Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
Sci Adv ; 10(35): eadp5935, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213361

RESUMEN

The unique bacterial infection microenvironment (IME) usually requires complicated design of nanomaterials to adapt to IME for enhancing antibacterial therapy. Here, an alternative IME adaptative nitrite reductase-mimicking nanozyme is constructed by in situ growth of ultrasmall copper sulfide clusters on the surface of a nanofibrillar lysozyme assembly (NFLA/CuS NHs), which can temporally regulate nitric oxide (NO) gradient concentration to kill bacteria initially and promote tissue regeneration subsequently. Benefiting from a copper nitrite reductase (CuNIR)-inspired structure with CuS cluster as active center and NFLA as skeleton, NFLA/CuS NHs efficiently boost the catalytic reduction of nitrite to NO. The inherent supramolecular fibrillar networks displays excellent bacterial capture capability, facilitating initial high-concentration NO attacks on the bacteria. The subsequent catalytic release of low-concentration NO by NFLA/CuS NHs-mediated nitrite reduction remarkably promotes cell migration and angiogenesis. This work paves the way for dynamically eliminating MDR bacterial infection and promoting tissue regeneration in a simple and smart way through CuNIR-mimicking catalysis.


Asunto(s)
Antibacterianos , Óxido Nítrico , Nitrito Reductasas , Animales , Humanos , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Catálisis , Cobre/química , Cobre/metabolismo , Muramidasa/metabolismo , Muramidasa/química , Óxido Nítrico/metabolismo , Nitrito Reductasas/metabolismo , Nitrito Reductasas/química , Nitritos/metabolismo
2.
J Mol Biol ; 436(18): 168706, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002715

RESUMEN

Copper nitrite reductases (CuNiRs) exhibit a strong pH dependence of their catalytic activity. Structural movies can be obtained by serially recording multiple structures (frames) from the same spot of a crystal using the MSOX serial crystallography approach. This method has been combined with on-line single crystal optical spectroscopy to capture the pH-dependent structural changes that accompany during turnover of CuNiRs from two Rhizobia species. The structural movies, initiated by the redox activation of a type-1 copper site (T1Cu) via X-ray generated photoelectrons, have been obtained for the substrate-free and substrate-bound states at low (high enzymatic activity) and high (low enzymatic activity) pH. At low pH, formation of the product nitric oxide (NO) is complete at the catalytic type-2 copper site (T2Cu) after a dose of 3 MGy (frame 5) with full bleaching of the T1Cu ligand-to-metal charge transfer (LMCT) 455 nm band (S(σ)Cys â†’ T1Cu2+) which in itself indicates the electronic route of proton-coupled electron transfer (PCET) from T1Cu to T2Cu. In contrast at high pH, the changes in optical spectra are relatively small and the formation of NO is only observed in later frames (frame 15 in Br2DNiR, 10 MGy), consistent with the loss of PCET required for catalysis. This is accompanied by decarboxylation of the catalytic AspCAT residue, with CO2 trapped in the catalytic pocket.


Asunto(s)
Cobre , Nitrito Reductasas , Nitrito Reductasas/química , Nitrito Reductasas/metabolismo , Concentración de Iones de Hidrógeno , Cobre/metabolismo , Cobre/química , Oxidación-Reducción , Cristalografía por Rayos X , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Modelos Moleculares , Dominio Catalítico , Análisis Espectral/métodos , Conformación Proteica
3.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542837

RESUMEN

Nonsymbiotic phytoglobins (nsHbs) are a diverse superfamily of hemoproteins grouped into three different classes (1, 2, and 3) based on their sequences. Class 1 Hb are expressed under hypoxia, osmotic stress, and/or nitric oxide exposure, while class 2 Hb are induced by cold stress and cytokinins. Both are mainly six-coordinated. The deoxygenated forms of the class 1 and 2 nsHbs from A. thaliana (AtHb1 and AtHb2) are able to reduce nitrite to nitric oxide via a mechanism analogous to other known globins. NsHbs provide a viable pH-dependent pathway for NO generation during severe hypoxia via nitrite reductase-like activity with higher rate constants compared to mammalian globins. These high kinetic parameters, along with the relatively high concentrations of nitrite present during hypoxia, suggest that plant hemoglobins could indeed serve as anaerobic nitrite reductases in vivo. The third class of nsHb, also known as truncated hemoglobins, have a compact 2/2 structure and are pentacoordinated, and their exact physiological role remains mostly unknown. To date, no reports are available on the nitrite reductase activity of the truncated AtHb3. In the present work, three representative nsHbs of the plant model Arabidopsis thaliana are presented, and their nitrite reductase-like activity and involvement in nitrosative stress is discussed. The reaction kinetics and mechanism of nitrite reduction by nsHbs (deoxy and oxy form) at different pHs were studied by means of UV-Vis spectrophotometry, along with EPR spectroscopy. The reduction of nitrite requires an electron supply, and it is favored in acidic conditions. This reaction is critically affected by molecular oxygen, since oxyAtHb will catalyze nitric oxide deoxygenation. The process displays unique autocatalytic kinetics with metAtHb and nitrate as end-products for AtHb1 and AtHb2 but not for the truncated one, in contrast with mammalian globins.


Asunto(s)
Arabidopsis , Nitritos , Animales , Nitritos/química , Óxido Nítrico/metabolismo , Hemoglobinas/química , Nitrito Reductasas/química , Hipoxia , Arabidopsis/metabolismo , Oxidación-Reducción , Mamíferos/metabolismo
4.
Molecules ; 28(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37570788

RESUMEN

Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.


Asunto(s)
Óxido Nítrico , Nitritos , Animales , Mamíferos/metabolismo , Molibdeno/química , Óxido Nítrico/metabolismo , Nitrito Reductasas/química , Nitritos/química , Oxidación-Reducción , Oxígeno/metabolismo , Xantina Oxidasa/metabolismo
5.
Dalton Trans ; 52(32): 11254-11264, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37526523

RESUMEN

Copper nitrite reductase mimetics were synthesized using three new tridentate ligands sharing the same N,N,N motif of coordination. The ligands were based on L-proline modifications, attaching a pyridine and a triazole to the pyrrolidine ring, and differ by a pendant group (R = phenyl, n-butyl and n-propan-1-ol). All complexes coordinate nitrite, as evidenced by cyclic voltammetry, UV-Vis, FTIR and electron paramagnetic resonance (EPR) spectroscopies. The coordination mode of nitrite was assigned by FTIR and EPR as κ2O chelate mode. Upon acidification, EPR experiments indicated a shift from chelate to monodentate κO mode, and 15N NMR experiments of a Zn2+ analogue, suggested that the related Cu(II) nitrous acid complex may be reasonably stable in solution, but in equilibrium with free HONO under non catalytic conditions. Reduction of nitrite to NO was performed both chemically and electrocatalytically, observing the highest catalytic activities for the complex with n-propan-1-ol as pendant group. These results support the hypothesis that a hydrogen bond moiety in the secondary coordination sphere may aid the protonation step.


Asunto(s)
Cobre , Nitritos , Nitritos/química , Cobre/química , Ligandos , Biomimética , Nitrito Reductasas/química , Espectroscopía de Resonancia por Spin del Electrón , Catálisis , Oxidación-Reducción , Cristalografía por Rayos X
6.
J Agric Food Chem ; 71(13): 5172-5184, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36967599

RESUMEN

The usage of nitrification inhibitors is one of the strategies that reduce or slow down the denitrification process to prevent nitrogen loss to the atmosphere in the form of N2O. Directly targeting microbial denitrification could be one of the mitigation strategies; however, until now little efforts have been devoted toward the development of denitrification inhibitors. Here, we have identified small-molecule inhibitors of one of the proteins involved in the fungal denitrification pathway. Specifically, virtual screening was employed to identify the inhibitors of copper-containing nitrite reductase (FoNirK) of the filamentous fungus Fusarium oxysporum. Three series of chemical compounds were identified, out of which compounds belonging to two chemical scaffolds inhibited FoNirK enzymatic activity in low micromolar ranges. Several compounds also displayed moderate inhibition of fungal denitrification activity in vivo. Evaluation of in vitro activity against NirK from denitrifying bacterium Achromobacter xylosoxidans (AxNirK) and in vivo bacterial denitrification revealed a similar inhibitory profile.


Asunto(s)
Desnitrificación , Nitrito Reductasas , Nitrito Reductasas/química , Nitrito Reductasas/metabolismo , Bacterias/metabolismo , Hongos/metabolismo , Óxido Nitroso/metabolismo
7.
Phys Chem Chem Phys ; 25(11): 7783-7793, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857651

RESUMEN

Much of biological electron transfer occurs between proteins. These molecular processes usually involve molecular recognition and intermolecular electron transfer (inter-ET). The inter-ET reaction between copper-containing nitrite reductase (CuNiR) and partner protein pseudoazurin (PAz) is the first step in denitrification, which is affected by intermolecular association. However, the transient interaction between CuNiR and PAz and the indistinct inter-ET pathway pose challenges for people to understand the biological functions of the CuNiR-PAz complex. Thus, molecular dynamics simulation and quantum mechanical calculation were used to investigate the question in this study. The interaction of the interface residues was determined through hydrogen bonds, root-mean-square deviation, root-mean-square fluctuation, the dynamics cross-correlation matrix, and molecular mechanics Poisson-Boltzmann surface area of molecular dynamics simulations. The interactions among the residues Glu89, Gly200, Asp205, Asn91, Glu204, Thr92, and Met141 on CuNiR and the residues Lys109, Ala15, Lys10, Asn9, Ile110, Met84, and Met16 on PAz are responsible for the stabilization of the complex. The binding free energy is up to -25.33 kcal mol-1. We compared the wild-type and mutant (M84A) interfacial optimized complex models at the CAM-B3LYP level with Grimme dispersion corrections (GD3) to confirm Met84 as a relay station for promoting the inter-ET. Additionally, to test whether Met84 may combine with the adjacent Met141 to form a special two-center, three-electron (S∴S)+ structure to promote the inter-ET, QM/MM was further performed to discuss the possibility of generating an electron stepping stone. Our study will promote a deep understanding of the stable protein-protein interaction, and the identified inter-residue interaction will be theoretical guidance for enhancing the catalytic activity of CuNiR in denitrification.


Asunto(s)
Cobre , Simulación de Dinámica Molecular , Humanos , Cobre/química , Electrones , Oxidación-Reducción , Nitrito Reductasas/química
8.
J Inorg Biochem ; 241: 112155, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739731

RESUMEN

A copper-containing nitrite reductase catalyzes the reduction of nitrite to nitric oxide in the denitrifier Sinorhizobium meliloti 2011 (SmNirK), a microorganism used as bioinoculant in alfalfa seeds. Wild type SmNirK is a homotrimer that contains two copper centers per monomer, one of type 1 (T1) and other of type 2 (T2). T2 is at the interface of two monomers in a distorted square pyramidal coordination bonded to a water molecule and three histidine side chains, H171 and H136 from one monomer and H342 from the other. We report the molecular, catalytic, and spectroscopic properties of the SmNirK variant H342G, in which the interfacial H342 T2 ligand is substituted for glycine. The molecular properties of H342G are similar to those of wild type SmNirK. Fluorescence-based thermal shift assays and FTIR studies showed that the structural effect of the mutation is only marginal. However, the kinetic reaction with the physiological electron donor was significantly affected, which showed a âˆ¼ 100-fold lower turnover number compared to the wild type enzyme. UV-Vis, EPR and FTIR studies complemented with computational calculations indicated that the drop in enzyme activity are mainly due to the void generated in the protein substrate channel by the point mutation. The main structural changes involve the filling of the void with water molecules, the direct coordination to T2 copper ion of the second sphere aspartic acid ligand, a key residue in catalysis and nitrite sensing in NirK, and to the loss of the 3 N-O coordination of T2.


Asunto(s)
Cobre , Sinorhizobium meliloti , Cobre/química , Nitritos/química , Sinorhizobium meliloti/química , Sinorhizobium meliloti/metabolismo , Histidina/química , Dominio Catalítico , Oxidación-Reducción , Ligandos , Glicina , Espectroscopía de Resonancia por Spin del Electrón , Nitrito Reductasas/química
9.
J Biosci Bioeng ; 134(5): 393-398, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36068114

RESUMEN

The assimilatory nitrite reductase enzyme NirB and small subunit NirD genes encoded in nir operon in Escherichia coli were cloned into the pET28a vector, and the recombinant enzyme was characterized for the first time. Docking of NirB with NirD, NADH, NO2-, NO3-, and CHO2- was performed using docking modeling programs. Methyl viologen and sodium dithionite were used as electron couples, and the amount of reduced nitrite was measured to calculate enzyme activity. NirB is the main enzyme and shows high activity with or without NirD. However, the inclusion of NirD into the enzyme solution at a ratio of 1NirD:2NirB resulted in 10% higher nitrite reductase activity. The enzyme tends to aggregate in the absence of ß-mercaptoethanol, which causes the conversion of tetrameric NirB to monomeric form, and the NirB enzyme shows its highest activity in monomeric form. The optimum temperature for enzyme activity was 37 °C and the optimum pH was found to be 7.0. Km and Vmax values of NirB were calculated as 9833 µM and 416.67 µmol NO2- reduced min-1 mg-1. Enzyme activity decreased by 55% and 50% in the presence of 100 mM nitrate and formate, respectively. The presence of 25 mM Cd2+ protected the enzyme at room temperature and the enzyme showed 10% higher activity in the presence of cadmium.


Asunto(s)
Escherichia coli , Nitrito Reductasas , Nitrito Reductasas/genética , Nitrito Reductasas/química , Escherichia coli/genética , Nitritos , Dióxido de Nitrógeno , Operón
10.
J Inorg Biochem ; 237: 111982, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116154

RESUMEN

Besides the canonical pathway of L-arginine oxidation to produce nitric oxide (NO) in vivo, the nitrate-nitrite-NO pathway has been widely accepted as another source for circulating NO in mammals, especially under hypoxia. To date, there have been at least ten heme-containing nitrite reductase-like proteins discovered in mammals with activities mainly identified in vitro, including four globins (hemoglobin, myoglobin, neuroglobin (Ngb), cytoglobin (Cygb)), three mitochondrial respiratory chain enzymes (cytochrome c oxidase, cytochrome bc1, cytochrome c), and three other heme proteins (endothelial nitric oxide synthase, cytochrome P450 and indoleamine 2,3-dioxygenase 1 (IDO1)). The pathophysiological functions of these proteins are closely related to their redox and spectroscopic properties, as well as their protein structure, although the physiological roles of Ngb, Cygb and IDO1 remain unclear. So far, comprehensive summaries of the redox and spectroscopic properties of these nitrite reductase-like hemoproteins are still lacking. In this review, we have mainly summarized the published data on the application of ultraviolet-visible, electron paramagnetic resonance, circular dichroism and resonance Raman spectroscopies, and X-ray crystallography in studying nitrite reductase-like activity of these 10 proteins, in order to sort out the relationships among enzymatic function, structure and spectroscopic characterization, which might help in understanding their roles in redox biology and medicine.


Asunto(s)
Proteínas del Tejido Nervioso , Nitrito Reductasas , Animales , Nitrito Reductasas/química , Proteínas del Tejido Nervioso/química , Globinas/química , Citoglobina/metabolismo , Oxidación-Reducción , Neuroglobina/metabolismo , Óxido Nítrico/química , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA