsequent N2SBW measurements during the provocation phases (ρ 0.34-0.50) but no correlation with N2MBW. CONCLUSIONS: Both MCT and N2 washout tests are frequently pathological in patients with suspicion of asthma with normal spirometry. The weak association and lack of concordance across the tests highlight that they reflect different but not interchangeable pathological pathways of the disease.


Asunto(s)
Asma , Pruebas Respiratorias , Pruebas de Provocación Bronquial , Cloruro de Metacolina , Nitrógeno , Espirometría , Humanos , Asma/diagnóstico , Asma/fisiopatología , Cloruro de Metacolina/administración & dosificación , Femenino , Masculino , Estudios Prospectivos , Adulto , Pruebas Respiratorias/métodos , Persona de Mediana Edad , Nitrógeno/análisis , Pruebas de Provocación Bronquial/métodos , Volumen Espiratorio Forzado , Pruebas de Función Respiratoria/métodos , Pulmón/fisiopatología , Broncoconstrictores/administración & dosificación
13.
Sci Total Environ ; 932: 173103, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729358

RESUMEN

Excessive synthetic nitrogen (N) inputs in intensive orchard agrosystems of developing countries are a growing concern regarding their adverse impacts on fruit production and the environment. Quantifying the distribution and contribution of fertilizer N is essential for increasing N use efficiency and minimizing N loss in orchards. A 15N tracer experiment was performed in a young dwarf apple orchard over two growing seasons to determine the fertilizer N transformation and fate. Fertilizer N primarily contributed to 25 % to 75 % of soil nitrate in the top 60 cm, but the contribution to soil microbial biomass N and fixed ammonium was <8 %, with the contribution to plant N ranging from 9 % to 19 %. In most growth periods, soil nitrate and fixed ammonium contents derived from native soil with N fertilization were higher than those not receiving N fertilizer. The N use efficiency of plants was only 2.6 % and 4.9 % in the first and second seasons, respectively, in contrast to 56.6 % and 54.0 % of N recovered in soil. Meanwhile, N assimilated into microbial biomass accounted for 0.8 %, and the proportion fixed by clay minerals was 3.5 %-5.2 %. One season after N fertilization, the nitrate below the 1 m soil layers accounted for 4.6 % of the applied N fertilizer, and the proportion increased to 22.5 % after two seasons. The N loss rate via N2O emission was 0.4 % over two years. The application of N fertilizer facilitated indigenous soil N mineralization, and abiotic ammonium fixation more efficiently retained synthetic N than microbial immobilization. These findings provide new insight into orchard N cycling, and attention should be given to the improvement of soil N retention and turnover capacity regulated by soil microbial and abiotic processes, as well as the potential environmental impacts of additional soil N mineralization resulting from prolonged chemical N fertilization.


Asunto(s)
Agricultura , Fertilizantes , Malus , Nitrógeno , Suelo , Malus/crecimiento & desarrollo , Nitrógeno/análisis , Agricultura/métodos , Suelo/química , Monitoreo del Ambiente , Nitratos/análisis
14.
Sci Total Environ ; 932: 173134, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734096

RESUMEN

Methane (CH4) is a potent greenhouse gas, with lake ecosystems significantly contributing to its global emissions. Denitrifying anaerobic methane oxidation (DAMO) process, mediated by NC10 bacteria and ANME-2d archaea, links global carbon and nitrogen cycles. However, their potential roles in mitigating methane emissions and removing nitrogen from lake ecosystems remain unclear. This study explored the spatial variations in activities of nitrite- and nitrate-DAMO and their functional microbes in Changdanghu Lake sediments (Jiangsu Province, China). The results showed that although the average abundance of ANME-2d archaea (5.0 × 106 copies g-1) was significantly higher than that of NC10 bacteria (2.1 × 106 copies g-1), the average potential rates of nitrite-DAMO (4.59 nmol 13CO2 g-1 d-1) and nitrate-DAMO (5.01 nmol 13CO2 g-1 d-1) showed no significant difference across all sampling sites. It is estimated that nitrite- and nitrate-DAMO consumed approximately 6.46 and 7.05 mg CH4 m-2 d-1, respectively, which accordingly achieved 15.07-24.95 mg m-2 d-1 nitrogen removal from the studied lake sediments. Statistical analyses found that nitrite- and nitrate-DAMO activities were both significantly related to sediment nitrate contents and ANME-2d archaeal abundance. In addition, NC10 bacterial and ANME-2d archaeal community compositions showed significant correlations with sediment organic carbon content and water depth. Overall, this study underscores the dual roles of nitrite- and nitrate-DAMO processes in CH4 mitigation and nitrogen elimination and their key environmental impact factors (sediment organic carbon and inorganic nitrogen contents, and water depth) in shallow lake, enhancing the understanding of carbon and nitrogen cycles in freshwater aquatic ecosystems.


Asunto(s)
Desnitrificación , Sedimentos Geológicos , Lagos , Metano , Nitrógeno , Oxidación-Reducción , Metano/metabolismo , Metano/análisis , Lagos/química , Lagos/microbiología , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , China , Nitrógeno/análisis , Anaerobiosis , Archaea/metabolismo , Bacterias/metabolismo , Contaminantes Químicos del Agua/análisis
15.
Sci Total Environ ; 931: 172897, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697527

RESUMEN

Microorganisms play pivotal roles in different biogeochemical cycles within coral reef waters. Nevertheless, our comprehension of the microbially mediated processes following environmental perturbation is still limited. To gain a deeper insight into the environmental adaptation and nutrient cycling, particularly within core and noncore bacterial communities, it is crucial to understand reef ecosystem functioning. In this study, we delved into the microbial community structure and function of seawater in a coral reef under different degrees of anthropogenic disturbance. To achieve this, we harnessed the power of 16S rRNA gene high-throughput sequencing and metagenomics techniques. The results showed that a continuous temporal succession but little spatial heterogeneity in the bacterial communities of core and noncore taxa and functional profiles involved in nitrogen (N) and phosphorus (P) cycling. Eutrophication state (i.e., nutrient concentration and turbidity) and temperature played pivotal roles in shaping both the microbial community composition and functional traits of coral reef seawater. Within this context, the core subcommunity exhibited a remarkably broader habitat niche breadth, stronger phylogenetic signal and lower environmental sensitivity when compared to the noncore taxa. Null model analysis further revealed that the core subcommunity was governed primarily by stochastic processes, while deterministic processes played a more significant role in shaping the noncore subcommunity. Furthermore, our observations indicated that changes in function related to N cycling were correlated to the variations in noncore taxa, while core taxa played a more substantial role in critical processes such as P cycling. Collectively, these findings facilitated our knowledge about environmental adaptability of core and noncore bacterial taxa and shed light on their respective roles in maintaining diverse nutrient cycling within coral reef ecosystems.


Asunto(s)
Bacterias , Arrecifes de Coral , Microbiota , Agua de Mar , Agua de Mar/microbiología , Bacterias/clasificación , Bacterias/genética , Fósforo/análisis , ARN Ribosómico 16S , Nitrógeno/análisis , Monitoreo del Ambiente , Eutrofización
16.
J Environ Manage ; 359: 121043, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723497

RESUMEN

Fertilizer-intensive agriculture leads to emissions of reactive nitrogen (Nr), posing threats to climate via nitrous oxide (N2O) and to air quality and human health via nitric oxide (NO) and ammonia (NH3) that form ozone and particulate matter (PM) downwind. Adding nitrification inhibitors (NIs) to fertilizers can mitigate N2O and NO emissions but may stimulate NH3 emissions. Quantifying the net effects of these trade-offs requires spatially resolving changes in emissions and associated impacts. We introduce an assessment framework to quantify such trade-off effects. It deploys an agroecosystem model with enhanced capabilities to predict emissions of Nr with or without the use of NIs, and a social cost of greenhouse gas to monetize the impacts of N2O on climate. The framework also incorporates reduced-complexity air quality and health models to monetize associated impacts of NO and NH3 emissions on human health downwind via ozone and PM. Evaluation of our model against available field measurements showed that it captured the direction of emission changes but underestimated reductions in N2O and overestimated increases in NH3 emissions. The model estimated that, averaged over applicable U.S. agricultural soils, NIs could reduce N2O and NO emissions by an average of 11% and 16%, respectively, while stimulating NH3 emissions by 87%. Impacts are largest in regions with moderate soil temperatures and occur mostly within two to three months of N fertilizer and NI application. An alternative estimate of NI-induced emission changes was obtained by multiplying the baseline emissions from the agroecosystem model by the reported relative changes in Nr emissions suggested from a global meta-analysis: -44% for N2O, -24% for NO and +20% for NH3. Monetized assessments indicate that on an annual scale, NI-induced harms from increased NH3 emissions outweigh (8.5-33.8 times) the benefits of reducing NO and N2O emissions in all agricultural regions, according to model-based estimates. Even under meta-analysis-based estimates, NI-induced damages exceed benefits by a factor of 1.1-4. Our study highlights the importance of considering multiple pollutants when assessing NIs, and underscores the need to mitigate NH3 emissions. Further field studies are needed to evaluate the robustness of multi-pollutant assessments.


Asunto(s)
Agricultura , Fertilizantes , Nitrificación , Óxido Nitroso , Fertilizantes/análisis , Óxido Nitroso/análisis , Contaminantes Atmosféricos/análisis , Ozono/análisis , Amoníaco/análisis , Especies de Nitrógeno Reactivo/análisis , Nitrógeno/análisis , Contaminación del Aire/análisis
17.
Sci Rep ; 14(1): 11295, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760401

RESUMEN

Intercropping with Pleurotus ostreatus has been demonstrated to increase the tea yield and alleviate soil acidification in tea gardens. However, the underlying mechanisms remain elusive. Here, high-throughput sequencing and Biolog Eco analysis were performed to identify changes in the community structure and abundance of soil microorganisms in the P. ostreatus intercropped tea garden at different seasons (April and September). The results showed that the soil microbial diversity of rhizosphere decreased in April, while rhizosphere and non-rhizosphere soil microbial diversity increased in September in the P. ostreatus intercropped tea garden. The diversity of tea tree root microorganisms increased in both periods. In addition, the number of fungi associated with organic matter decomposition and nutrient cycling, such as Penicillium, Trichoderma, and Trechispora, was significantly higher in the intercropped group than in the control group. Intercropping with P. ostreatus increased the levels of total nitrogen (TN), total phosphorus (TP), and available phosphorus (AP) in the soil. It also improved the content of secondary metabolites, such as tea catechins, and polysaccharides in tea buds. Microbial network analysis showed that Unclassified_o__Helotiales, and Devosia were positively correlated with soil TN and pH, while Lactobacillus, Acidothermus, and Monascus were positively correlated with flavone, AE, and catechins in tea trees. In conclusion, intercropping with P. ostreatus can improve the physical and chemical properties of soil and the composition and structure of microbial communities in tea gardens, which has significant potential for application in monoculture tea gardens with acidic soils.


Asunto(s)
Microbiota , Raíces de Plantas , Pleurotus , Rizosfera , Microbiología del Suelo , Suelo , , Pleurotus/crecimiento & desarrollo , Pleurotus/metabolismo , Raíces de Plantas/microbiología , Té/microbiología , Suelo/química , Camellia sinensis/microbiología , Nitrógeno/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Fósforo/metabolismo , Hongos/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Concentración de Iones de Hidrógeno
18.
Environ Monit Assess ; 196(6): 503, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700640

RESUMEN

Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0-25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha-1), while the lowest yield was in the Hendijan region (3000 kg.ha-1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno , Fósforo , Suelo , Triticum , Suelo/química , Nitrógeno/análisis , Fósforo/análisis , Fertilizantes/análisis , Agricultura/métodos , Nutrientes/análisis , Carbono/análisis
19.
Environ Geochem Health ; 46(6): 179, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695935

RESUMEN

The uncertainty in the generation and formation of non-point source pollution makes it challenging to monitor and control this type of pollution. The SWAT model is frequently used to simulate non-point source pollution in watersheds and is mainly applied to natural watersheds that are less affected by human activities. This study focuses on the Duliujian River Basin (Xiqing section), which is characterized by a dense population and rapid urbanization. Based on the calibrated SWAT model, this study analyzed the effects of land use change on non-point source pollution both temporally and spatially. It was found that nitrogen and phosphorus non-point source pollution load losses were closely related to land use type, with agricultural land and high-density urban land (including rural settlements) being the main contributors to riverine nitrogen and phosphorus pollution. This indicates the necessity of analyzing the impact of land use changes on non-point source pollution loads by identifying critical source areas and altering the land use types that contribute heavily to pollution in these areas. The simulation results of land use type changes in these critical source areas showed that the reduction effect on non-point source pollution load is in the order of forest land > grassland > low-density residential area. To effectively curb surface source pollution in the study area, strategies such as modifying urban land use types, increasing vegetation cover and ground infiltration rate, and strictly controlling the discharge of domestic waste and sewage from urban areas can be implemented.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno , Fósforo , Ríos , Contaminantes Químicos del Agua , Ríos/química , Fósforo/análisis , Nitrógeno/análisis , China , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Urbanización , Contaminación Difusa/análisis , Contaminación Difusa/prevención & control , Modelos Teóricos , Agricultura , Simulación por Computador
20.
BMC Microbiol ; 24(1): 153, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704527

RESUMEN

BACKGROUND: Saline lakes are home to various archaea that play special and crucial roles in the global biogeochemical cycle. The Qinghai-Tibet Plateau hosts a large number of lakes with diverse salinity ranging from 0.1 to over 400 g/L, harboring complex and diverse archaea. To the best of our knowledge, the formation mechanisms and potential ecological roles of archaea in Qinghai-Tibetan Plateau saline lakes remain largely unknown. RESULTS: Using High-throughput Illumina sequencing, we uncovered the vastly distinct archaea communities between two typical saline lakes with significant salinity differences on the Qinghai Tibet Plateau (Qinghai saline lake and Chaka hypersaline lake) and suggested archaea played different important roles in methanogenesis-related and nitrate reduction-related functions of these two lakes, respectively. Rather than the individual effect of salinity, the composite effect of salinity with diverse environmental parameters (e.g., temperature, chlorophyll a, total nitrogen, and total phosphorus) dominated the explanation of the variations in archaeal community structure in different habitats. Based on the network analysis, we further found the correlations between dominant archaeal OTUs were tight but significantly different between the two habitats, implying that archaeal interactions may also largely determine the shape of archaeal communities. CONCLUSION: The present study improved our understanding of the structure and function of archaea in different saline lakes on the Qinghai-Tibet Plateau and provided a new perspective on the mechanisms underlying shaping their communities.


Asunto(s)
Archaea , Lagos , Salinidad , Lagos/microbiología , Lagos/química , Archaea/genética , Archaea/clasificación , Archaea/metabolismo , Tibet , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Biodiversidad , Ecosistema , ARN Ribosómico 16S/genética , Nitrógeno/metabolismo , Nitrógeno/análisis , ADN de Archaea/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA