Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.716
Filtrar
1.
J Inorg Biochem ; 256: 112554, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613885

RESUMEN

Six terpyridine­nickel complexes 1-6 were formed by the coordination of 4'-(4-R-phenyl)-2,2':6',2″-terpyridine (R = hydroxyl (L1), methoxyl (L2), methylsulfonyl (L3), fluoro (L4), bromo (L5), iodo (L6)) derivatives to nickel nitrate. The compositions and structures of these complexes were analyzed by Fourier Transform infrared spectroscopy (FT-IR), elemental analyses, electrospray ionization mass spectra (ESI-MS), solid-state ultraviolet-visible (UV-Vis) spectroscopy, and single crystal X-ray diffraction (1, 2 and 4) studies. In vitro anticancer cell proliferation experiments against SiHa (human cervical squamous cancer cell line) cells, Bel-7402 (human hepatoma cancer cell line), Eca-109 (human esophageal cancer cell line) and HL-7702 (human normal hepatocyte cell line) indicate that they have more excellent anti-proliferation effects than the cis-platin against Siha cells, Bel-7402 cells and Eca-109 cells. Especially, complex 5 showed a rather outstanding inhibitory effect against the SiHa cell line and was less toxic than the other compounds to the HL-7702 cell line, implying an obvious specific inhibitory effect. Therefore, complex 5 has the potential value to be developed as an anticancer cell-specific drug against human cervical squamous carcinoma. Molecular docking simulation, UV-vis absorption spectroscopy and circular dichroism experiments show that they prefer to bind to DNA part in an embedded binding manner.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Níquel , Piridinas , Humanos , Níquel/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Piridinas/química , Piridinas/farmacología , Proliferación Celular/efectos de los fármacos , Nitratos/química , Nitratos/farmacología , Cristalografía por Rayos X
2.
J Inorg Biochem ; 256: 112542, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38631103

RESUMEN

Cytochrome c nitrite reductase, NrfA, is a soluble, periplasmic pentaheme cytochrome responsible for the reduction of nitrite to ammonium in the Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway, a vital reaction in the global nitrogen cycle. NrfA catalyzes this six-electron and eight-proton reduction of nitrite at a single active site with the help of its quinol oxidase partners. In this review, we summarize the latest progress in elucidating the reaction mechanism of ammonia production, including new findings about the active site architecture of NrfA, as well as recent results that elucidate electron transfer and storage in the pentaheme scaffold of this enzyme.


Asunto(s)
Compuestos de Amonio , Nitratos , Oxidación-Reducción , Nitratos/metabolismo , Nitratos/química , Compuestos de Amonio/metabolismo , Citocromos c1/metabolismo , Citocromos c1/química , Nitrato Reductasas/metabolismo , Nitrato Reductasas/química , Dominio Catalítico , Transporte de Electrón , Nitritos/metabolismo , Citocromos a1
3.
ACS Nano ; 18(18): 11828-11836, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38659192

RESUMEN

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.


Asunto(s)
Microcystis , Nitrógeno , Microcystis/efectos de los fármacos , Microcystis/metabolismo , Microcystis/crecimiento & desarrollo , Nitrógeno/química , Nitrógeno/metabolismo , Microcistinas/metabolismo , Poliestirenos/química , Tamaño de la Partícula , Microplásticos/metabolismo , Nanopartículas/química , Nitratos/metabolismo , Nitratos/química , Urea/metabolismo , Urea/química , Urea/farmacología
4.
J Hazard Mater ; 470: 134113, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565021

RESUMEN

Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation. The effects of different environmental factors on DMHg photodegradation were investigated, and the underlying mechanisms were elucidated by density functional theory calculations and a series of control experiments. Our findings revealed that the DMHg degradation rate was higher in the tidal creek water compared to Yellow River, Yan Lake, and purified water. NO3-, NO2-, and DOM could promote the photodegradation with DOM and NO3- showing particularly strong positive effects. Different light sources were employed, and UV light was found to be more effective in DMHg photodegradation. Moreover, MMHg was detected during the photodegradation of DMHg, confirming that the photochemical demethylation of DMHg is a source of MMHg in sunlit water. This work may provide a novel mechanistic insight into the DMHg photodegradation in natural waters and enrich the study of the global biogeochemical cycle of Hg.


Asunto(s)
Compuestos de Metilmercurio , Fotólisis , Contaminantes Químicos del Agua , Compuestos de Metilmercurio/química , Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/efectos de la radiación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Contaminantes Químicos del Agua/análisis , Luz , Rayos Ultravioleta , Nitratos/química , Nitratos/análisis , Ríos/química
5.
Molecules ; 29(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675686

RESUMEN

Stevia rebaudiana Bertoni is a plant native to South America that has gathered much interest in recent decades thanks to diterpene glycosides, called steviosides, which it produces. These compounds are characterised by their sweetness, which is 250-300 times higher than saccharose, and they contain almost no caloric value. Stevia is currently also grown outside the South American continent, in various countries characterised by warm weather. This research aimed to determine whether it is viable to grow Stevia rebaudiana plants in Poland, a country characterised by a cooler climate than the native regions for stevia plants. Additionally, the impact of adding various dosages and forms of nitrogen fertiliser was analysed. It was determined that Stevia rebaudiana grown in Poland is characterised by a rather low concentration of steviosides, although proper nitrogen fertilisation can improve various characteristics of the grown plants. The addition of 100 kg or 150 kg of nitrogen per hectare of the field in the form of urea or ammonium nitrate increased the yield of the stevia plants. The stevioside content can be increased by applying fertilisation using 100 kg or 150 kg of nitrogen per hectare in the form of ammonium sulfate. The total yield of the stevia plants grown in Poland was lower than the yield typically recorded in warmer countries, and the low concentration of steviosides in the plant suggests that more research about growing Stevia rebaudiana in Poland would be needed to develop profitable methods of stevia cultivation.


Asunto(s)
Fertilizantes , Nitrógeno , Stevia , Stevia/química , Stevia/crecimiento & desarrollo , Polonia , Nitrógeno/análisis , Fertilizantes/análisis , Diterpenos de Tipo Kaurano/análisis , Diterpenos de Tipo Kaurano/química , Glucósidos/análisis , Glucósidos/química , Nitratos/análisis , Nitratos/química
6.
Environ Sci Technol ; 58(17): 7516-7528, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629947

RESUMEN

Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.


Asunto(s)
Nitratos , Fotólisis , Nitratos/química , Ácidos Dicarboxílicos/química , Ácido Nitroso/química , Humedad , Malonatos/química , Contaminantes Atmosféricos/química
7.
Chemosphere ; 357: 142070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641297

RESUMEN

Calcium (Ca2+) and phosphorous (PO43-) significantly influence the form and effectiveness of nitrogen (N), however, the precise mechanisms governing the adsorption of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are still lacking. This study employed batch adsorption experiments, charge distribution and multi-site complexation (CD-MUSIC) models and density functional theory (DFT) calculations to elucidate the mechanism by which Ca2+ and PO43- affect the adsorption of NH4+-N and NO3--N on the goethite (GT) surface. The results showed that the adsorption of NH4+-N on the GT exhibited an initial increase followed by a decrease as pH increased, peaking at a pH of 8.5. Conversely, the adsorption of NO3--N decreased with rising pH. According to the CD-MUSIC model, Ca2+ minimally affected the NH4+-N adsorption on the GT but enhanced NO3--N adsorption via electrostatic interaction, promoting the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. Similarly, PO43- inhibited the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. However, PO43- boosted NH4+-N adsorption by facilitating the formation of ≡Fe3O-NH4+ via electrostatic interaction and site competition. DFT calculations indicates that although bidentate phosphate (BP) was beneficial to stabilize NH4+-N than monodentate phosphate (SP), SP-NH4+ was the main adsorption configuration at pH 5.5-9.5 owing the prevalence of SP on the GT surface under site competition of NH4+-N. The results of CD-MUSIC model and DFT calculation were verified mutually, and provide novel insights into the mechanisms underlying N fixation and migration in soil.


Asunto(s)
Compuestos de Amonio , Calcio , Teoría Funcional de la Densidad , Nitratos , Nitrógeno , Fósforo , Adsorción , Calcio/química , Nitrógeno/química , Fósforo/química , Nitratos/química , Compuestos de Amonio/química , Compuestos Férricos/química , Modelos Químicos , Concentración de Iones de Hidrógeno
9.
J Environ Manage ; 358: 120950, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657414

RESUMEN

In this work, waste plastics have been used with bentonite clay to produce silica-containing graphene nanosheets (GNs) for adsorption of nitrate and phosphate from synthetic water. The GNs were obtained by the two steps process, namely (1) pyrolysis at 750 °C and (2) ball milling. Then, GNs were characterized by Raman spectroscopy, FTIR, XRD, FESEM, HRTEM and EDX spectroscopy, which provided the details of material's morphology, surface properties, and composition. From Raman spectroscopy, D and G bands were found at 1342 cm-1 and 1594 cm-1, respectively, which confirmed the presence of nanosheets on the graphene surface. Furthermore, the layers of nanosheets were confirmed by the HRTEM analysis and XRD peaks. In analytical study, the batch experiment was conducted to investigate the influence of operational parameters such as pH (03-12), contact time (05-120 min), adsorbent dosage (0.01-0.06 g), and initial concentrations of adsorbates (10-50 mg/L for nitrate and 03-15 mg/L for phosphate) on adsorption process. The removal percentage of nitrate and phosphate at optimum dosage = 0.05 g, pH = 6.5, contact time = 60 min, nitrate concentration = 30 mg/L, and phosphate concentration = 09 mg/L were found to be 85 and 91, respectively. The highest adsorption capacity of nitrate and phosphate was found to be 53 mg/g and 16.4 mg/g, respectively. The adsorption behaviour of both nitrate and phosphate showed chemisorption as the experimental data were well fitted by the pseudo-2nd-order kinetic and Langmuir isotherm model. Life cycle cost analysis (LCCA) of the synthesis process was conducted to evaluate the cost-benefit analysis for commercial feasibility. The estimated price for the synthesis of GNs using 1 kg of waste plastics and bentonite clay as precursor was $4.21, suggesting commercialization.


Asunto(s)
Grafito , Nitratos , Fosfatos , Plásticos , Grafito/química , Fosfatos/química , Nitratos/química , Adsorción , Plásticos/química , Contaminantes Químicos del Agua/química , Bentonita/química , Nanoestructuras/química
10.
Environ Sci Technol ; 58(16): 7113-7123, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38547102

RESUMEN

Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.


Asunto(s)
Peróxido de Hidrógeno , Compuestos Orgánicos , Oxidación-Reducción , Rayos Ultravioleta , Peróxido de Hidrógeno/química , Compuestos Orgánicos/química , Fotólisis , Contaminantes Químicos del Agua/química , Nitratos/química
11.
Environ Sci Technol ; 58(16): 7228-7236, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551367

RESUMEN

The development of electrocatalysts that can efficiently reduce nitrate (NO3-) to ammonia (NH3) has garnered increasing attention due to their potential to reduce carbon emissions and promote environmental protection. Intensive efforts have focused on catalyst development, but a thorough understanding of the effect of the microenvironment around the reactive sites of the catalyst is also crucial to maximize the performance of the electrocatalysts. This study explored an electrocatalytic system that utilized quaternary ammonium surfactants with a range of alkyl chain lengths to modify an electrode made of carbon nanotubes (CNT), with the goal of regulating interfacial wettability toward NO3- reduction. Trimethyltetradecylammonium bromide with a moderate alkyl chain length created a very hydrophobic interface, which led to a high selectivity in the production of NH3 (∼87%). Detailed mechanistic investigations that used operando Fourier-transform infrared (FTIR) spectroscopy and online differential electrochemical mass spectrometry (DEMS) revealed that the construction of a hydrophobic modified CNT played a synergistic role in suppressing a side reaction involving the generation of hydrogen, which would compete with the reduction of NO3-. This electrocatalytic system led to a favorable process for the reduction of NO3- to NH3 through a direct electron transfer pathway. Our findings underscore the significance of controlling the hydrophobic surface of electrocatalysts as an effective means to enhance electrochemical performance in aqueous media.


Asunto(s)
Amoníaco , Electrodos , Nanotubos de Carbono , Nitratos , Humectabilidad , Amoníaco/química , Nanotubos de Carbono/química , Nitratos/química , Oxidación-Reducción , Catálisis
12.
J Environ Manage ; 356: 120719, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520863

RESUMEN

Nitrate pollution in surface water and ground water has drawn wide attention, which has brought challenges to human health and natural ecology. Electroreduction of nitrate to NH3 in waste water was a way to turn waste into wealth, which has attracted interest of many researchers. Using Nickel foam as substrate, we prepared Pd/In bimetallic electrode (NF-Pd/In) according to a two-step electrodeposition method. There are many irregularly shaped particles in the size range of 10 nm-100 nm accumulated on the surface of prepared NF-Pd/In electrode, which could supply high specific area and more active sites for nitrate electroreduction. FESEM-EDS, XRD and XPS analysis confirmed the uniform distribution of Pd and In on the surface of prepared NF-Pd/In electrode, with a mass ratio of 4.5/1. Above 96% of 100 mg/L NO3--N was removed and 95% of NH3 selectivity was reached after 5 h of reaction under -1.6 V vs. Ag/AgCl sat. KCl when using 0.05 mol/L of Na2SO4 as electrolyte. High concentration of NaCl (0.05 mol/L) in the test solution dramatically decreased the NH3 selectivity because the produced NH3 could be further oxidized to N2 by the formed HClO from Cl-. EIS tests indicated that the prepared NF-Pd/In electrode showed much lower electrode resistance than NF due to the adsorptive property and electrocatalytic ability for nitrate removal. Density functional theory (DFT) calculations indicated that the presence of In could promote the conversion of NO3- to *NO3 during the process of nitrate electroreduction to NH3. Circulating tests demonstrated the stability of prepared NF-Pd/In electrode.


Asunto(s)
Níquel , Nitratos , Humanos , Nitratos/química , Níquel/química , Amoníaco , Paladio/química , Electrodos
13.
Chemosphere ; 353: 141537, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408568

RESUMEN

Despite the great potential of electrochemical nitrate reduction as a hydroxylamine production method, this strategy has not been sufficiently examined, and the effects of electrode material type on the selectivity and efficiency of this reduction remain underexplored. To bridge this gap, the present study evaluated six metals (Ag, Cu, Ni, Sn, Ti, and Zn) as cathode materials for the electrochemical reduction of nitrate to hydroxylamine, showing that the selectivity of hydroxylamine production was maximal for Sn, while the corresponding faradaic and energy utilization efficiencies were maximal for Ti. Although all tested materials favored nitrate reduction over hydrogen evolution, the disparity in the onset potentials of these reactions did not adequately explain the variations in nitrate removal efficiency, which was found to be influenced by material resistance and charge-transfer properties. The rate constants of elementary nitrate reduction steps determined from the time-dependent concentrations of nitrate and its reduction products (nitrous acid, hydroxylamine, and ammonium) were used to calculate the selectivity and efficiency of hydroxylamine production for each electrode. In turn, these selectivities and efficiencies were correlated with the density functional theory-computed adsorption energies of a key hydroxylamine precursor on different electrodes to afford a volcano-type plot with Ti and Sn at its pinnacle. Thus, this study introduces valuable descriptors and methods for the further screening of electrocatalysts for hydroxylamine generation and the establishment of more environmentally friendly hydroxylamine production techniques utilizing sustainable electricity.


Asunto(s)
Nitratos , Titanio , Nitratos/química , Hidroxilamina , Titanio/química , Metales , Hidroxilaminas , Electrodos
14.
Environ Sci Technol ; 58(12): 5557-5566, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412381

RESUMEN

Wet flue gas denitrification offers a new route to convert industrial nitrogen oxides (NOx) into highly concentrated nitrate wastewater, from which the nitrogen resource can be recovered to ammonia (NH3) via electrochemical nitrate reduction reactions (NITRRs). Low-cost, scalable, and efficient cathodic materials need to be developed to enhance the NH3 production rate. Here, in situ electrodeposition was adopted to fabricate a foamy Cu-based heterojunction electrode containing both Cu-defects and oxygen vacancy loaded Cu2O (OVs-Cu2O), which achieved an NH3 yield rate of 3.59 mmol h-1 cm-2, NH3 Faradaic efficiency of 99.5%, and NH3 selectivity of 100%. Characterizations and theoretical calculations unveiled that the Cu-defects and OVs-Cu2O heterojunction boosted the H* yield, suppressed the hydrogen evolution reaction (HER), and served as dual reaction sites to coherently match the tandem reactions kinetics of NO3-to-NO2 and NO2-to-NH3. An integrated system was further built to combine wet flue gas denitrification and desulfurization, simultaneously converting NO and SO2 to produce the (NH4)2SO4 fertilizer. This study offers new insights into the application of low-cost Cu-based cathode for electrochemically driven wet denitrification wastewater valorization.


Asunto(s)
Amoníaco , Aguas Residuales , Nitratos/química , Dióxido de Nitrógeno , Desnitrificación , Electrodos
15.
Chemosphere ; 352: 141341, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307327

RESUMEN

Granular activated carbon (GAC) has been widely used at the anode of a microbial fuel cell (MFC) to enhance anode performance due to its outstanding capacitance property. To the best of our knowledge, there haven't been any studies on GAC in the cathode for biofilm development and nitrate reduction in MFC. In this study, by adding GAC to biocathode, we investigated the impact of different GAC amounts and stirring speeds on power generation and nitrate reduction rate in MFC. The denitrification rate was found to be nearly two-times higher in MFCs with GAC (0.046 ± 0.0016 kg m-3 d-1) compared to that deprived of GAC (0.024 ± 0.0012 kg m-3 d-1). The electrotrophic denitrification has produced a maximum power density of 37.6 ± 4.8 mW m-2, which was further increased to 79.2 ± 7.4 mW m-2 with the amount of GAC in the biocathode. A comparative study performed with chemical catalyst (Pt carbon with air sparging) cathode and GAC biocathode showed that power densities produced with GAC biocathode were close to that with Pt cathode. Cyclic voltammetry analysis conducted at 10 mV s-1 between -0.9 V and +0.3 V (vs. Ag/AgCl) showed consistent reduction peaks at -0.6V (Ag/AgCl) confirming the reduction reaction in the biocathode. This demonstrates that the GAC biocathode used in this research is effective at producing power density and denitrification in MFC. Our belief that the nitrate reduction was caused by the GAC biocathode in MFC was further strengthened when SEM analysis showing bacterial aggregation and biofilm formation on the surface of GAC. The GAC biocathode system described in this research may be an excellent substitute for MFC's dual functions of current generation and nitrate reduction.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nitratos/química , Carbón Orgánico , Desnitrificación , Compuestos Orgánicos , Electrodos
16.
Chemosphere ; 352: 141370, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316275

RESUMEN

Nitrate-contaminated groundwater is a pressing issue in rural areas, where up to 40 % of the population lacks access to safely managed drinking water services. The high costs and complexity of centralised treatment in these regions exacerbate this problem. To address this challenge, the present study proposes electro-bioremediation as a more accessible decentralised alternative. Specifically, the main focus of this study is developing and evaluating a compact reactor designed to accomplish simultaneous nitrate removal and groundwater disinfection. Significantly, this study has established a new benchmark for nitrate reduction rate within bioelectrochemical reactors, achieving the maximum reported rate of 5.0 ± 0.3 kg NO3- m-3NCC d-1 at an HRTcat of 0.7 h. Furthermore, thein-situ generation of free chlorine was effective for water disinfection, resulting in a residual concentration of up to 4.4 ± 1.1 mg Cl2 L-1 in the effluent at the same HRTcat of 0.7 h. These achievements enabled the treated water to meet the drinking water standards for nitrogen compounds (nitrate, nitrite, and nitrous oxide) as well as pathogens content (T. coliforms, E. coli, and Enterococcus). In conclusion, this study demonstrates the potential of the electro-bioremediation of nitrate-contaminated groundwater as a decentralised water treatment system in rural areas with a competitive operational cost of 1.05 ± 0.16 € m-3.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Nitratos/química , Biodegradación Ambiental , Escherichia coli , Desinfección , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química
17.
Environ Sci Technol ; 58(10): 4824-4836, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408018

RESUMEN

Electrochemically converting nitrate, a widely distributed nitrogen contaminant, into harmless N2 is a feasible and environmentally friendly route to close the anthropogenic nitrogen-based cycle. However, it is currently hindered by sluggish kinetics and low N2 selectivity, as well as scarce attention to reactor configuration. Here, we report a flow-through zero-gap electrochemical reactor that shows a high performance of nitrate reduction with 100% conversion and 80.36% selectivity of desired N2 in the chlorine-free system at 100 mg-N·L-1 NO3- while maintaining a rapid reduction kinetics of 0.07676 min-1. More importantly, the mass transport and current utilization efficiency are significantly improved by shortening the inter-electrode distance, especially in the zero-gap electrocatalytic system where the current efficiency reached 50.15% at 5 mA·cm-2. Detailed characterizations demonstrated that during the electroreduction process, partial Cu(OH)2 on the cathode surface was reconstructed into stable Cu/Cu2O as the active phase for efficient nitrate reduction. In situ characterizations revealed that the highly selective *NO to *N conversion and the N-N coupling step played crucial roles during the selective reduction of NO3- to N2 in the zero-gap electrochemical system. In addition, theoretical calculations demonstrated that improving the key intermediate *N coverage could effectively facilitate the N-N coupling step, thereby promoting N2 selectivity. Moreover, the environmental and economic benefits and long-term stability shown by the treatment of real nitrate-containing wastewater make our proposed electrocatalytic system more attractive for practical applications.


Asunto(s)
Nitratos , Aguas Residuales , Nitratos/química , Electrodos , Nitrógeno/análisis , Nitrógeno/química , Cinética
18.
Environ Sci Technol ; 58(3): 1601-1614, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38185880

RESUMEN

Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth's climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). However, NPF involving organic vapors has been reported much more often during the daytime than during nighttime. Here, we show that the nitrate radicals (NO3), which arise predominantly at night, inhibit NPF during the oxidation of monoterpenes based on three lines of observational evidence: NPF experiments in the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN (European Organization for Nuclear Research), radical chemistry experiments using an oxidation flow reactor, and field observations in a wetland that occasionally exhibits nocturnal NPF. Nitrooxy-peroxy radicals formed from NO3 chemistry suppress the production of ultralow-volatility organic compounds (ULVOCs) responsible for biogenic NPF, which are covalently bound peroxy radical (RO2) dimer association products. The ULVOC yield of α-pinene in the presence of NO3 is one-fifth of that resulting from ozone chemistry alone. Even trace amounts of NO3 radicals, at sub-parts per trillion level, suppress the NPF rate by a factor of 4. Ambient observations further confirm that when NO3 chemistry is involved, monoterpene NPF is completely turned off. Our results explain the frequent absence of nocturnal biogenic NPF in monoterpene (α-pinene)-rich environments.


Asunto(s)
Contaminantes Atmosféricos , Monoterpenos Bicíclicos , Ozono , Compuestos Orgánicos Volátiles , Monoterpenos/química , Nitratos/química , Aerosoles/análisis , Compuestos Orgánicos Volátiles/química
19.
Environ Monit Assess ; 196(2): 142, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212573

RESUMEN

Reducing the environmental issues brought on by nutrients especially nitrogen pollution and loss is important. Owing to its unique composition and physico-chemical characteristics, biomass-derived biochar exhibits varying degrees of adsorption and interception for all types of soil nutrients. Thus, a novel way to improve nutrient absorption in the soil is to include biomass derived biochar into it. Various biomass-derived biochar from locally available biobased substances was synthesized through low-cost portable charring kiln. It has been quantified the influence of four biobased substances and three pyrolysis temperature on different morphomineralogical characteristics of biochar for utilizing as low-cost sorbent to manage nutrient adsorption and retention capacity. The morphomineralogical characteristics were principally manipulated by feedstocks rather than pyrolysis temperature. Higher porosity and surface area of biomass-derived biochar illustrated its soil structural modification and nutrient retention capacity along with their utilization for adsorbents. With increase in pyrolysis temperature, the adsorption capacity of biochar for NH4+-N and NO3--N was gradually weakened and gradually enhanced respectively. The adsorption process of ammonia nitrogen and nitrate nitrogen conformed to the Langmuir model and the fitted KL value was less than 1 indicating that the adsorption process was uniform monolayer adsorption and the adsorption of biochar was favorable adsorption. With increase in biochar application rate the leaching of NO3--N decreased having higher at 2.5 t ha-1 application rate followed by 5 t ha-1 and lower at 7.5 t ha-1. In packed soil column, the NH4+-N in leachate was maximum in T7 (18.6), followed by T4 (17.9), T13 (17.3) and minimum in T10 (17.2) at same application rate of manures and biochar. Finally, results also revealed that packed soil column performed better as compared with intact soil column to retain soil nutrient and hence, leaching potential of nutrient was less in packed column than intact soil column. In conclusion, biomass-derived biochar can enhance the amount of nutrient that is absorbed into the soil while decreasing the loss of nutrient from the soil in the form of ammonia and nitrate. To sum up, biomass-derived biochar can increase the adsorption amount of the nitrogen and reduce the loss of ammonia nitrogen and nitrate nitrogen in the soil, thus retaining the nitrogen.


Asunto(s)
Amoníaco , Nitratos , Adsorción , Nitratos/química , Monitoreo del Ambiente , Carbón Orgánico/química , Suelo/química , Nitrógeno/análisis , Nutrientes
20.
Environ Sci Technol ; 58(4): 2048-2057, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38238190

RESUMEN

In drinking water chloramination, monochloramine autodecomposition occurs in the presence of excess free ammonia through dichloramine, the decay of which was implicated in N-nitrosodimethylamine (NDMA) formation by (i) dichloramine hydrolysis to nitroxyl which reacts with itself to nitrous oxide (N2O), (ii) nitroxyl reaction with dissolved oxygen (DO) to peroxynitrite or mono/dichloramine to nitrogen gas (N2), and (iii) peroxynitrite reaction with total dimethylamine (TOTDMA) to NDMA or decomposition to nitrite/nitrate. Here, the yields of nitrogen and oxygen-containing end-products were quantified at pH 9 from NHCl2 decomposition at 200, 400, or 800 µeq Cl2·L-1 with and without 10 µM-N TOTDMA under ambient DO (∼500 µM-O) and, to limit peroxynitrite formation, low DO (≤40 µM-O). Without TOTDMA, the sum of free ammonia, monochloramine, dichloramine, N2, N2O, nitrite, and nitrate indicated nitrogen recoveries ±95% confidence intervals were not significantly different under ambient (90 ± 6%) and low (93 ± 7%) DO. With TOTDMA, nitrogen recoveries were less under ambient (82 ± 5%) than low (97 ± 7%) DO. Oxygen recoveries under ambient DO were 88-97%, and the so-called unidentified product of dichloramine decomposition formed at about three-fold greater concentration under ambient compared to low DO, like NDMA, consistent with a DO limitation. Unidentified product formation stemmed from peroxynitrite decomposition products reacting with mono/dichloramine. For a 2:2:1 nitrogen/oxygen/chlorine atom ratio and its estimated molar absorptivity, unidentified product inclusion with uncertainty may close oxygen recoveries and increase nitrogen recoveries to 98% (ambient DO) and 100% (low DO).


Asunto(s)
Óxidos de Nitrógeno , Oxígeno , Purificación del Agua , Nitrógeno , Nitritos/química , Nitratos/química , Amoníaco/química , Especies de Nitrógeno Reactivo , Ácido Peroxinitroso , Cloraminas/química , Dimetilnitrosamina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA