Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.461
Filtrar
1.
Nature ; 633(8030): 686-694, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39198647

RESUMEN

Faithful DNA replication is essential for genome integrity1-4. Under-replicated DNA leads to defects in chromosome segregation, which are common during embryogenesis5-8. However, the regulation of DNA replication remains poorly understood in early mammalian embryos. Here we constructed a single-cell genome-wide DNA replication atlas of pre-implantation mouse embryos and identified an abrupt replication program switch accompanied by a transient period of genomic instability. In 1- and 2-cell embryos, we observed the complete absence of a replication timing program, and the entire genome replicated gradually and uniformly using extremely slow-moving replication forks. In 4-cell embryos, a somatic-cell-like replication timing program commenced abruptly. However, the fork speed was still slow, S phase was extended, and markers of replication stress, DNA damage and repair increased. This was followed by an increase in break-type chromosome segregation errors specifically during the 4-to-8-cell division with breakpoints enriched in late-replicating regions. These errors were rescued by nucleoside supplementation, which accelerated fork speed and reduced the replication stress. By the 8-cell stage, forks gained speed, S phase was no longer extended and chromosome aberrations decreased. Thus, a transient period of genomic instability exists during normal mouse development, preceded by an S phase lacking coordination between replisome-level regulation and megabase-scale replication timing regulation, implicating a link between their coordination and genome stability.


Asunto(s)
Momento de Replicación del ADN , Embrión de Mamíferos , Desarrollo Embrionario , Inestabilidad Genómica , Animales , Femenino , Masculino , Ratones , Blastocisto/citología , Blastocisto/metabolismo , Aberraciones Cromosómicas/efectos de los fármacos , Segregación Cromosómica , Daño del ADN/efectos de los fármacos , Reparación del ADN , Momento de Replicación del ADN/efectos de los fármacos , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/embriología , Desarrollo Embrionario/genética , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Fase S/efectos de los fármacos , Fase S/genética , Análisis de la Célula Individual , Puntos de Rotura del Cromosoma , División Celular , Nucleósidos/metabolismo , Nucleósidos/farmacología , ADN Polimerasa Dirigida por ADN/metabolismo , Complejos Multienzimáticos/metabolismo
2.
Biomolecules ; 14(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39062512

RESUMEN

Enzymatic transglycosylation of the fleximer base 4-(4-aminopyridine-3-yl)-1H-pyrazole using recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of "non-typical" minor products of the reaction. In addition to "typical" N1-pyrazole nucleosides, a 4-imino-pyridinium riboside and a N1-pyridinium-N1-pyrazole bis-ribose derivative were formed. N1-Pyrazole 2'-deoxyribonucleosides and a N1-pyridinium-N1-pyrazole bis-2'-deoxyriboside were formed. But 4-imino-pyridinium deoxyriboside was not formed in the reaction mixture. The role of thermodynamic parameters of key intermediates in the formation of reaction products was elucidated. To determine the mechanism of binding and activation of heterocyclic substrates in the E. coli PNP active site, molecular modeling of the fleximer base and reaction products in the enzyme active site was carried out. As for N1-pyridinium riboside, there are two possible locations for it in the PNP active site. The presence of a relatively large space in the area of amino acid residues Phe159, Val178, and Asp204 allows the ribose residue to fit into that space, and the heterocyclic base can occupy a position that is suitable for subsequent glycosylation. Perhaps it is this "upside down" arrangement that promotes secondary glycosylation and the formation of minor bis-riboside products.


Asunto(s)
Escherichia coli , Purina-Nucleósido Fosforilasa , Purina-Nucleósido Fosforilasa/metabolismo , Purina-Nucleósido Fosforilasa/química , Purina-Nucleósido Fosforilasa/genética , Glicosilación , Escherichia coli/genética , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Dominio Catalítico , Nucleósidos/química , Nucleósidos/metabolismo , Modelos Moleculares
3.
Sci Rep ; 14(1): 15742, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977798

RESUMEN

While certain human hepatitis B virus-targeting nucleoside analogs (NAs) serve as crucial anti-HBV drugs, HBV yet remains to be a major global health threat. E-CFCP is a 4'-modified and fluoromethylenated NA that exhibits potent antiviral activity against both wild-type and drug-resistant HBVs but less potent against human immunodeficiency virus type-1 (HIV-1). Here, we show that HIV-1 with HBV-associated amino acid substitutions introduced into the RT's dNTP-binding site (N-site) is highly susceptible to E-CFCP. We determined the X-ray structures of HBV-associated HIV-1 RT mutants complexed with DNA:E-CFCP-triphosphate (E-CFCP-TP). The structures revealed that exocyclic fluoromethylene pushes the Met184 sidechain backward, and the resultant enlarged hydrophobic pocket accommodates both the fluoromethylene and 4'-cyano moiety of E-CFCP. Structural comparison with the DNA:dGTP/entecavir-triphosphate complex also indicated that the cyclopentene moiety of the bound E-CFCP-TP is slightly skewed and deviated. This positioning partly corresponds to that of the bound dNTP observed in the HIV-1 RT mutant with drug-resistant mutations F160M/M184V, resulting in the attenuation of the structural effects of F160M/M184V substitutions. These results expand our knowledge of the interactions between NAs and the RT N-site and should help further design antiviral NAs against both HIV-1 and HBV.


Asunto(s)
Antivirales , Dominio Catalítico , Farmacorresistencia Viral , VIH-1 , Virus de la Hepatitis B , Mutación , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Farmacorresistencia Viral/genética , Humanos , Antivirales/farmacología , Antivirales/química , VIH-1/efectos de los fármacos , VIH-1/genética , Nucleósidos/farmacología , Nucleósidos/química , Nucleósidos/metabolismo , Transcriptasa Inversa del VIH/metabolismo , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/metabolismo , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ARN/metabolismo , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/química , Sitios de Unión , Unión Proteica , Modelos Moleculares
4.
J Biol Chem ; 300(8): 107505, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944122

RESUMEN

Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5'-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.


Asunto(s)
Proteínas Arqueales , Lisina , Thermococcus , Thermococcus/metabolismo , Thermococcus/genética , Thermococcus/enzimología , Lisina/metabolismo , Lisina/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/química , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , ARN de Archaea/metabolismo , ARN de Archaea/genética , ARN de Archaea/química , Guanina/metabolismo , Guanina/química , Guanina/análogos & derivados , Especificidad por Sustrato , Cinética , Nucleósidos/metabolismo , Nucleósidos/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Guanosina/análogos & derivados
5.
Biomolecules ; 14(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38927104

RESUMEN

Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy.


Asunto(s)
Colorantes Fluorescentes , Purina-Nucleósido Fosforilasa , Purina-Nucleósido Fosforilasa/metabolismo , Purina-Nucleósido Fosforilasa/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Nucleósidos/química , Nucleósidos/metabolismo , Nucleósidos/síntesis química , Purinas/química , Purinas/metabolismo , Purinas/síntesis química
6.
Nucleic Acids Res ; 52(12): 6733-6747, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38828787

RESUMEN

Adenosine Deaminases Acting on RNA (ADARs) are enzymes that catalyze the conversion of adenosine to inosine in RNA duplexes. These enzymes can be harnessed to correct disease-causing G-to-A mutations in the transcriptome because inosine is translated as guanosine. Guide RNAs (gRNAs) can be used to direct the ADAR reaction to specific sites. Chemical modification of ADAR guide strands is required to facilitate delivery, increase metabolic stability, and increase the efficiency and selectivity of the editing reaction. Here, we show the ADAR reaction is highly sensitive to ribose modifications (e.g. 4'-C-methylation and Locked Nucleic Acid (LNA) substitution) at specific positions within the guide strand. Our studies were enabled by the synthesis of RNA containing a new, ribose-modified nucleoside analog (4'-C-methyladenosine). Importantly, the ADAR reaction is potently inhibited by LNA or 4'-C-methylation at different positions in the ADAR guide. While LNA at guide strand positions -1 and -2 block the ADAR reaction, 4'-C-methylation only inhibits at the -2 position. These effects are rationalized using high-resolution structures of ADAR-RNA complexes. This work sheds additional light on the mechanism of ADAR deamination and aids in the design of highly selective ADAR guide strands for therapeutic editing using chemically modified RNA.


Asunto(s)
Adenosina Desaminasa , Edición de ARN , Ribosa , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/química , Ribosa/química , Ribosa/metabolismo , Humanos , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Metilación , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química , Nucleósidos/química , Nucleósidos/metabolismo , ARN/metabolismo , ARN/química , Inosina/metabolismo , Inosina/química
7.
J Transl Med ; 22(1): 449, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741129

RESUMEN

Inherited deficiency of thymidine phosphorylase (TP), encoded by TYMP, leads to a rare disease with multiple mitochondrial DNA (mtDNA) abnormalities, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the impact of TP deficiency on lysosomes remains unclear, which are important for mitochondrial quality control and nucleic acid metabolism. Muscle biopsy tissue and skin fibroblasts from MNGIE patients, patients with m.3243 A > G mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and healthy controls (HC) were collected to perform mitochondrial and lysosomal functional analyses. In addition to mtDNA abnormalities, compared to controls distinctively reduced expression of LAMP1 and increased mitochondrial content were detected in the muscle tissue of MNGIE patients. Skin fibroblasts from MNGIE patients showed decreased expression of LAMP2, lowered lysosomal acidity, reduced enzyme activity and impaired protein degradation ability. TYMP knockout or TP inhibition in cells can also induce the similar lysosomal dysfunction. Using lysosome immunoprecipitation (Lyso- IP), increased mitochondrial proteins, decreased vesicular proteins and V-ATPase enzymes, and accumulation of various nucleosides were detected in lysosomes with TP deficiency. Treatment of cells with high concentrations of dThd and dUrd also triggers lysosomal dysfunction and disruption of mitochondrial homeostasis. Therefore, the results provided evidence that TP deficiency leads to nucleoside accumulation in lysosomes and lysosomal dysfunction, revealing the widespread disruption of organelles underlying MNGIE.


Asunto(s)
ADN Mitocondrial , Fibroblastos , Lisosomas , Mitocondrias , Encefalomiopatías Mitocondriales , Nucleósidos , Timidina Fosforilasa , Humanos , Lisosomas/metabolismo , Timidina Fosforilasa/metabolismo , Timidina Fosforilasa/deficiencia , Timidina Fosforilasa/genética , Encefalomiopatías Mitocondriales/metabolismo , Encefalomiopatías Mitocondriales/patología , Encefalomiopatías Mitocondriales/genética , Fibroblastos/metabolismo , Fibroblastos/patología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Nucleósidos/metabolismo , Seudoobstrucción Intestinal/metabolismo , Seudoobstrucción Intestinal/patología , Seudoobstrucción Intestinal/enzimología , Seudoobstrucción Intestinal/genética , Oftalmoplejía/metabolismo , Oftalmoplejía/patología , Oftalmoplejía/congénito , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patología , Masculino , Femenino , Piel/patología , Piel/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo
8.
DNA Repair (Amst) ; 137: 103668, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460389

RESUMEN

Alovudine is a chain-terminating nucleoside analog (CTNA) that is frequently used as an antiviral and anticancer agent. Generally, CTNAs inhibit DNA replication after their incorporation into nascent DNA during DNA synthesis by suppressing subsequent polymerization, which restricts the proliferation of viruses and cancer cells. Alovudine is a thymidine analog used as an antiviral drug. However, the mechanisms underlying the removal of alovudine and DNA damage tolerance pathways involved in cellular resistance to alovudine remain unclear. Here, we explored the DNA damage tolerance pathways responsible for cellular tolerance to alovudine and found that BRCA1-deficient cells exhibited the highest sensitivity to alovudine. Moreover, alovudine interfered with DNA replication in two distinct mechanisms: first: alovudine incorporated at the end of nascent DNA interfered with subsequent DNA synthesis; second: DNA replication stalled on the alovudine-incorporated template strand. Additionally, BRCA1 facilitated the removal of the incorporated alovudine from nascent DNA, and BRCA1-mediated homologous recombination (HR) contributed to the progressive replication on the alovudine-incorporated template. Thus, we have elucidated the previously unappreciated mechanism of alovudine-mediated inhibition of DNA replication and the role of BRCA1 in cellular tolerance to alovudine.


Asunto(s)
Didesoxinucleósidos , Nucleósidos , Nucleósidos/farmacología , Nucleósidos/genética , Nucleósidos/metabolismo , Replicación del ADN , Proteína BRCA1/metabolismo , ADN
9.
Trends Endocrinol Metab ; 35(4): 290-299, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423899

RESUMEN

From our daily nutrition and synthesis within cells, nucleosides enter the bloodstream and circulate throughout the body and tissues. Nucleosides and nucleotides are classically viewed as precursors of nucleic acids, but recently they have emerged as a novel energy source for central carbon metabolism. Through catabolism by nucleoside phosphorylases, the ribose sugar group is released and can provide substrates for lower steps in glycolysis. In environments with limited glucose, such as at sites of infection or in the tumor microenvironment (TME), cells can use, and may even require, this alternative energy source. Here, we discuss the implications of these new findings in health and disease and speculate on the potential new roles of nucleosides and nucleic acids in energy metabolism.


Asunto(s)
Ácidos Nucleicos , Nucleósidos , Humanos , Nucleósidos/metabolismo , Carbono/metabolismo , Nucleótidos/metabolismo
10.
Mol Biochem Parasitol ; 258: 111616, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38401850

RESUMEN

Trypanosoma cruzi is a protozoan parasite and the etiological agent of Chagas disease, a debilitating and sometimes fatal disease that continues to spread to new areas. Yet, Chagas disease is still only treated with two related nitro compounds that are insufficiently effective and cause severe side effects. Nucleotide metabolism is one of the known vulnerabilities of T. cruzi, as they are auxotrophic for purines, and nucleoside analogues have been shown to have genuine promise against this parasite in vitro and in vivo. Since purine antimetabolites require efficient uptake through transporters, we here report a detailed characterisation of the T. cruzi NB1 nucleobase transporter with the aim of elucidating the interactions between TcrNB1 and its substrates and finding the positions that can be altered in the design of novel antimetabolites without losing transportability. Systematically determining the inhibition constants (Ki) of purine analogues for TcrNB1 yielded their Gibbs free energy of interaction, ΔG0. Pairwise comparisons of substrate (hypoxanthine, guanine, adenine) and analogues allowed us to determine that optimal binding affinity by TcrNB1 requires interactions with all four nitrogen residues of the purine ring, with N1 and N9, in protonation state, functioning as presumed hydrogen bond donors and unprotonated N3 and N7 as hydrogen bond acceptors. This is the same interaction pattern as we previously described for the main nucleobase transporters of Trypanosoma brucei spp. and Leishmania major and makes it the first of the ENT-family genes that is functionally as well as genetically conserved between the three main kinetoplast pathogens.


Asunto(s)
Guanina , Hipoxantina , Trypanosoma cruzi , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/química , Guanina/metabolismo , Hipoxantina/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Proteínas de Transporte de Nucleobases/metabolismo , Proteínas de Transporte de Nucleobases/genética , Proteínas de Transporte de Nucleobases/química , Transporte Biológico , Especificidad por Sustrato , Unión Proteica , Nucleósidos/metabolismo
11.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397036

RESUMEN

Nicotinamide (NA) derivatives play crucial roles in various biological processes, such as inflammation, regulation of the cell cycle, and DNA repair. Recently, we proposed that 4-pyridone-3-carboxamide-1-ß-D-ribonucleoside (4PYR), an unusual derivative of NA, could be classified as an oncometabolite in bladder, breast, and lung cancer. In this study, we investigated the relations between NA metabolism and the progression, recurrence, metastasis, and survival of patients diagnosed with different histological subtypes of renal cell carcinoma (RCC). We identified alterations in plasma NA metabolism, particularly in the clear cell RCC (ccRCC) subtype, compared to papillary RCC, chromophobe RCC, and oncocytoma. Patients with ccRCC also exhibited larger tumor sizes and elevated levels of diagnostic serum biomarkers, such as hsCRP concentration and ALP activity, which were positively correlated with the plasma 4PYR. Notably, 4PYR levels were elevated in advanced stages of ccRCC cancer and were associated with a highly aggressive phenotype of ccRCC. Additionally, elevated concentrations of 4PYR were related to a higher likelihood of mortality, recurrence, and particularly metastasis in ccRCC. These findings are consistent with other studies, suggesting that NA metabolism is accelerated in RCC, leading to abnormal concentrations of 4PYR. This supports the concept of 4PYR as an oncometabolite and a potential prognostic factor in the ccRCC subtype.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Piridonas , Ribonucleósidos , Humanos , Nucleósidos/metabolismo , Niacinamida
12.
Chem Commun (Camb) ; 60(12): 1607-1610, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38230513

RESUMEN

Extensive research has focused on genetic code reprogramming using flexizymes (Fxs), ribozymes enabling diverse tRNA acylation. Here we describe a nucleoside-modification strategy for the preparation of flexizyme variants derived from 2'-OMe, 2'-F, and 2'-MOE modifications with unique and versatile activities, enabling the charging of tRNAs with a broad range of substrates. This innovative strategy holds promise for synthetic biology applications, offering a robust pathway to expand the genetic code for diverse substrate incorporation.


Asunto(s)
ARN Catalítico , Aminoacilación de ARN de Transferencia , Nucleósidos/metabolismo , ARN de Transferencia/metabolismo , Código Genético , ARN Catalítico/metabolismo
13.
Chem Res Toxicol ; 37(2): 248-258, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38198686

RESUMEN

Pyridone-containing adenine dinucleotides, ox-NAD, are formed by overoxidation of nicotinamide adenine dinucleotide (NAD+) and exist in three distinct isomeric forms. Like the canonical nucleosides, the corresponding pyridone-containing nucleosides (PYR) are chemically stable, biochemically versatile, and easily converted to nucleotides, di- and triphosphates, and dinucleotides. The 4-PYR isomer is often reported with its abundance increasing with the progression of metabolic diseases, age, cancer, and oxidative stress. Yet, the pyridone-derived nucleotides are largely under-represented in the literature. Here, we report the efficient synthesis of the series of ox-NAD and pyridone nucleotides and measure the abundance of ox-NAD in biological specimens using liquid chromatography coupled with mass spectrometry (LC-MS). Overall, we demonstrate that all three forms of PYR and ox-NAD are found in biospecimens at concentrations ranging from nanomolar to midmicromolar and that their presence affects the measurements of NAD(H) concentrations when standard biochemical redox-based assays are applied. Furthermore, we used liver extracts and 1H NMR spectrometry to demonstrate that each ox-NAD isomer can be metabolized to its respective PYR isomer. Together, these results suggest a need for a better understanding of ox-NAD in the context of human physiology since these species are endogenous mimics of NAD+, the key redox cofactor in metabolism and bioenergetics maintenance.


Asunto(s)
NAD , Nucleótidos , Humanos , NAD/metabolismo , Nucleótidos/metabolismo , Nucleósidos/metabolismo , Metabolismo Energético , Piridonas
14.
Curr Protein Pept Sci ; 25(2): 120-136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37670708

RESUMEN

Membrane protein human concentrative nucleoside transporter 3 (hCNT3) can not only transport extracellular nucleosides into the cell but also transport various nucleoside-derived anticancer drugs to the focus of infection for therapeutic effects. Typical nucleoside anticancer drugs, including fludarabine, cladabine, decitabine, and clofarabine, are recognized by hCNT3 and then delivered to the lesion site for their therapeutic effects. hCNT3 is highly conserved during the evolution from lower to higher vertebrates, which contains scaffold and transport domains in structure and delivers substrates by coupling with Na+ and H+ ions in function. In the process of substrate delivery, the transport domain rises from the lower side of transmembrane 9 (TM9) in the inward conformation to the upper side of the outward conformation, accompanied by the collaborative motion of TM7b/ TM4b and hairpin 1b (HP1b)/ HP2b. With the report of a series of three-dimensional structures of homologous CNTs, the structural characteristics and biological functions of hCNT3 have attracted increasing attention from pharmacists and biologists. Our research group has also recently designed an anticancer lead compound with high hCNT3 transport potential based on the structure of 5-fluorouracil. In this work, the sequence evolution, conservation, molecular structure, cationic chelation, substrate recognition, elevator motion pattern and nucleoside derivative drugs of hCNT3 were reviewed, and the differences in hCNT3 transport mode and nucleoside anticancer drug modification were summarized, aiming to provide theoretical guidance for the subsequent molecular design of novel anticancer drugs targeting hCNT3.


Asunto(s)
Antineoplásicos , Nucleósidos , Animales , Humanos , Nucleósidos/farmacología , Nucleósidos/química , Nucleósidos/metabolismo , Antineoplásicos/farmacología , Transporte Biológico
15.
Am J Physiol Renal Physiol ; 326(1): F30-F38, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916286

RESUMEN

Plasma nucleosides-pseudouridine (PU) and N2N2-dimethyl guanosine (DMG) predict the progression of type 2 diabetic kidney disease (DKD) to end-stage renal disease, but the mechanisms underlying this relationship are not well understood. We used a well-characterized model of type 2 diabetes (db/db mice) and control nondiabetic mice (db/m mice) to characterize the production and excretion of PU and DMG levels using liquid chromatography-mass spectrometry. The fractional excretion of PU and DMG was decreased in db/db mice compared with control mice at 24 wk before any changes to renal function. We then examined the dynamic changes in nucleoside metabolism using in vivo metabolic flux analysis with the injection of labeled nucleoside precursors. Metabolic flux analysis revealed significant decreases in the ratio of urine-to-plasma labeling of PU and DMG in db/db mice compared with db/m mice, indicating significant tubular dysfunction in diabetic kidney disease. We observed that the gene and protein expression of the renal tubular transporters involved with nucleoside transport in diabetic kidneys in mice and humans was reduced. In conclusion, this study strongly suggests that tubular handling of nucleosides is altered in early DKD, in part explaining the association of PU and DMG with human DKD progression observed in previous studies.NEW & NOTEWORTHY Tubular dysfunction explains the association between the nucleosides pseudouridine and N2N2-dimethyl guanosine and diabetic kidney disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Seudouridina/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Nucleósidos/metabolismo , Eliminación Renal , Riñón/metabolismo , Guanosina/metabolismo
16.
Plant J ; 117(5): 1432-1452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38044809

RESUMEN

Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as ß-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.


Asunto(s)
Arabidopsis , Nucleósidos , Nucleósidos/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Plantas/metabolismo , Uridina/metabolismo , Arabidopsis/genética
17.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38117089

RESUMEN

Pseudouridine is a noncanonical C-nucleoside containing a C-C glycosidic linkage between uracil and ribose. In the two-step degradation of pseudouridine, pseudouridine 5'-monophosphate glycosylase (PUMY) is responsible for the second step and catalyses the cleavage of the C-C glycosidic bond in pseudouridine 5'-monophosphate (ΨMP) into uridine and ribose 5'-phosphate, which are recycled via other metabolic pathways. Structural features of Escherichia coli PUMY have been reported, but the details of the substrate specificity of ΨMP were unknown. Here, we present three crystal structures of Arabidopsis thaliana PUMY in different ligation states and a kinetic analysis of ΨMP degradation. The results indicate that Thr149 and Asn308, which are conserved in the PUMY family, are structural determinants for recognizing the nucleobase of ΨMP. The distinct binding modes of ΨMP and ribose 5'-phosphate also suggest that the nucleobase, rather than the phosphate group, of ΨMP dictates the substrate-binding mode. An open-to-close transition of the active site is essential for catalysis, which is mediated by two α-helices, α11 and α12, near the active site. Mutational analysis validates the proposed roles of the active site residues in catalysis. Our structural and functional analyses provide further insight into the enzymatic features of PUMY towards ΨMP.


Asunto(s)
Arabidopsis , Seudouridina , Seudouridina/metabolismo , Cinética , Ribosa/metabolismo , Escherichia coli/metabolismo , Nucleósidos/metabolismo , Fosfatos , Catálisis , Especificidad por Sustrato , Cristalografía por Rayos X
18.
mSphere ; 9(1): e0036323, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38126788

RESUMEN

Nucleoside analogs have been used extensively as anti-infective agents, particularly against viral infections, and have long been considered promising anti-parasitic agents. These pro-drugs are metabolized by host-cell, viral, or parasite enzymes prior to incorporation into DNA, thereby inhibiting DNA replication. Here, we report genes that sensitize African trypanosomes to nucleoside analogs, including the guanosine analog, ganciclovir. We applied ganciclovir selective pressure to a trypanosome genome-wide knockdown library, which yielded nucleoside mono- and diphosphate kinases as hits, validating the approach. The two most dominant hits to emerge, however, were Tb927.6.2800 and Tb927.6.2900, which both encode nuclear proteins; the latter of which is HD82, a SAMHD1-related protein and a putative dNTP triphosphohydrolase. We independently confirmed that HD82, which is conserved among the trypanosomatids, can sensitize Trypanosoma brucei to ganciclovir. Since ganciclovir activity depends upon phosphorylation by ectopically expressed viral thymidine kinase, we also tested the adenosine analog, ara-A, that may be fully phosphorylated by native T. brucei kinase(s). Both Tb927.6.2800 and HD82 knockdowns were resistant to this analog. Tb927.6.2800 knockdown increased sensitivity to hydroxyurea, while dNTP analysis indicated that HD82 is indeed a triphosphohydrolase with dATP as the preferred substrate. Our results provide insights into nucleoside/nucleotide metabolism and nucleoside analog metabolism and resistance in trypanosomatids. We suggest that the product of 6.2800 sensitizes cells to purine analogs through DNA repair, while HD82 does so by reducing the native purine pool.IMPORTANCEThere is substantial interest in developing nucleoside analogs as anti-parasitic agents. We used genome-scale genetic screening and discovered two proteins linked to purine analog resistance in African trypanosomes. Our screens also identified two nucleoside kinases required for pro-drug activation, further validating the approach. The top novel hit, HD82, is related to SAMHD1, a mammalian nuclear viral restriction factor. We validated HD82 and localized the protein to the trypanosome nucleus. HD82 appears to sensitize trypanosomes to nucleoside analogs by reducing native pools of nucleotides, providing insights into both nucleoside/nucleotide metabolism and nucleoside analog resistance in trypanosomatids.


Asunto(s)
Nucleósidos , Trypanosoma , Animales , Nucleósidos/metabolismo , Proteína 1 que Contiene Dominios SAM y HD , Trypanosoma/metabolismo , Purinas/metabolismo , Nucleótidos/metabolismo , Ganciclovir/metabolismo , Mamíferos
19.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834034

RESUMEN

Neutrophils are innate immune cells that play a key role in pathogen clearance. They contribute to inflammatory diseases, including diabetes, by releasing pro-inflammatory cytokines, reactive oxygen species, and extracellular traps (NETs). NETs contain a DNA backbone and catalytically active myeloperoxidase (MPO), which produces hypochlorous acid (HOCl). Chlorination of the DNA nucleoside 8-chloro-deoxyguanosine has been reported as an early marker of inflammation in diabetes. In this study, we examined the reactivity of different chlorinated nucleosides, including 5-chloro-(deoxy)cytidine (5ClC, 5CldC), 8-chloro-(deoxy)adenosine (8ClA, 8CldA) and 8-chloro-(deoxy)guanosine (8ClG, 8CldG), with the INS-1E ß-cell line. Exposure of INS-1E cells to 5CldC, 8CldA, 8ClA, and 8CldG decreased metabolic activity and intracellular ATP, and, together with 8ClG, induced apoptotic cell death. Exposure to 8ClA, but not the other nucleosides, resulted in sustained endoplasmic reticulum stress, activation of the unfolded protein response, and increased expression of thioredoxin-interacting protein (TXNIP) and heme oxygenase 1 (HO-1). Exposure of INS-1E cells to 5CldC also increased TXNIP and NAD(P)H dehydrogenase quinone 1 (NQO1) expression. In addition, a significant increase in the mRNA expression of NQO1 and GPx4 was seen in INS-1E cells exposed to 8ClG and 8CldA, respectively. However, a significant decrease in intracellular thiols was only observed in INS-1E cells exposed to 8ClG and 8CldG. Finally, a significant decrease in the insulin stimulation index was observed in experiments with all the chlorinated nucleosides, except for 8ClA and 8ClG. Together, these results suggest that increased formation of chlorinated nucleosides during inflammation in diabetes could influence ß-cell function and may contribute to disease progression.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Nucleósidos/farmacología , Nucleósidos/metabolismo , Inflamación/metabolismo , ADN/metabolismo , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo
20.
Reprod Toxicol ; 121: 108475, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37748715

RESUMEN

Molnupiravir is a nucleoside analog antiviral that is authorized for use in the treatment of COVID-19. For its therapeutic action, molnupiravir is converted after ingestion to the active metabolite N4-hydroxycytidine, which is incorporated into the viral genome to cause lethal mutagenesis. Molnupiravir is not recommended for use during pregnancy, because preclinical animal studies suggest that it is hazardous to developing embryos. However, the mechanisms underlying the embryotoxicity of molnupiravir are currently unknown. To gain mechanistic insights into its embryotoxic action, the effects of molnupiravir and N4-hydroxycytidine were examined on the in vitro development of mouse preimplantation embryos. Molnupiravir did not prevent blastocyst formation even at concentrations that were much higher than the therapeutic plasma levels. By contrast, N4-hyroxycytidine exhibited potent toxicity, as it interfered with blastocyst formation and caused extensive cell death at concentrations below the therapeutic plasma levels. The adverse effects of N4-hydroxycytidine were dependent on the timing of exposure, such that treatment after the 8-cell stage, but not before it, caused embryotoxicity. Transcriptomic analysis of N4-hydroxycytidine-exposed embryos, together with the examination of eIF-2a protein phosphorylation level, suggested that N4-hydroxycytidine induced the integrated stress response. The adverse effects of N4-hydroxycytidine were significantly alleviated by the co-treatment with S-(4-nitrobenzyl)-6-thioinosine, suggesting that the embryotoxic potential of N4-hydroxycytidine requires the activity of nucleoside transporters. These findings show that the active metabolite of molnupiravir impairs preimplantation development at clinically relevant concentrations, providing mechanistic foundation for further studies on the embryotoxic potential of molnupiravir and other related nucleoside antivirals.


Asunto(s)
COVID-19 , Nucleósidos , Embarazo , Femenino , Ratones , Animales , Nucleósidos/metabolismo , Nucleósidos/farmacología , Blastocisto , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacología , Antivirales/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA