Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.035
Filtrar
1.
J Environ Manage ; 359: 121009, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718600

RESUMEN

Nitrification-denitrification process has failed to meet wastewater treatment standards. The completely autotrophic nitrite removal (CANON) process has a huge advantage in the field of low carbon/nitrogen wastewater nitrogen removal. However, slow start-up and system instability limit its applications. In this study, the time of the start-up CANON process was reduced by using bio-rope as loading materials. The establishing of graded dissolved oxygen improved the stability of the CANON process and enhanced the stratification effect between functional microorganisms. Microbial community structure and the abundance of nitrogen removal functional genes are also analyzed. The results showed that the CANON process was initiated within 75 days in the complete absence of anaerobic ammonium oxidizing bacteria (AnAOB) inoculation. The ammonium and nitrogen removal efficiencies of CANON process reached to 94.45% and 80.76% respectively. The results also showed that the relative abundance of nitrogen removal bacterial in the biofilm gradually increases with the dissolved oxygen content in the solution decreases. In contrast, the relative abundance of ammonia oxidizing bacteria was positively correlated with the dissolved oxygen content in the solution. The relative abundance of g__Candidatus_Brocadia in biofilm was 15.56%, and while g__Nitrosomonas was just 0.6613%. Metagenomic analysis showed that g__Candidatus_Brocadia also contributes 66.37% to the partial-nitrification functional gene Hao (K10535). This study presented a new idea for the cooperation between partial-nitrification and anammox, which improved the nitrogen removal system stability.


Asunto(s)
Procesos Autotróficos , Nitritos , Nitrógeno , Aguas Residuales , Nitrógeno/metabolismo , Nitritos/metabolismo , Nitrificación , Desnitrificación , Bacterias/metabolismo , Bacterias/genética , Eliminación de Residuos Líquidos/métodos , Biopelículas , Reactores Biológicos , Compuestos de Amonio/metabolismo
2.
Bioresour Technol ; 402: 130792, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703962

RESUMEN

This study evaluates iron particle-integrated anammox granules (IP-IAGs) to enhance wastewater treatment efficiency. The IP-IAGs resulted in notable improvements in settleability and nitrogen removal. The settling velocity of IP-IAGs increased by 17.91 % to 2.92 ± 0.20 cm/s, and the total nitrogen removal efficiency in batch mode improved by 6.82 %. These changes indicate enhanced biological activity for effective treatment. In continuous operation, the IP-IAGs reactor showed no accumulation of nitrite until 40 d, reaching a peak nitrogen removal rate (NRR) of 1.54 kg-N/m3·d and a nitrogen removal efficiency of 82.61 %. Furthermore, a partial nitritation-anammox reactor that treated anaerobic digestion effluent achieved a NRR of 1.41 ± 0.09 kg-N/m3·d, proving the applicability of IP-IAGs in real wastewater conditions. These results underscore the potential of IP-IAGs to enhance the efficiency and stability of anammox-based processes, marking a significant advancement in environmental engineering for wastewater treatment.


Asunto(s)
Reactores Biológicos , Hierro , Nitrógeno , Aguas Residuales , Hierro/metabolismo , Hierro/química , Aguas Residuales/química , Oxidación-Reducción , Anaerobiosis , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Nitritos/metabolismo
3.
Nutrients ; 16(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38794713

RESUMEN

Hypertensive diseases of pregnancy (HDPs) represent a global clinical challenge, affecting 5-10% of women and leading to complications for both maternal well-being and fetal development. At the heart of these complications is endothelial dysfunction, with oxidative stress emerging as a pivotal causative factor. The reduction in nitric oxide (NO) bioavailability is a vital indicator of this dysfunction, culminating in blood pressure dysregulation. In the therapeutic context, although antihypertensive medications are commonly used, they come with inherent concerns related to maternal-fetal safety, and a percentage of women do not respond to these therapies. Therefore, alternative strategies that directly address the pathophysiology of HDPs are required. This article focuses on the potential of the nitrate-nitrite-NO pathway, abundantly present in dark leafy greens and beetroot, as an alternative approach to treating HDPs. The objective of this review is to discuss the prospective antioxidant role of nitrate. We hope our discussion paves the way for using nitrate to improve endothelial dysfunction and control oxidative stress, offering a potential therapy for managing HDPs.


Asunto(s)
Hipertensión Inducida en el Embarazo , Nitratos , Óxido Nítrico , Nitritos , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Embarazo , Nitratos/metabolismo , Femenino , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Hipertensión Inducida en el Embarazo/tratamiento farmacológico , Hipertensión Inducida en el Embarazo/metabolismo , Antioxidantes , Beta vulgaris
4.
Water Res ; 257: 121698, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705066

RESUMEN

Research has revealed that comammox Nitrospira and anammox bacteria engage in dynamic interactions in partial nitritation-anammox reactors, where they compete for ammonium and nitrite or comammox Nitrospria supply nitrite to anammox bacteria. However, two gaps in the literature are present: the know-how to manipulate the interactions to foster a stable and symbiotic relationship and the assessment of how effective this partnership is for treating low-strength ammonium wastewater at high hydraulic loads. In this study, we employed a membrane bioreactor designed to treat synthetic ammonium wastewater at a concentration of 60 mg N/L, reaching a peak loading of 0.36 g N/L/day by gradually reducing the hydraulic retention time to 4 hr. Throughout the experiment, the reactor achieved an approximately 80 % nitrogen removal rate through strategically adjusting intermittent aeration at every stage. Notably, the genera Ca. Kuenena, Nitrosomonas, and Nitrospira collectively constituted approximately 40 % of the microbial community. Under superior intermittent aeration conditions, the expression of comammox amoA was consistently higher than that of Nitrospira nxrB and AOB amoA in the biofilm, despite the higher abundance of Nitrosomonas than comammox Nitrospira, implying that the biofilm environment is favorable for fostering cooperation between comammox and anammox bacteria. We then assessed the in situ activity of comammox Nitrospira in the reactor by selectively suppressing Nitrosomonas using 1-octyne, thereby confirming that comammox Nitrospira played the primary role in facilitating the nitritation (33.1 % of input ammonium) rather than complete nitrification (7.3 % of input ammonium). Kinetic analysis revealed a specific ammonia-oxidizing rate 5.3 times higher than the nitrite-oxidizing rate in the genus Nitrospira, underscoring their critical role in supplying nitrite. These findings provide novel insights into the cooperative interplay between comammox Nitrospira and anammox bacteria, potentially reshaping the management of nitrogen cycling in engineered environments, and aiding the development of microbial ecology-driven wastewater treatment technologies.


Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Aguas Residuales , Reactores Biológicos/microbiología , Aguas Residuales/microbiología , Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo , Nitrificación , Nitritos/metabolismo , Oxidación-Reducción
5.
Water Res ; 257: 121692, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713935

RESUMEN

Shortcut nitrogen removal holds significant economic appeal for mainstream wastewater treatment. Nevertheless, it is too difficult to achieve the stable suppression of nitrite-oxidizing bacteria (NOB), and simultaneously maintain the activity of ammonia-oxidizing bacteria (AOB). This study proposes to overcome this challenge by employing the novel acid-tolerant AOB, namely "Candidatus Nitrosoglobus", in a membrane-aerated biofilm reactor (MABR). Superior partial nitritation was demonstrated in low-strength wastewater from two aspects. First, the long-term operation (256 days) under the acidic pH range of 5.0 to 5.2 showed the successful NOB washout by the in situ free nitrous acid (FNA) of approximately 1 mg N/L. This was evidenced by the stable nitrite accumulation ratio (NAR) close to 100 % and the disappearance of NOB shown by 16S rRNA gene amplicon sequencing and fluorescence in situ hybridization. Second, oxygen was sufficiently supplied in the MABR, leading to an unprecedentedly high ammonia oxidation rate (AOR) at 2.4 ± 0.1 kg N/(m3 d) at a short hydraulic retention time (HRT) of a mere 30 min. Due to the counter diffusion of substrates, the present acidic MABR displayed a significantly higher apparent oxygen affinity (0.36 ± 0.03 mg O2/L), a marginally lower apparent ammonia affinity (14.9 ± 1.9 mg N/L), and a heightened sensitivity to FNA and pH variations, compared with counterparts determined by flocculant acid-tolerant AOB. Beyond supporting the potential application of shortcut nitrogen removal in mainstream wastewater, this study also offers the attractive prospect of intensifying wastewater treatment by markedly reducing the HRT of the aerobic unit.


Asunto(s)
Biopelículas , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Amoníaco/metabolismo , Aguas Residuales/química , Oxidación-Reducción , Nitritos/metabolismo , Nitrógeno , Concentración de Iones de Hidrógeno , Bacterias/metabolismo , Membranas Artificiales
6.
Appl Microbiol Biotechnol ; 108(1): 334, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739161

RESUMEN

Aerobic granular sludge (AGS) and conventional activated sludge (CAS) are two different biological wastewater treatment processes. AGS consists of self-immobilised microorganisms that are transformed into spherical biofilms, whereas CAS has floccular sludge of lower density. In this study, we investigated the treatment performance and microbiome dynamics of two full-scale AGS reactors and a parallel CAS system at a municipal WWTP in Sweden. Both systems produced low effluent concentrations, with some fluctuations in phosphate and nitrate mainly due to variations in organic substrate availability. The microbial diversity was slightly higher in the AGS, with different dynamics in the microbiome over time. Seasonal periodicity was observed in both sludge types, with a larger shift in the CAS microbiome compared to the AGS. Groups important for reactor function, such as ammonia-oxidising bacteria (AOB), nitrite-oxidising bacteria (NOB), polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs), followed similar trends in both systems, with higher relative abundances of PAOs and GAOs in the AGS. However, microbial composition and dynamics differed between the two systems at the genus level. For instance, among PAOs, Tetrasphaera was more prevalent in the AGS, while Dechloromonas was more common in the CAS. Among NOB, Ca. Nitrotoga had a higher relative abundance in the AGS, while Nitrospira was the main nitrifier in the CAS. Furthermore, network analysis revealed the clustering of the various genera within the guilds to modules with different temporal patterns, suggesting functional redundancy in both AGS and CAS. KEY POINTS: • Microbial community succession in parallel full-scale aerobic granular sludge (AGS) and conventional activated sludge (CAS) processes. • Higher periodicity in microbial community structure in CAS compared to in AGS. • Similar functional groups between AGS and CAS but different composition and dynamics at genus level.


Asunto(s)
Bacterias , Reactores Biológicos , Microbiota , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Reactores Biológicos/microbiología , Aerobiosis , Suecia , Glucógeno/metabolismo , Amoníaco/metabolismo , Nitritos/metabolismo , Nitratos/metabolismo , Fosfatos/metabolismo , Purificación del Agua/métodos
7.
Water Res ; 256: 121567, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581983

RESUMEN

Discovery of nitrate/nitrite-dependent anaerobic methane oxidation (DAMO) challenges the conventional biological treatment processes, since it provides a possibility of simultaneously mitigating dissolved methane emissions from anaerobic effluents and reducing additional carbon sources for denitrification. Due to the slow growth of specialized DAMO microbes, this possibility has been just practiced with biofilms in membrane biofilm reactors or granular sludge in membrane bioreactors. In this study, simultaneous elimination of dissolved methane from anaerobic effluents and nitrate/nitrite reduction was achieved in a conventional anoxic reactor with magnetite. Calculations of electron flow balance showed that, with magnetite the eliminated dissolved methane was almost entirely used for nitrate/nitrite reduction, while without magnetite approximately 52 % of eliminated dissolved methane was converted to unknown organics. Metagenomic sequencing showed that, when dissolved methane served as an electron donor, the abundance of genes for reverse methanogenesis and denitrification dramatically increased, indicating that anaerobic oxidation of methane (AOM) coupled to nitrate/nitrite reduction occurred. Magnetite increased the abundance of genes encoding the key enzymes involved in whole reverse methanogenesis and Nir and Nor involved in denitrification, compared to that without magnetite. Analysis of microbial communities showed that, AOM coupled to nitrate/nitrite reduction was proceeded by syntrophic consortia comprised of methane oxidizers, Methanolinea and Methanobacterium, and nitrate/nitrite reducers, Armatimonadetes_gp5 and Thauera. With magnetite syntrophic consortia exchanged electrons more effectively than that without magnetite, further supporting the microbial growth.


Asunto(s)
Reactores Biológicos , Óxido Ferrosoférrico , Metano , Nitratos , Nitritos , Metano/metabolismo , Anaerobiosis , Nitratos/metabolismo , Óxido Ferrosoférrico/química , Nitritos/metabolismo , Oxidación-Reducción , Desnitrificación
8.
Bioresour Technol ; 400: 130679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588781

RESUMEN

Mainstream partial denitrification anammox was achieved through inoculation of side-stream mature partial nitritation anammox biofilm without domestication. The contribution of anammox to nitrogen removal was 29.4 %. Moreover, prolonging anoxic hydraulic retention time and introducing side-stream nitrite under different carbon/nitrogen ratios enriched anammox bacteria. The abundance of anammox bacteria increased by âˆ¼ 10 times ((2.19 ± 0.17) × 1012 copies gene / g dry sludge) with a total relative abundance of 18.51 %. During 258 days of operation, the contribution of anammox to nitrogen removal gradually increased to 68.8 %. The total nitrogen in the effluent decreased to 8.84 mg/L with a total nitrogen removal efficiency of 76.4 % under a carbon/nitrogen ratio of 3. This paper proposes a novel way to rapidly achieve mainstream partial denitrification anammox via inoculation with side-stream mature partial nitritation anammox biofilm. This method achieves advanced nitrogen removal from municipal wastewater, even under low carbon/nitrogen ratios.


Asunto(s)
Biopelículas , Desnitrificación , Nitrógeno , Aguas del Alcantarillado , Nitrógeno/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Reactores Biológicos/microbiología , Anaerobiosis , Purificación del Agua/métodos , Oxidación-Reducción , Carbono/metabolismo , Nitritos/metabolismo
9.
J Environ Manage ; 358: 120826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608579

RESUMEN

Hydroxylamine can disrupt the protein translation process of most reported nitrogen-converting bacteria, and thus hinder the reproduction of bacteria and nitrogen conversion capacity. However, the effect of hydroxylamine on the denitrification ability of strain EN-F2 is unclear. In this study, the cell growth, aerobic denitrification ability, and nitrous oxide (N2O) emission by Pseudomonas taiwanensis were carefully investigated by addition of hydroxylamine at different concentrations. The results demonstrated that the rates of nitrate and nitrite reduction were enhanced by 2.51 and 2.78 mg/L/h after the addition of 8.0 and 12.0 mg/L hydroxylamine, respectively. The N2O production from nitrate and nitrite reaction systems were strongly promoted by 4.39 and 8.62 mg/L, respectively, through the simultaneous acceleration of cell growth and both of nitrite and nitrate reduction. Additionally, the enzymatic activities of nitrate reductase and nitrite reductase climbed from 0.13 and 0.01 to 0.22 and 0.04 U/mg protein when hydroxylamine concentration increased from 0 to 6.0 and 12.0 mg/L. This may be the main mechanism for controlling the observed higher denitrification rate and N2O release. Overall, hydroxylamine supplementation supported the EN-F2 strain cell growth, denitrification and N2O emission rates.


Asunto(s)
Desnitrificación , Hidroxilamina , Óxido Nitroso , Pseudomonas , Óxido Nitroso/metabolismo , Pseudomonas/metabolismo , Hidroxilamina/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo
10.
Nutrients ; 16(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38674845

RESUMEN

Nitrate (NO3-) obtained from the diet is converted to nitrite (NO2-) and subsequently to nitric oxide (NO) within the body. Previously, we showed that porcine eye components contain substantial amounts of nitrate and nitrite that are similar to those in blood. Notably, cornea and sclera exhibited the capability to reduce nitrate to nitrite. To gain deeper insights into nitrate metabolism in porcine eyes, our current study involved feeding pigs either NaCl or Na15NO3 and assessing the levels of total and 15N-labeled NO3-/NO2- in various ocular tissues. Three hours after Na15NO3 ingestion, a marked increase in 15NO3- and 15NO2- was observed in all parts of the eye; in particular, the aqueous and vitreous humor showed a high 15NO3- enrichment (77.5 and 74.5%, respectively), similar to that of plasma (77.1%) and showed an even higher 15NO2- enrichment (39.9 and 35.3%, respectively) than that of plasma (19.8%). The total amounts of NO3- and NO2- exhibited patterns consistent with those observed in 15N analysis. Next, to investigate whether nitrate or nitrite accumulate proportionally after multiple nitrate treatments, we measured nitrate and nitrite contents after supplementing pigs with Na15NO3 for five consecutive days. In both 15N-labeled and total nitrate and nitrite analysis, we did not observe further accumulation of these ions after multiple treatments, compared to a single treatment. These findings suggest that dietary nitrate supplementation exerts a significant influence on nitrate and nitrite levels and potentially NO levels in the eye and opens up the possibility for the therapeutic use of dietary nitrate/nitrite to enhance or restore NO levels in ocular tissues.


Asunto(s)
Suplementos Dietéticos , Nitratos , Nitritos , Animales , Nitratos/metabolismo , Porcinos , Nitritos/metabolismo , Ojo/metabolismo , Isótopos de Nitrógeno , Córnea/metabolismo , Dieta , Humor Acuoso/metabolismo , Cuerpo Vítreo/metabolismo , Óxido Nítrico/metabolismo , Alimentación Animal/análisis
11.
Bioresour Technol ; 401: 130730, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657825

RESUMEN

Achieving partial denitrification (PD) by using fermentation products extracted from waste activated sludge (WAS) rather than commercial organic matters is a promising approach for providing nitrite for anammox, while sludge reduction could also be realized by WAS reutilization. This study proposed an In-situ Sludge Fermentation coupled with Partial Denitrification (ISFPD) system and explored its performance under different conditions, including initial pH, nitrate concentrations, and organic matters. Results showed that nitrite production increased with the elevation of initial pH (from 6 to 9), and the highest nitrate-to-nitrite transformation ratio (NTR) reached 77% at initial pH 9. The PD rates and NTR were observed to be minimally influenced by initial nitrate concentrations. Acetate was preferred by denitrifying bacteria, while macromolecules such as proteins necessitated be hydrolyzed to be suitable for further utilization. The insights gained through this study paved the way for efficient nitrite production and sustainable WAS reutilization in harmony.


Asunto(s)
Desnitrificación , Fermentación , Nitratos , Nitritos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Concentración de Iones de Hidrógeno , Nitritos/metabolismo , Nitratos/metabolismo , Estudios de Factibilidad , Compuestos Orgánicos , Reactores Biológicos , Álcalis/química
12.
J Inorg Biochem ; 256: 112542, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38631103

RESUMEN

Cytochrome c nitrite reductase, NrfA, is a soluble, periplasmic pentaheme cytochrome responsible for the reduction of nitrite to ammonium in the Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway, a vital reaction in the global nitrogen cycle. NrfA catalyzes this six-electron and eight-proton reduction of nitrite at a single active site with the help of its quinol oxidase partners. In this review, we summarize the latest progress in elucidating the reaction mechanism of ammonia production, including new findings about the active site architecture of NrfA, as well as recent results that elucidate electron transfer and storage in the pentaheme scaffold of this enzyme.


Asunto(s)
Compuestos de Amonio , Nitratos , Oxidación-Reducción , Nitratos/metabolismo , Nitratos/química , Compuestos de Amonio/metabolismo , Citocromos c1/metabolismo , Citocromos c1/química , Nitrato Reductasas/metabolismo , Nitrato Reductasas/química , Dominio Catalítico , Transporte de Electrón , Nitritos/metabolismo , Citocromos a1
13.
Chemosphere ; 356: 141883, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583528

RESUMEN

Comammox Nitrospira and canonical ammonia-oxidizing bacteria (cAOB) generally coexist in activated sludge. In present study, the effect of comammox Nitrospira on N2O production during nitrification of activated sludge was investigated. Comammox Nitrospira and cAOB were separately enriched in two nitrifying reactors, with respective relative abundance of approximately 98% in ammonia oxidizer community. The N2O emission factor (EF) of nitrification in comammox Nitrospira dominated reactor was 0.35%, consistently lower than that (2.2%) in cAOB dominated reactor. When increasing the relative abundance of comammox Nitrospira in ammonia oxidizer community, the N2O EF of nitrification decreased exponentially, which suggested that comammox Nitrospira not only decreased N2O production directly but also might have reduced N2O yield by cAOB. When cAOB dominated the ammonia oxidizer community of sludge, decreasing pH to 6.3, lowering DO to less than 0.5 mg/L, and increasing nitrite concentration enhanced N2O EF dramatically. When comammox Nitrospira became the dominant ammonia oxidizer, however, the N2O EF correlated to nitrite insignificantly and a low DO of 0.2 mg/L and weakly acidic pH (6.3) decreased N2O EF by approximately 70% and 60%, respectively. These results imply that enhancing the relative abundance of comammox Nitrospira in sludge is an effective way to reducing N2O emissions and can also offset the promoting effects of acidic pH, low DO, and high nitrite concentration on N2O production during nitrification.


Asunto(s)
Amoníaco , Bacterias , Nitrificación , Oxidación-Reducción , Aguas del Alcantarillado , Amoníaco/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Óxido Nitroso/metabolismo , Nitritos/metabolismo , Reactores Biológicos/microbiología , Eliminación de Residuos Líquidos/métodos
14.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38624180

RESUMEN

The bacterial species "Candidatus Alkanivorans nitratireducens" was recently demonstrated to mediate nitrate-dependent anaerobic oxidation of short-chain gaseous alkanes (SCGAs). In previous bioreactor enrichment studies, the species appeared to reduce nitrate in two phases, switching from denitrification to dissimilatory nitrate reduction to ammonium (DNRA) in response to nitrite accumulation. The regulation of this switch or the nature of potential syntrophic partnerships with other microorganisms remains unclear. Here, we describe anaerobic multispecies cultures of bacteria that couple the oxidation of propane and butane to nitrate reduction and the oxidation of ammonium (anammox). Batch tests with 15N-isotope labelling and multi-omic analyses collectively supported a syntrophic partnership between "Ca. A. nitratireducens" and anammox bacteria, with the former species mediating nitrate-driven oxidation of SCGAs, supplying the latter with nitrite for the oxidation of ammonium. The elimination of nitrite accumulation by the anammox substantially increased SCGA and nitrate consumption rates, whereas it suppressed DNRA. Removing ammonium supply led to its eventual production, the accumulation of nitrite, and the upregulation of DNRA gene expression for the abundant "Ca. A. nitratireducens". Increasing the supply of SCGA had a similar effect in promoting DNRA. Our results suggest that "Ca. A. nitratireducens" switches to DNRA to alleviate oxidative stress caused by nitrite accumulation, giving further insight into adaptability and ecology of this microorganism. Our findings also have important implications for the understanding of the fate of nitrogen and SCGAs in anaerobic environments.


Asunto(s)
Alcanos , Compuestos de Amonio , Nitratos , Oxidación-Reducción , Nitratos/metabolismo , Anaerobiosis , Compuestos de Amonio/metabolismo , Alcanos/metabolismo , Consorcios Microbianos , Nitritos/metabolismo , Reactores Biológicos/microbiología , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
15.
Chemosphere ; 358: 142066, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670502

RESUMEN

The partial denitrification (PD) coupled with anaerobic ammonium oxidation (Anammox) (PD/A) process is a unique biological denitrification method for sewage that concurrently removes nitrate (NO3--N) and ammonium (NH4+-N) in sewage. Comparing PD/A to conventional nitrification and denitrification technologies, noticeable improvements are shown in energy consumption, carbon source demand, sludge generation and emissions of greenhouse gasses. The PD is vital to obtaining nitrites (NO2--N) in the Anammox process. This paper provided valuable insight by introduced the basic principles and characteristics of the process and then summarized the strengthening strategies. The functional microorganisms and microbial competition have been discussed in details, the S-dependent denitrification-anammox has been analyzed in this review paper. Important factors affecting the PD/A process were examined from different aspects, and finally, the paper pointed out the shortcomings of the coupling process in experimental research and engineering applications. Thus, this research provided insightful information for the PD/A process's optimization technique in later treating many types of real and nitrate-based wastewater. The review paper also provided the prospective economic and environmental position for the actual design implementation of the PD/A process in the years to come.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Nitratos , Oxidación-Reducción , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Aguas del Alcantarillado/microbiología , Anaerobiosis , Aguas Residuales/química , Reactores Biológicos/microbiología , Nitritos/metabolismo
16.
Chemosphere ; 358: 142156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679172

RESUMEN

Water outages caused by elevated ammonium (NH4+-N) levels are a prevalent problem faced by conventional raw water treatment plants in developing countries. A treatment solution requires a short hydraulic retention time (HRT) to overcome nitrification rate limitation in oligotrophic conditions. In this study, the performance of polluted raw water treatment using a green downflow sponge biofilm (DSB) technology was evaluated. We operated two DSB reactors, DSB-1 and DSB-2 under different NH4+-N concentration ranges (DSB-1: 3.2-5.0 mg L-1; DSB-2: 1.7-2.6 mg L-1) over 360 days and monitored their performance under short HRT (60 min, 30 min, 20 min, and 15 min). The experimental results revealed vertical segregation of organic removal in the upper reactor depths and nitrification in the lower depths. Under the shortest HRT of 15 min, both DSB reactors achieved stable NH4+-N and chemical oxygen demand removal (≥95%) and produced minimal effluent nitrite (NO2--N). DSB system could facilitate complete NH4+-N oxidation to nitrate (NO3--N) without external aeration energy requirement. The 16S rRNA sequencing data revealed that nitrifying bacteria Nitrosomonas and Nitrospira in the reactor were stratified. Putative comammox bacteria with high ammonia affinity was successfully enriched in DSB-2 operating at a lower NH4+-N loading rate, which is advantageous in oligotrophic treatment. This study suggests that a high hydraulic rate DSB system with efficient ammonia removal could incorporate ammonia treatment capability into polluted raw water treatment process and ensure safe water supply in many developing countries.


Asunto(s)
Biopelículas , Reactores Biológicos , Nitrificación , Reactores Biológicos/microbiología , Compuestos de Amonio/metabolismo , Purificación del Agua/métodos , Cinética , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Microbiota , Nitritos/metabolismo , Bacterias/metabolismo , Bacterias/genética , ARN Ribosómico 16S/genética , Nitratos/metabolismo
17.
J Environ Manage ; 357: 120843, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588621

RESUMEN

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Asunto(s)
Óxido Ferrosoférrico , Nitritos , Nitritos/metabolismo , Transporte de Electrón , Anaerobiosis , Metano , Electrones , Desnitrificación , Oxidación-Reducción , Bacterias/metabolismo , Bacterias Anaerobias/metabolismo , Nitrógeno/metabolismo , Reactores Biológicos/microbiología
18.
Sci Rep ; 14(1): 7766, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565927

RESUMEN

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Antioxidantes , Trastorno Depresivo Mayor , Humanos , Ratones , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Nitritos/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Privación Materna , Solución Salina/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Estrés Oxidativo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Conducta Animal
19.
Microbiol Spectr ; 12(5): e0318123, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511951

RESUMEN

While the co-existence of comammox Nitrospira with canonical nitrifiers is well documented in diverse ecosystems, there is still a dearth of knowledge about the mechanisms underpinning their interactions. Understanding these interaction mechanisms is important as they may play a critical role in governing nitrogen biotransformation in natural and engineered ecosystems. In this study, we tested the ability of two environmentally relevant factors (nitrogen source and availability) to shape interactions between strict ammonia and nitrite-oxidizing bacteria and comammox Nitrospira in continuous flow column reactors. The composition of inorganic nitrogen species in reactors fed either ammonia or urea was similar during the lowest input nitrogen concentration (1 mg-N/L), but higher concentrations (2 and 4 mg-N/L) promoted significant differences in nitrogen species composition and nitrifier abundances. The abundance and diversity of comammox Nitrospira were dependent on both nitrogen source and input concentrations as multiple comammox Nitrospira populations were preferentially enriched in the urea-fed system. In contrast, their abundance was reduced in response to higher nitrogen concentrations in the ammonia-fed system. The preferential enrichment of comammox Nitrospira in the urea-fed system could be associated with their ureolytic activity calibrated to their ammonia oxidation rates, thus minimizing ammonia accumulation, which may be partially inhibitory. However, an increased abundance of comammox Nitrospira was not associated with a reduced abundance of nitrite oxidizers in the urea-fed system while a negative correlation was found between them in the ammonia-fed system, the latter dynamic likely emerging from reduced availability of nitrite to strict nitrite oxidizers at low ammonia concentrations. IMPORTANCE: Nitrification is an essential biological process in drinking water and wastewater treatment systems for treating nitrogen pollution. The discovery of comammox Nitrospira and their detection alongside canonical nitrifiers in these engineered ecosystems have made it necessary to understand the environmental conditions that regulate their abundance and activity relative to other better-studied nitrifiers. This study aimed to evaluate two important factors that could potentially influence the behavior of nitrifying bacteria and, therefore, impact nitrification processes. Column reactors fed with either ammonia or urea were systematically monitored to capture changes in nitrogen biotransformation and the nitrifying community as a function of influent nitrogen concentration, nitrogen source, and reactor depth. Our findings show that with increased ammonia availability, comammox Nitrospira decreased in abundance while nitrite oxidizers abundance increased. Yet, in systems with increasing urea availability, comammox Nitrospira abundance and diversity increased without an associated reduction in the abundance of canonical nitrifiers.


Asunto(s)
Amoníaco , Nitrificación , Nitritos , Nitrógeno , Urea , Nitrógeno/metabolismo , Amoníaco/metabolismo , Nitritos/metabolismo , Urea/metabolismo , Oxidación-Reducción , Reactores Biológicos/microbiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
20.
Nat Commun ; 15(1): 1911, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429292

RESUMEN

When the supply of inorganic carbon is limiting, photosynthetic cyanobacteria excrete nitrite, a toxic intermediate in the ammonia assimilation pathway from nitrate. It has been hypothesized that the excreted nitrite represents excess nitrogen that cannot be further assimilated due to the missing carbon, but the underlying molecular mechanisms are unclear. Here, we identified a protein that interacts with nitrite reductase, regulates nitrogen metabolism and promotes nitrite excretion. The protein, which we named NirP1, is encoded by an unannotated gene that is upregulated under low carbon conditions and controlled by transcription factor NtcA, a central regulator of nitrogen homeostasis. Ectopic overexpression of nirP1 in Synechocystis sp. PCC 6803 resulted in a chlorotic phenotype, delayed growth, severe changes in amino acid pools, and nitrite excretion. Coimmunoprecipitation experiments indicated that NirP1 interacts with nitrite reductase, a central enzyme in the assimilation of ammonia from nitrate/nitrite. Our results reveal that NirP1 is widely conserved in cyanobacteria and plays a crucial role in the coordination of C/N primary metabolism by targeting nitrite reductase.


Asunto(s)
Nitritos , Synechocystis , Nitritos/metabolismo , Nitratos/metabolismo , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Amoníaco/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Synechocystis/genética , Synechocystis/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA