Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Res Vet Sci ; 128: 275-285, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31869593

RESUMEN

The cardiac conduction system is a network structure that allows the initiation and fast propagation of electrical impulses that trigger the electrical depolarization of the myocardial tissue. The purpose of this work is to study the histological and morphometric characteristics of the different components of the sinus and atrioventricular nodes in humans and pigs and their relationship with supraventricular arrhythmias. In this study, we describe the morphometry of the sinus and atrioventricular nodes of 10 adult humans and 10 pig hearts. A computerized morphometric study has been carried out, where we determined the number of cells that compose the nodes as well as different parameters related to their shape and size. The sinus node in human and pig is a compact structure, whose shape is oblong. Their cells (nodal and transitional cells) are pale and located in the center and the periphery, respectively. The atrioventricular node has also a shape oblong. P cells are pale in both species, but in humans, they are smaller than cardiomyocytes. The T cells are small and pale in both species, identified by hematoxylin-eosin and desmin stains. We have observed through a morphometric profile that the structure of sinus and atrioventricular nodes of pigs and humans show few differences. Pigs can be used as models for hemodynamic applications and experimental studies that include atrial electrical conduction and, in this way, prevent the presentation of arrhythmias that can generate sudden deaths in humans and pigs.


Asunto(s)
Nodo Atrioventricular/citología , Histología Comparada , Nodo Sinoatrial/citología , Animales , Arritmias Cardíacas/prevención & control , Atrios Cardíacos/patología , Sistema de Conducción Cardíaco/patología , Humanos , Porcinos
2.
Sci Rep ; 9(1): 2106, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765799

RESUMEN

The atrioventricular node (AVN) coordinates the timing of atrial and ventricular contraction to optimize cardiac performance. To study this critical function using mouse genetics, however, new reagents are needed that allow AVN-specific manipulation. Here we describe a novel Gjd3-CreEGFP mouse line that successfully recombines floxed alleles within the AVN beginning at E12.5. These mice have been engineered to express CreEGFP under the control of endogenous Gjd3 regulatory elements without perturbing native protein expression. Detailed histological analysis of Gjd3-CreEGFP mice reveals specific labeling of AVN cardiomyocytes and a subset of cardiac endothelial cells. Importantly, we show that Gjd3-CreEGFP mice have preserved cardiac mechanical and electrical function. In one application of our newly described mouse line, we provide a three-dimensional (3D) view of the AVN using tissue clearing combined with confocal microscopy. With this 3D model as a reference, we identify specific AVN sub-structures based on marker staining characteristics. In addition, we use our Gjd3-CreEGFP mice to guide microdissection of the AVN and construction of a single-cell atlas. Thus, our results establish a new transgenic tool for AVN-specific recombination, provide an updated model of AVN morphology, and describe a roadmap for exploring AVN cellular heterogeneity.


Asunto(s)
Potenciales de Acción , Nodo Atrioventricular/citología , Nodo Atrioventricular/fisiología , Conexinas/fisiología , Células Endoteliales/citología , Receptores ErbB/metabolismo , Miocitos Cardíacos/citología , Animales , Células Endoteliales/metabolismo , Receptores ErbB/genética , Técnicas de Sustitución del Gen , Atrios Cardíacos/citología , Atrios Cardíacos/fisiopatología , Integrasas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo
3.
Heart Rhythm ; 15(5): 752-760, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29288034

RESUMEN

BACKGROUND: Aging is associated with an increased incidence of atrioventricular nodal (AVN) dysfunction. OBJECTIVE: The aim of this study was to investigate the structural and functional remodeling in the atrioventricular junction (AVJ) with aging. METHODS: Electrophysiology, histology, and immunohistochemistry experiments on male Wistar Hannover rats aged 3 months (n = 24) and 2 years (n = 15) were performed. Atrio-His (AH) interval, Wenkebach cycle length (WBCL), and AVN effective refractory period (AVNERP) were measured. Cesium (2 mM) was used to block hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, while ryanodine (2 µM) was used to block ryanodine 2 (RyR2) channels. Protein expression from different regions of the AVJ was studied using immunofluorescence. The expression of connexins (connexin 43 and connexin 40), ion channels (Hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4), voltage sensitive sodium channel (Nav1.5), and L-Type calcium channel (Cav1.3)), and calcium handling proteins (RyR2 and sarco/endoplasmic reticulum calcium ATPaset type 2a (SERCA2a)) were measured. Morphological characteristics were studied with histology. RESULTS: Without drugs to block HCN and RyR2 channels, there was prolongation of the AH interval, WBCL, and AVNERP (P < .05) with aging. In young rats only, cesium prolonged the AH interval, WBCL, and AVNERP (P < .01). Ryanodine prolonged the AH interval and WBCL (P < .01) in both young and old rats. Immunofluorescence revealed that with aging, connexin 43, HCN4, Nav1.5, and RyR2 downregulate in the regions of the AVJ and connexin 40, SERCA2a, and Cav1.3 upregulate (P < .05). Aging results in cellular hypertrophy, loosely packed cells, a decrease in the number of nuclei, and an increase in collagen content. CONCLUSION: Heterogeneous ion channel expression changes were observed in the AVJ with aging. For the first time, we have shown that HCN and RyR2 play an important role in AVN dysfunction with aging.


Asunto(s)
Envejecimiento , Nodo Atrioventricular/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Rianodina/farmacología , Animales , Nodo Atrioventricular/citología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Inmunohistoquímica , Masculino , Modelos Animales , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos
4.
J Morphol ; 278(7): 975-986, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28444887

RESUMEN

We studied the morphology of the atrioventricular conduction system (AVCS) and Purkinje fibers of the yak. Light and transmission electron microscopy were used to study the histological features of AVCS. The distributional characteristics of the His-bundle, the left bundle branch (LBB), right bundle branch (RBB), and Purkinje fiber network of yak hearts were examined using gross dissection, ink injection, and ABS casting. The results showed that the atrioventricular node (AVN) of yak located in the right side of interatrial septum and had a flattened ovoid shape. The AVN of yak is composed of the slender, interweaving cells formed almost entirely of the transitional cells (T-cells). The His-bundle extended from the AVN, and split into left LBB and RBB at the crest of the interventricular septum. The LBB descended along the left side of interventricular septum. At approximately the upper 1/3 of the interventricular septum, the LBB typically divided into three branches. The RBB ran under the endocardium of the right side of interventricular septum, and extended to the base of septal papillary muscle, passed into the moderator band, crossed the right ventricular cavity to reach the base of anterior papillary muscle, and divided into four fascicles under the subendocardial layer. The Purkinje fibers in the ventricle formed a complex spatial network. The distributional and cellular component characteristics of the AVCS and Purkinje fibers ensured normal cardiac function.


Asunto(s)
Nodo Atrioventricular/anatomía & histología , Bovinos/anatomía & histología , Sistema de Conducción Cardíaco/anatomía & histología , Ramos Subendocárdicos/anatomía & histología , Animales , Anticuerpos/metabolismo , Nodo Atrioventricular/citología , Nodo Atrioventricular/ultraestructura , Conexina 43/metabolismo , Ganglión/ultraestructura , Ventrículos Cardíacos/citología , Ramos Subendocárdicos/citología , Ramos Subendocárdicos/ultraestructura
5.
Physiol Rep ; 4(11)2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27288059

RESUMEN

The atrioventricular node (AVN) of the cardiac conduction system coordinates atrial-ventricular excitation and can act as a subsidiary pacemaker. Recent evidence suggests that an inward background sodium current, IB,Na, carried by nonselective cation channels (NSCCs), contributes to AVN cell pacemaking. The study of the physiological contribution of IB,Na has been hampered, however, by a lack of selective pharmacological antagonists. This study investigated effects of the NSCC inhibitor SKF-96365 on spontaneous activity, IB,Na, and other ionic currents in AVN cells isolated from the rabbit. Whole-cell patch-clamp recordings of action potentials (APs) and ionic currents were made at 35-37°C. A concentration of 10 µmol/L SKF-96365 slowed spontaneous action potential rate by 13.9 ± 5.3% (n = 8) and slope of the diastolic depolarization from 158.1 ± 30.5 to 86.8 ± 30.5 mV sec(-1) (P < 0.01; n = 8). Action potential upstroke velocity and maximum diastolic potential were also reduced. Under IB,Na-selective conditions, 10 µmol/L SKF-96365 inhibited IB,Na at -50 mV by 36.1 ± 6.8% (n = 8); however, effects on additional channel currents were also observed. Thus, the peak l-type calcium current (ICa,L) at +10 mV was inhibited by 38.6 ± 8.1% (n = 8), while the rapid delayed rectifier current, IKr, tails at -40 mV following depolarization to +20 mV were inhibited by 55.6 ± 4.6% (n = 8). The hyperpolarization-activated current, If, was unaffected by SKF-96365. Collectively, these results indicate that SKF-96365 exerts a moderate inhibitory effect on IB,Na and slows AVN cell pacemaking. However, additional effects of the compound on ICa,L and IKr confound the use of SKF-96365 to dissect out selectively the physiological role of IB,Na in the AVN.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Nodo Atrioventricular/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Imidazoles/farmacología , Transporte Iónico/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Nodo Atrioventricular/citología , Masculino , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Conejos
6.
Mol Cell Biol ; 35(4): 649-61, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25487574

RESUMEN

The cardiac conduction system coordinates electrical activation through a series of interconnected structures, including the atrioventricular node (AVN), the central connection point that delays impulse propagation to optimize cardiac performance. Although recent studies have uncovered important molecular details of AVN formation, relatively little is known about the transcriptional mechanisms that regulate AV delay, the primary function of the mature AVN. We identify here MyoR as a novel transcription factor expressed in Cx30.2(+) cells of the AVN. We show that MyoR specifically inhibits a Cx30.2 enhancer required for AVN-specific gene expression. Furthermore, we demonstrate that MyoR interacts directly with Gata4 to mediate transcriptional repression. Our studies reveal that MyoR contains two nonequivalent repression domains. While the MyoR C-terminal repression domain inhibits transcription in a context-dependent manner, the N-terminal repression domain can function in a heterologous context to convert the Hand2 activator into a repressor. In addition, we show that genetic deletion of MyoR in mice increases Cx30.2 expression by 50% and prolongs AV delay by 13%. Taken together, we conclude that MyoR modulates a Gata4-dependent regulatory circuit that establishes proper AV delay, and these findings may have wider implications for the variability of cardiac rhythm observed in the general population.


Asunto(s)
Nodo Atrioventricular/metabolismo , Factor de Transcripción GATA4/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Animales , Nodo Atrioventricular/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Células COS , Chlorocebus aethiops , Conexinas/genética , Conexinas/metabolismo , Embrión de Mamíferos , Femenino , Factor de Transcripción GATA4/genética , Regulación de la Expresión Génica , Genes Reporteros , Frecuencia Cardíaca/fisiología , Luciferasas/genética , Luciferasas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/genética , Transcripción Genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
7.
Mol Cell Biochem ; 383(1-2): 161-71, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23877224

RESUMEN

Dysfunction of the cardiac pacemaker tissues due to genetic defects, acquired diseases, or aging results in arrhythmias. When arrhythmias occur, artificial pacemaker implants are used for treatment. However, the numerous limitations of electronic implants have prompted studies of biological pacemakers that can integrate into the myocardium providing a permanent cure. Embryonic stem (ES) cells cultured as three-dimensional (3D) spheroid aggregates termed embryoid bodies possess the ability to generate all cardiac myocyte subtypes. Here, we report the use of a SHOX2 promoter and a Cx30.2 enhancer to genetically identify and isolate ES cell-derived sinoatrial node (SAN) and atrioventricular node (AVN) cells, respectively. The ES cell-derived Shox2 and Cx30.2 cardiac myocytes exhibit a spider cell morphology and high intracellular calcium loading characteristic of pacemaker-nodal myocytes. These cells express abundant levels of pacemaker genes such as endogenous HCN4, Cx45, Cx30.2, Tbx2, and Tbx3. These cells were passaged, frozen, and thawed multiple times while maintaining their pacemaker-nodal phenotype. When cultured as 3D aggregates in an attempt to create a critical mass that simulates in vivo architecture, these cell lines exhibited an increase in the expression level of key regulators of cardiovascular development, such as GATA4 and GATA6 transcription factors. In addition, the aggregate culture system resulted in an increase in the expression level of several ion channels that play a major role in the spontaneous diastolic depolarization characteristic of pacemaker cells. We have isolated pure populations of SAN and AVN cells that will be useful tools for generating biological pacemakers.


Asunto(s)
Nodo Atrioventricular/citología , Relojes Biológicos , Separación Celular/métodos , Células Madre Embrionarias/citología , Miocitos Cardíacos/citología , Nodo Sinoatrial/citología , Animales , Relojes Biológicos/genética , Western Blotting , Calcio/metabolismo , Agregación Celular/genética , Diferenciación Celular/genética , Línea Celular , Conexinas/metabolismo , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Miocitos Cardíacos/metabolismo
9.
Circulation ; 126(9): 1058-66, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22837163

RESUMEN

BACKGROUND: Notch signaling has previously been shown to play an essential role in regulating cell fate decisions and differentiation during cardiogenesis in many systems including Drosophila, Xenopus, and mammals. We hypothesized that Notch may also be involved in directing the progressive lineage restriction of cardiomyocytes into specialized conduction cells. METHODS AND RESULTS: In hearts where Notch signaling is activated within the myocardium from early development onward, Notch promotes a conduction-like phenotype based on ectopic expression of conduction system-specific genes and cell autonomous changes in electrophysiology. With the use of an in vitro assay to activate Notch in newborn cardiomyocytes, we observed global changes in the transcriptome, and in action potential characteristics, consistent with reprogramming to a conduction-like phenotype. CONCLUSIONS: Notch can instruct the differentiation of chamber cardiac progenitors into specialized conduction-like cells. Plasticity remains in late-stage cardiomyocytes, which has potential implications for engineering of specialized cardiovascular tissues.


Asunto(s)
Nodo Atrioventricular/citología , Regulación del Desarrollo de la Expresión Génica , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Receptor Notch1/fisiología , Potenciales de Acción , Adenoviridae/genética , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Contactina 2/biosíntesis , Contactina 2/genética , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Ratones , Miocitos Cardíacos/ultraestructura , Canal de Sodio Activado por Voltaje NAV1.5 , Plasticidad Neuronal , Técnicas de Placa-Clamp , Fenotipo , Ramos Subendocárdicos/citología , Receptor Notch1/genética , Proteínas Recombinantes de Fusión/fisiología , Transducción de Señal/fisiología , Canales de Sodio/biosíntesis , Canales de Sodio/genética , Proteínas de Dominio T Box/biosíntesis , Proteínas de Dominio T Box/genética , Factor de Transcripción HES-1 , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
10.
PLoS One ; 7(3): e33448, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479400

RESUMEN

BACKGROUND: The atrioventricular node (AVN) is a key component of the cardiac pacemaker-conduction system. Although it is known that receptors for the peptide hormone endothelin-1 (ET-1) are expressed in the AVN, there is very little information available on the modulatory effects of ET-1 on AVN electrophysiology. This study characterises for the first time acute modulatory effects of ET-1 on AVN cellular electrophysiology. METHODS: Electrophysiological experiments were conducted in which recordings were made from rabbit isolated AVN cells at 35-37°C using the whole-cell patch clamp recording technique. RESULTS: Application of ET-1 (10 nM) to spontaneously active AVN cells led rapidly (within ~13 s) to membrane potential hyperpolarisation and cessation of spontaneous action potentials (APs). This effect was prevented by pre-application of the ET(A) receptor inhibitor BQ-123 (1 µM) and was not mimicked by the ET(B) receptor agonist IRL-1620 (300 nM). In whole-cell voltage-clamp experiments, ET-1 partially inhibited L-type calcium current (I(Ca,L)) and rapid delayed rectifier K(+) current (I(Kr)), whilst it transiently activated the hyperpolarisation-activated current (I(f)) at voltages negative to the pacemaking range, and activated an inwardly rectifying current that was inhibited by both tertiapin-Q (300 nM) and Ba(2+) ions (2 mM); each of these effects was sensitive to ET(A) receptor inhibition. In cells exposed to tertiapin-Q, ET-1 application did not produce membrane potential hyperpolarisation or immediate cessation of spontaneous activity; instead, there was a progressive decline in AP amplitude and depolarisation of maximum diastolic potential. CONCLUSIONS: Acutely applied ET-1 exerts a direct modulatory effect on AVN cell electrophysiology. The dominant effect of ET-1 in this study was activation of a tertiapin-Q sensitive inwardly rectifying K(+) current via ET(A) receptors, which led rapidly to cell quiescence.


Asunto(s)
Nodo Atrioventricular/citología , Endotelina-1/farmacología , Miocardio/citología , Miocitos Cardíacos/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Algoritmos , Animales , Venenos de Abeja/farmacología , Canales de Calcio Tipo L/fisiología , Células Cultivadas , Antagonistas de los Receptores de la Endotelina A , Activación del Canal Iónico/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Péptidos Cíclicos/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/fisiología , Conejos , Receptor de Endotelina A/metabolismo
11.
Circ Arrhythm Electrophysiol ; 4(6): 936-46, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22002995

RESUMEN

BACKGROUND: The properties of the atrioventricular (AV) node in the neonate heart and its role in unique pediatric cardiac arrhythmias such as junctional ectopic tachycardia (JET) are poorly understood. This is due in large part to the dearth of information on the structure and physiology of the AV node in the immature myocardium. METHODS AND RESULTS: Sinoatrial nodal cells (SANCs), AV nodal tissues, and myocytes (AVNCs) were obtained from neonatal (10-day-old) rabbits, and the histological, immunohistological, and electrophysiological properties were characterized in detail. Masson's trichrome histological staining clearly delineated AV nodal structures including the inferior nodal extension, compact node, and the bundle of His region. AV tissue sections and AVNCs were immunolabeled against neurofilament 160 (NF160), connexin 43 (Cx43), hyperpolarization-activated, cyclic nucleotide modulated channel (HCN4), sodium/calcium exchanger, ryanodine receptor, sarcoplasmic/endoplasmic reticulum Ca(2+) pump (SERCA), and phospholamban (PLB). In AVNCs with triple-positive NF160, SERCA, and PLB labeling, SERCA and PLB were found with high degrees of colocalization. The majority (59%) of NF160-positive AVNCs were found to coexpress HCN4. NF160 and HCN4 expression was found to be even higher in SANCs, where 88% of SANCs exhibited coexpression. Spontaneous action potentials recorded from isolated neonatal AVNCs were uniformly of the atrionodal type, showing none of the action potential heterogeneities found in the mature heart. Current recordings found the hyperpolarization-activated funny current (I(f)) in 55% (11 of 21 cells) of AVNCs, consistent with the immunocytochemistry results. CONCLUSIONS: This represents the first detailed electrophysiological and immunohistological report of the neonatal AV node and lays the groundwork for a better understanding of heart rate regulation and unique arrhythmias in the neonate heart.


Asunto(s)
Nodo Atrioventricular/citología , Separación Celular , Potenciales de Acción , Animales , Animales Recién Nacidos , Nodo Atrioventricular/metabolismo , Relojes Biológicos , Proteínas de Unión al Calcio/metabolismo , Conexina 43/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Conductividad Eléctrica , Impedancia Eléctrica , Inmunohistoquímica , Proteínas de Neurofilamentos/metabolismo , Técnicas de Placa-Clamp , Conejos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Factores de Tiempo
12.
Birth Defects Res A Clin Mol Teratol ; 91(6): 565-77, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21630423

RESUMEN

Defects originating from the atrioventricular canal region are part of a wide spectrum of congenital cardiovascular malformations that frequently affect newborns. These defects include partial or complete atrioventricular septal defects, atrioventricular valve defects, and arrhythmias, such as atrioventricular re-entry tachycardia, atrioventricular nodal block, and ventricular preexcitation. Insight into the cellular origin of the atrioventricular canal myocardium and the molecular mechanisms that control its development will aid in the understanding of the etiology of the atrioventricular defects. This review discusses current knowledge concerning the origin and fate of the atrioventricular canal myocardium, the molecular mechanisms that determine its specification and differentiation, and its role in the development of certain malformations such as those that underlie ventricular preexcitation.


Asunto(s)
Nodo Atrioventricular/citología , Nodo Atrioventricular/embriología , Linaje de la Célula , Animales , Nodo Atrioventricular/metabolismo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/patología , Humanos
13.
Channels (Austin) ; 5(3): 241-50, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21406959

RESUMEN

It is well established that Pacemaker activity of the sino-atrial node (SAN) initiates the heartbeat. However, the atrioventricular node (AVN) can generate viable pacemaker activity in case of SAN failure, but we have limited knowledge of the ionic bases of AVN automaticity. We characterized pacemaker activity and ionic currents in automatic myocytes of the mouse AVN. Pacemaking of AVN cells (AVNCs) was lower than that of SAN pacemaker cells (SANCs), both in control conditions and upon perfusion of isoproterenol (ISO). Block of I(Na) by tetrodotoxin (TTX) or of I(Ca,L) by isradipine abolished AVNCs pacemaker activity. TTX-resistant (I(Nar)) and TTX-sensitive (I(Nas)) Na(+) currents were recorded in mouse AVNCs, as well as T-(I(Ca,T)) and L-type (I(Ca,L)) Ca(2+) currents I(Ca,L) density was lower than in SANCs (51%). The density of the hyperpolarization-activated current, (I(f)) and that of the fast component of the delayed rectifier current (I(Kr)) were, respectively, lower (52%) and higher (53%) in AVNCs than in SANCs. Pharmacological inhibition of I(f) by 3 µM ZD-7228 reduced pacemaker activity by 16%, suggesting a relevant role for I(f) in AVNCs automaticity. Some AVNCs expressed also moderate densities of the transient outward K(+) current (I(to)). In contrast, no detectable slow component of the delayed rectifier current (I(Ks)) could be recorded in AVNCs. The lower densities of I(f) and I(Ca,L), as well as higher expression of I(Kr) in AVNCs than in SANCs may contribute to the intrinsically slower AVNCs pacemaking than that of SANCs.


Asunto(s)
Nodo Atrioventricular/metabolismo , Relojes Biológicos/fisiología , Potenciales de la Membrana/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Animales , Nodo Atrioventricular/citología , Relojes Biológicos/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Fármacos Cardiovasculares/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/fisiología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Isradipino/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Transgénicos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Pirimidinas/farmacología , Nodo Sinoatrial/citología , Nodo Sinoatrial/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
14.
Channels (Austin) ; 5(3): 251-61, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21406960

RESUMEN

The atrioventricular node controls cardiac impulse conduction and generates pacemaker activity in case of failure of the sino-atrial node. Understanding the mechanisms of atrioventricular automaticity is important for managing human pathologies of heart rate and conduction. However, the physiology of atrioventricular automaticity is still poorly understood. We have investigated the role of three key ion channel-mediated pacemaker mechanisms namely, Ca(v)1.3, Ca(v)3.1 and HCN channels in automaticity of atrioventricular node cells (AVNCs). We studied atrioventricular conduction and pacemaking of AVNCs in wild-type mice and mice lacking Ca(v)3.1 (Ca(v)3.1(-/-)), Ca(v)1.3 (Ca(v)1.3(-/-)), channels or both (Ca(v)1.3(-/-)/Ca(v)3.1(-/-)). The role of HCN channels in the modulation of atrioventricular cells pacemaking was studied by conditional expression of dominant-negative HCN4 channels lacking cAMP sensitivity. Inactivation of Ca(v)3.1 channels impaired AVNCs pacemaker activity by favoring sporadic block of automaticity leading to cellular arrhythmia. Furthermore, Ca(v)3.1 channels were critical for AVNCs to reach high pacemaking rates under isoproterenol. Unexpectedly, Ca(v)1.3 channels were required for spontaneous automaticity, because Ca(v)1.3(-/-) and Ca(v)1.3(-/-)/Ca(v)3.1(-/-) AVNCs were completely silent under physiological conditions. Abolition of the cAMP sensitivity of HCN channels reduced automaticity under basal conditions, but maximal rates of AVNCs could be restored to that of control mice by isoproterenol. In conclusion, while Ca(v)1.3 channels are required for automaticity, Ca(v)3.1 channels are important for maximal pacing rates of mouse AVNCs. HCN channels are important for basal AVNCs automaticity but do not appear to be determinant for ß-adrenergic regulation.


Asunto(s)
Nodo Atrioventricular/metabolismo , Relojes Biológicos/fisiología , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Arritmia Sinusal/genética , Arritmia Sinusal/metabolismo , Nodo Atrioventricular/citología , Relojes Biológicos/efectos de los fármacos , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo T/genética , Células Cultivadas , AMP Cíclico/genética , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Isoproterenol/farmacología , Ratones , Ratones Noqueados
15.
J Mol Cell Cardiol ; 50(4): 642-51, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21256850

RESUMEN

The atrioventricular conduction axis, located in the septal component of the atrioventricular junctions, is arguably the most complex structure in the heart. It fulfils a multitude of functions, including the introduction of a delay between atrial and ventricular systole and backup pacemaking. Like any other multifunctional tissue, complexity is a key feature of this specialised tissue in the heart, and this complexity is both anatomical and electrophysiological, with the two being inextricably linked. We used quantitative PCR, histology and immunohistochemistry to analyse the axis from six human subjects. mRNAs for ~50 ion and gap junction channels, Ca(2+)-handling proteins and markers were measured in the atrial muscle (AM), a transitional area (TA), inferior nodal extension (INE), compact node (CN), penetrating bundle (PB) and ventricular muscle (VM). When compared to the AM, we found a lower expression of Na(v)1.5, K(ir)2.1, Cx43 and ANP mRNAs in the CN for example, but a higher expression of HCN1, HCN4, Ca(v)1.3, Ca(v)3.1, K(ir)3.4, Cx40 and Tbx3 mRNAs. Expression of some related proteins was in agreement with the expression of the corresponding mRNAs. There is a complex and heterogeneous pattern of expression of ion and gap junction channels and Ca(2+)-handling proteins in the human atrioventricular conduction axis that explains the function of this crucial pathway.


Asunto(s)
Nodo Atrioventricular/citología , Nodo Atrioventricular/metabolismo , Sistema de Conducción Cardíaco/citología , Sistema de Conducción Cardíaco/metabolismo , Arritmias Cardíacas/metabolismo , Canales de Calcio Tipo T/metabolismo , Caveolina 3/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Electrofisiología , Uniones Comunicantes/metabolismo , Humanos , Inmunohistoquímica , Técnicas In Vitro , Canales Iónicos/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/metabolismo
16.
Cell Calcium ; 49(1): 56-65, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21163524

RESUMEN

The atrioventricular node (AVN) can act as a subsidiary cardiac pacemaker if the sinoatrial node fails. In this study, we investigated the effects of the Na-Ca exchange (NCX) inhibitor KB-R7943, and inhibition of the sarcoplasmic reticulum calcium ATPase (SERCA), using thapsigargin or cyclopiazonic acid (CPA), on spontaneous action potentials (APs) and [Ca(2+)](i) transients from cells isolated from the rabbit AVN. Spontaneous [Ca(2+)](i) transients were monitored from undialysed AVN cells at 37°C using Fluo-4. In separate experiments, spontaneous APs and ionic currents were recorded using the whole-cell patch clamp technique. Rapid application of 5 µM KB-R7943 slowed or stopped spontaneous APs and [Ca(2+)](i) transients. However, in voltage clamp experiments in addition to blocking NCX current (I(NCX)) KB-R7943 partially inhibited L-type calcium current (I(Ca,L)). Rapid reduction of external [Na(+)] also abolished spontaneous activity. Inhibition of SERCA (using 2.5 µM thapsigargin or 30 µM CPA) also slowed or stopped spontaneous APs and [Ca(2+)](i) transients. Our findings are consistent with the hypothesis that sarcoplasmic reticulum (SR) Ca(2+) release influences spontaneous activity in AVN cells, and that this occurs via [Ca(2+)](i)-activated I(NCX); however, the inhibitory action of KB-R7943 on I(Ca,L) means that care is required in the interpretation of data obtained using this compound.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Nodo Atrioventricular/citología , Nodo Atrioventricular/enzimología , Inhibidores Enzimáticos/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Tiourea/análogos & derivados , Animales , Nodo Atrioventricular/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Conejos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sodio/farmacología , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/metabolismo , Tapsigargina/farmacología , Tiourea/farmacología
18.
J Mol Cell Cardiol ; 46(5): 644-52, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19248787

RESUMEN

Connexin (Cx) 30.2, Cx40 and Cx45 containing gap junctional channels contribute to electrical impulse propagation through the mouse atrioventricular node (AV-node). The cross talk in between these Cxs may be of great importance for AV-nodal conduction. We generated Cx30.2/Cx40 double deficient mice (Cx30.2(LacZ/LacZ)Cx40(-/-)) and analyzed the relative impact of Cx30.2 and Cx40 on cardiac conductive properties in vivo by use of electrophysiological examination. Cx30.2(LacZ/LacZ)Cx40(-/-) mice exhibited neither obvious cardiac malformations nor impaired contractile function. In surface-ECG analyses, Cx30.2(LacZ/LacZ)Cx40(-/-) and Cx40 deficient animals (Cx40(-/-)) showed significantly longer P-wave durations, PQ-intervals and prolonged QRS-complexes relative to wildtype littermates (WT). Cx30.2-deficient mice (Cx30.2(LacZ/LacZ)) developed shorter PQ-intervals as compared to WT, Cx40(-/-) or Cx30.2/Cx40 double deficient mice. Intracardiac evaluation of the atria-His (AH) and His-ventricle (HV) intervals representing supra and infra-Hisian conduction yielded significant acceleration of supra-Hisian conductivity in Cx30.2(LacZ/LacZ) (AH: 28.2+/-4.3 ms) and prolongation of infra-Hisian conduction in Cx40(-/-) mice (HV: 13.7+/-2.6 ms). These parameters were unchanged in the Cx30.2(LacZ/LacZ)Cx40(-/-) mice (AH: 37.3+/-5.5 ms, HV: 11.7+/-2.6 ms), which exhibited AV-nodal and ventricular conduction times similar to WT animals (AH: 35.9+/-4.4 ms, HV: 10.5+/-1.9 ms). We conclude that the remaining Cx45 gap junctional channels are sufficient to maintain electrical coupling and cardiac impulse propagation in the AV-node and proximal ventricular conduction system in mice. We suggest that Cx30.2 and Cx40 act as counterparts in the AV-node and His-bundle, decreasing or increasing, respectively, electrical coupling and conduction velocity in these areas.


Asunto(s)
Nodo Atrioventricular/fisiología , Conexinas/deficiencia , Sistema de Conducción Cardíaco/fisiología , Animales , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/fisiopatología , Nodo Atrioventricular/citología , Nodo Atrioventricular/metabolismo , Conexinas/metabolismo , Ecocardiografía , Fenómenos Electrofisiológicos , Sistema de Conducción Cardíaco/metabolismo , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/metabolismo , Inmunohistoquímica , Ratones , Fenotipo , Proteína alfa-5 de Unión Comunicante
19.
Heart Rhythm ; 6(5): 672-80, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19328044

RESUMEN

BACKGROUND: The so-called specialized tissues within the heart are the sinus node, the atrioventricular conduction system, and the Purkinje network. Further structures with the characteristics of specialized tissue are also found within the atrioventricular junction, although they are less well described. OBJECTIVE: The purpose of this study was to demonstrate the location and extent of these atrioventricular ring specialized tissues, showing their relationship with the normal atrioventricular conduction system. METHODS: We identified the tissues using histology combined with immunohistochemical labeling with connexin43 (Cx43), the major gap junction in heart, and HCN4, the major isoform of the funny channel. RESULTS: We observed rings of specialized tissue mainly in hearts from rats, mice, and guinea pigs, negative for Cx43 but positive for HCN4. Each ring takes its origin from an inferior extension of the atrioventricular node. The rightward ring runs around the vestibule of the tricuspid valve, whereas the leftward ring encircles the mitral valve. On returning toward the atrial septum, the tricuspid ring crosses over the penetrating part of the atrioventricular conduction system, reuniting with the mitral ring to form a superiorly located retroaortic node. The atrioventricular conduction system itself continues beyond the origin of the right and left bundle branches, forming an aortic ring that ascends toward the retroaortic node but fails to make contact because of the intervening area of aortic-to-mitral valvar fibrous continuity. CONCLUSION: Rings of conduction tissue take their origin from inferior extensions of the atrioventricular node, passing rightward and leftward to encircle the orifices of the tricuspid and mitral valves and reuniting to form an extensive retroaortic node. Thus, a ring with morphologic features justifying a definition of specialized conduction tissue surrounds the atrioventricular junctions, although its function has yet to be established.


Asunto(s)
Aorta Torácica/inervación , Nodo Atrioventricular/citología , Fascículo Atrioventricular/citología , Animales , Aorta Torácica/citología , Aorta Torácica/metabolismo , Nodo Atrioventricular/metabolismo , Fascículo Atrioventricular/metabolismo , Caveolina 3/metabolismo , Tamaño de la Célula , Conexina 43/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Cobayas , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Inmunohistoquímica , Masculino , Ratones , Canales de Potasio/metabolismo , Ratas , Ratas Wistar
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 40(6): 988-93, 2009 Nov.
Artículo en Chino | MEDLINE | ID: mdl-20067104

RESUMEN

OBJECTIVE: To explore the electrophysiologic characteristics of Ito in myocytes from cardiac Koch triangle. METHODS: Patch clamp technique was employed to investigate the I-V and D-V relation, steady-state activation and inactivation kinetics of Ito from myocytes in Koch triangle of rabbit hearts. RESULTS: (1) The maximum peak current (pA) and peak current density (pA/pF) at +20 mV in PC (pacing cell), TC (transitonal cell) alpha,beta, AC (atrial cell) and PL (purkinje-like cell) cells were different from each other (P < 0. 05); The cells also had different current density (P < 0.05) except between TCalpha, TCbeta and PL cells (P > 0.05). (2) The half activation potential (V(mIto1/2), mV) of steady state activation among PC, TCalpha, TCbeta, AC and PL were significantly different (P < 0.05); The paired comparison between TCalpha and TCbeta, AC and PL, and TCbeta and PC showed significant difference (P < 0.05); but the differences between TCa and PC, TCbeta and AC, and TCbeta and PL were not significant (P > 0.05). (3) The half inactivation potential (V5(hIto1/2), mV) of steady state inactivation between TCalpha and PC, TCa and PL, TCbeta and PC, and TCbeta and PL demonstrated significant differences(P < 0.05). The differences of K(hIto) between TCalpha and TCbeta, PC and PL, TCbeta and PC, and AC and PL were significant (P < 0.05). CONCLUSIONS: Ito of cardiac cells from Koch triangle in rabbit hearts are heterogeneous, but relatively specified and distributed in different groups.


Asunto(s)
Nodo Atrioventricular/citología , Miocitos Cardíacos/citología , Canales de Potasio/fisiología , Potenciales de Acción , Animales , Nodo Atrioventricular/fisiología , Electrofisiología , Femenino , Masculino , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA