Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Nat Commun ; 15(1): 4965, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862518

RESUMEN

Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here, we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro, both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing ß-thalassemic phenotype. In an immunodeficient female mouse model, transplanted cells edited with the non-viral strategy exhibit higher engraftment and gene correction levels compared to those edited with the viral strategy. Transcriptomic analysis reveals that non-viral DNA repair template delivery mitigates P53-mediated toxicity and preserves high levels of long-term hematopoietic stem cells. This work paves the way for TALEN-based autologous gene therapy for sickle cell disease.


Asunto(s)
Anemia de Células Falciformes , Edición Génica , Terapia Genética , Células Madre Hematopoyéticas , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/genética , Edición Génica/métodos , Animales , Células Madre Hematopoyéticas/metabolismo , Humanos , Femenino , Ratones , Terapia Genética/métodos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Trasplante de Células Madre Hematopoyéticas , Globinas beta/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Reparación del ADN , Mutación , Talasemia beta/terapia , Talasemia beta/genética , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen
2.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1271-1292, 2024 May 25.
Artículo en Chino | MEDLINE | ID: mdl-38783797

RESUMEN

Programmable nucleases-based genome editing systems offer several advantages, such as high editing efficiency, high product purity, and fewer editing by-products. They have been widely used in biopharmaceutical research and crop engineering. Given the diverse needs for research and application, developing functional base editors has become a major focus in the field of genome editing. Currently, genome editing systems derived from clustered regularly interspaced short palindromic repeats and CRISPR-associated (CRISPR-Cas) and transcription activator-like effector (TALE) systems include single base editors, dual base editors, mitochondrial base editors, and CRISPR-related transposase systems. This review provides a comprehensive overview of the development of base editing systems, summarizes the characteristics, off-target effects, optimization, and improvement strategies of various base editors, and provides insights for further improvement and application of genome editing systems.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ingeniería Genética , Humanos
3.
Medicine (Baltimore) ; 103(18): e38036, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701251

RESUMEN

ß-Thalassemia is the world's number 1 single-gene genetic disorder and is characterized by suppressed or impaired production of ß-pearl protein chains. This results in intramedullary destruction and premature lysis of red blood cells in peripheral blood. Among them, patients with transfusion-dependent ß-thalassemia face the problem of long-term transfusion and iron chelation therapy, which leads to clinical complications and great economic stress. As gene editing technology improves, we are seeing the dawn of a cure for the disease, with its reduction of ineffective erythropoiesis and effective prolongation of survival in critically ill patients. Here, we provide an overview of ß-thalassemia distribution and pathophysiology. In addition, we focus on gene therapy and gene editing advances. Nucleic acid endonuclease tools currently available for gene editing fall into 3 categories: zinc finger nucleases, transcription activator-like effector nucleases, and regularly interspaced short palindromic repeats (CRISPR-Cas9) nucleases. This paper reviews the exploratory applications and exploration of emerging therapeutic tools based on 3 classes of nucleic acid endonucleases in the treatment of ß-thalassemia diseases.


Asunto(s)
Edición Génica , Terapia Genética , Talasemia beta , Talasemia beta/terapia , Talasemia beta/genética , Humanos , Edición Génica/métodos , Terapia Genética/métodos , Sistemas CRISPR-Cas , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas con Dedos de Zinc/genética
4.
Mol Ther ; 32(6): 1643-1657, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38582963

RESUMEN

Gene therapy in hematopoietic stem and progenitor cells (HSPCs) shows great potential for the treatment of inborn metabolic diseases. Typical HSPC gene therapy approaches rely on constitutive promoters to express a therapeutic transgene, which is associated with multiple disadvantages. Here, we propose a novel promoterless intronic gene editing approach that triggers transgene expression only after cellular differentiation into the myeloid lineage. We integrated a splicing-competent eGFP cassette into the first intron of CD11b and observed expression of eGFP in the myeloid lineage but minimal to no expression in HSPCs or differentiated non-myeloid lineages. In vivo, edited HSPCs successfully engrafted in immunodeficient mice and displayed transgene expression in the myeloid compartment of multiple tissues. Using the same approach, we expressed alpha-L-iduronidase (IDUA), the defective enzyme in Mucopolysaccharidosis type I, and observed a 10-fold supraendogenous IDUA expression exclusively after myeloid differentiation. Edited cells efficiently populated bone marrow, blood, and spleen of immunodeficient mice, and retained the capacity to secrete IDUA ex vivo. Importantly, cells edited with the eGFP and IDUA transgenes were also found in the brain. This approach may unlock new therapeutic strategies for inborn metabolic and neurological diseases that require the delivery of therapeutics in brain.


Asunto(s)
Edición Génica , Células Madre Hematopoyéticas , Intrones , Células Mieloides , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Transgenes , Animales , Edición Génica/métodos , Ratones , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Mieloides/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Diferenciación Celular/genética , Terapia Genética/métodos , Iduronidasa/genética , Iduronidasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Expresión Génica , Linaje de la Célula/genética , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos , Mucopolisacaridosis I/terapia , Mucopolisacaridosis I/genética
5.
Curr Gene Ther ; 24(5): 377-394, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38258771

RESUMEN

Precision genome editing is a rapidly evolving field in gene therapy, allowing for the precise modification of genetic material. The CRISPR and Cas systems, particularly the CRISPRCas9 system, have revolutionized genetic research and therapeutic development by enabling precise changes like single-nucleotide substitutions, insertions, and deletions. This technology has the potential to correct disease-causing mutations at their source, allowing for the treatment of various genetic diseases. Programmable nucleases like CRISPR-Cas9, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs) can be used to restore normal gene function, paving the way for novel therapeutic interventions. However, challenges, such as off-target effects, unintended modifications, and ethical concerns surrounding germline editing, require careful consideration and mitigation strategies. Researchers are exploring innovative solutions, such as enhanced nucleases, refined delivery methods, and improved bioinformatics tools for predicting and minimizing off-target effects. The prospects of precision genome editing in gene therapy are promising, with continued research and innovation expected to refine existing techniques and uncover new therapeutic applications.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Terapia Genética , Humanos , Terapia Genética/métodos , Terapia Genética/tendencias , Edición Génica/métodos , Edición Génica/tendencias , Nucleasas con Dedos de Zinc/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Medicina de Precisión/métodos
6.
Plant Cell Physiol ; 65(4): 477-483, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38113380

RESUMEN

Plastids (including chloroplasts) and mitochondria are remnants of endosymbiotic bacteria, yet they maintain their own genomes, which encode vital components for photosynthesis and respiration, respectively. Organellar genomes have distinctive features, such as being present as multicopies, being mostly inherited maternally, having characteristic genomic structures and undergoing frequent homologous recombination. To date, it has proven to be challenging to modify these genomes. For example, while CRISPR/Cas9 is a widely used system for editing nuclear genes, it has not yet been successfully applied to organellar genomes. Recently, however, precise gene-editing technologies have been successfully applied to organellar genomes. Protein-based enzymes, especially transcription activator-like effector nucleases (TALENs) and artificial enzymes utilizing DNA-binding domains of TALENs (TALEs), have been successfully used to modify these genomes by harnessing organellar-targeting signals. This short review introduces and discusses the use of targeted nucleases and base editors in organellar genomes, their effects and their potential applications in plant science and breeding.


Asunto(s)
Edición Génica , Genoma del Cloroplasto , Genoma Mitocondrial , Genoma de Planta , Edición Génica/métodos , Genoma del Cloroplasto/genética , Genoma de Planta/genética , Genoma Mitocondrial/genética , Sistemas CRISPR-Cas , Plantas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Cloroplastos/genética
7.
Gene ; 866: 147334, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-36871676

RESUMEN

Nowadays, agricultural production is strongly affected by both climate change and pathogen attacks which seriously threaten global food security. For a long time, researchers have been waiting for a tool allowing DNA/RNA manipulation to tailor genes and their expression. Some earlier genetic manipulation methods such as meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) allowed site directed modification but their successful rate was limited due to lack of flexibility when targeting a 'site-specific nucleic acid'. The discovery of clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has revolutionized genome editing domain in different living organisms during the past 9 years. Based on RNA-guided DNA/RNA recognition, CRISPR/Cas9 optimizations have offered an unrecorded scientific opportunity to engineer plants resistant to diverse pathogens. In this report, we describe the main characteristics of the primary reported-genome editing tools ((MNs, ZFNs, TALENs) and evaluate the different CRISPR/Cas9 methods and achievements in developing crop plants resistant to viruses, fungi and bacteria.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Resistencia a la Enfermedad/genética , Plantas/genética , Genoma de Planta
8.
Anim Biotechnol ; 34(9): 4730-4735, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36905152

RESUMEN

Gene integration at site-specific loci is a critical approach for understanding the function of a gene in cells or animals. The AAVS1 locus is a well-known safe harbor for human and mouse studies. In this study, we found an AAVS1-like sequence (pAAVS1) in the porcine genome using the Genome Browser and designed TALEN and CRISPR/Cas9 to target the pAAVS1. The efficiency of CRISPR/Cas9 in porcine cells was superior to that of TALEN. We added a loxP-lox2272 sequences to the pAAVS1 targeting donor vector containing GFP for further exchange of various transgenes via recombinase-mediated cassette exchange (RMCE). The donor vector and CRISPR/Cas9 components were transfected into porcine fibroblasts. Targeted cells of CRISPR/Cas9-mediated homologous recombination were identified by antibiotic selection. Gene knock-in was confirmed by PCR. To induce RMCE, another donor vector containing the loxP-lox2272 and inducible Cre recombinase was cloned. The Cre-donor vector was transfected into the pAAVS1 targeted cell line, and RMCE was induced by adding doxycycline to the culture medium. RMCE in porcine fibroblasts was confirmed using PCR. In conclusion, gene targeting at the pAAVS1 and RMCE in porcine fibroblasts was successful. This technology will be useful for future porcine transgenesis studies and the generation of stable transgenic pigs.


Asunto(s)
Sistemas CRISPR-Cas , Recombinasas , Animales , Porcinos/genética , Humanos , Ratones , Recombinasas/genética , Recombinasas/metabolismo , Sistemas CRISPR-Cas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Animales Modificados Genéticamente/metabolismo , Marcación de Gen
9.
Methods Mol Biol ; 2637: 1-25, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773134

RESUMEN

Zinc finger nucleases (ZFNs) are programmable nucleases that have contributed significantly to past genome-editing research. They are now utilized much less owing to the advent of transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein system (CRISPR-Cas). These new methods allow for easier generation of reagents that target genomic sequences of interest and are less labor-intensive than ZFNs at targeting desired sequences. However, fundamental ZFN patents have expired, enabling a wide range of their distribution for clinical and industrial applications. This article introduces a ZFN construction protocol that uses bacterial one-hybrid (B1H) selection and single-strand annealing (SSA) assay.


Asunto(s)
Sistemas CRISPR-Cas , Nucleasas con Dedos de Zinc , Nucleasas con Dedos de Zinc/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Endonucleasas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética
10.
Methods Mol Biol ; 2637: 27-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773135

RESUMEN

Transcription activator-like effector (TALE) nuclease (TALEN) is the second-generation genome editing tool consisting of TALE protein containing customizable DNA-binding repeats and nuclease domain of FokI enzyme. Each DNA-binding repeat recognizes one base of double-strand DNA, and functional TALEN can be created by a simple modular assembly of these repeats. To easily and efficiently assemble the highly repetitive DNA-binding repeat arrays, various construction systems such as Golden Gate assembly, serial ligation, and ligation-independent cloning have been reported. In this chapter, we summarize the updated situation of these systems and publicly available reagents and protocols, enabling optimal selection of best suited systems for every researcher who wants to utilize TALENs in various research fields.


Asunto(s)
Edición Génica , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
11.
Methods Mol Biol ; 2637: 223-231, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773150

RESUMEN

Many genetically engineered rat strains have been produced by the development of genome editing technology, although it used to be technical difficulty and low production efficiency. Knockout and knock-in strains can be simple and quick produced using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Presently, genome edited strains have been produced by microinjection and a new electroporation method named technique for animal knockout system by electroporation (TAKE). This chapter presents the latest protocols for producing genome edited rats.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratas , Animales , Edición Génica/métodos , Ingeniería Genética/métodos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Nucleasas con Dedos de Zinc/genética , Nucleasas con Dedos de Zinc/metabolismo
12.
Methods Mol Biol ; 2637: 269-292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773154

RESUMEN

Pigs have anatomical and physiological characteristics similar to humans; therefore, genetically modified pigs have the potential to become a valuable bioresource in biomedical research. In fact, considering the increasing need for translational research, pigs are useful for studying intractable diseases, organ transplantation, and regenerative medicine as large-scale experimental animals with excellent potential for extrapolation to humans. With the advent of zinc finger nucleases (ZFNs), breakthroughs in genome editing tools such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) have facilitated the efficient generation of genetically modified pigs. Genome editing has been used in pigs for more than 10 years; now, along with knockout pigs, knock-in pigs are also gaining increasing importance. In this chapter, we describe the establishment of gene-modified cells (nuclear donor cells), which are necessary for gene knockout and production of knock-in pigs via somatic cell nuclear transplantation, as well as the production of gene knockout pigs using a simple cytoplasmic injection method.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Animales , Porcinos/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes , Técnicas de Transferencia Nuclear , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética
13.
Methods Mol Biol ; 2637: 359-374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773160

RESUMEN

Silkworm is a lepidopteran insect that has been used as a model for a wide variety of biological studies. The microinjection technique is available, and it is possible to cause transgenesis as well as target gene disruption via the genome editing technique. TALEN-mediated knockout is especially effective in this species. We also succeeded in the precise and efficient integration of a donor vector using the precise integration into target chromosome (PITCh) method. Here we describe protocols for ZFN (zinc finger nuclease)-, TALEN (transcription activator-like effector nuclease)-, and CRISPR/Cas9-mediated genome editing as well as the PITCh technique in the silkworm. We consider that all of these techniques can contribute to the further promotion of various biological studies in the silkworm and other insect species.


Asunto(s)
Bombyx , Edición Génica , Animales , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Bombyx/genética , Bombyx/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Nucleasas con Dedos de Zinc/genética , Nucleasas con Dedos de Zinc/metabolismo
14.
Methods Mol Biol ; 2637: 375-388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773161

RESUMEN

The ascidian Ciona intestinalis type A (or Ciona robusta) is an important organism for elucidating the mechanisms that make the chordate body plan. CRISPR/Cas9 and TAL effector nuclease (TALEN) are widely used to quickly address genetic functions in Ciona. Our previously reported method of CRISPR/Cas9-mediated mutagenesis in this animal has inferior mutation rates compared to those of TALENs. We here describe an updated way to effectively mutate genes with CRISPR/Cas9 in Ciona. Although the construction of TALENs is much more laborious than that of CRISPR/Cas9, this technique is useful for tissue-specific knockouts that are not easy even by the optimized CRISPR/Cas9 method.


Asunto(s)
Ciona intestinalis , Ciona , Animales , Edición Génica/métodos , Ciona/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Efectores Tipo Activadores de la Transcripción/genética , Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes
15.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835061

RESUMEN

Achromatopsia is an autosomal recessive disorder, in which cone photoreceptors undergo progressive degeneration, causing color blindness and poor visual acuity, among other significant eye affectations. It belongs to a group of inherited retinal dystrophies that currently have no treatment. Although functional improvements have been reported in several ongoing gene therapy studies, more efforts and research should be carried out to enhance their clinical application. In recent years, genome editing has arisen as one of the most promising tools for personalized medicine. In this study, we aimed to correct a homozygous PDE6C pathogenic variant in hiPSCs derived from a patient affected by achromatopsia through CRISPR/Cas9 and TALENs technologies. Here, we demonstrate high efficiency in gene editing by CRISPR/Cas9 but not with TALENs approximation. Despite a few of the edited clones displaying heterozygous on-target defects, the proportion of corrected clones with a potentially restored wild-type PDE6C protein was more than half of the total clones analyzed. In addition, none of them presented off-target aberrations. These results significantly contribute to advances in single-nucleotide gene editing and the development of future strategies for the treatment of achromatopsia.


Asunto(s)
Sistemas CRISPR-Cas , Defectos de la Visión Cromática , Edición Génica , Humanos , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/terapia , Edición Génica/métodos , Mutación , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Células Madre Pluripotentes Inducidas
16.
Hum Gene Ther ; 34(5-6): 171-176, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772799

RESUMEN

Therapeutic genome editing is currently reshaping and transforming the development of advanced therapies as more ex vivo and in vivo gene editing-based technologies are used to treat a broad range of debilitating and complex disorders. With first-generation gene editing modalities (notably those based on ZFNs, TALENs and CRISPR/Cas9), comes a new second-generation of gene editing-based therapeutics including base editing, prime editing and other nuclease-free genome editing modalities. Such ground-breaking innovative products warrant careful considerations from a product development and regulatory perspective, that take into account not only the common development considerations that apply to standard gene and cell therapy products, but also other specific considerations linked with the technology being used. This article sheds light into specific considerations for developing safe and effective in vivo and ex vivo genome editing medicines that will continue to push barriers even further for the cell and gene therapy field.


Asunto(s)
Edición Génica , Terapia Genética , Endonucleasas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas con Dedos de Zinc/genética , Sistemas CRISPR-Cas
17.
Methods Mol Biol ; 2615: 365-378, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807804

RESUMEN

The ability to transform plant mitochondrial genomes has many benefits. Although delivery of foreign DNA to mitochondria is presently very difficult, it is now possible to knock out mitochondrial genes using mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs). Such knockouts have been achieved by a genetic transformation of mitoTALENs encoding genes into the nuclear genome. Previous studies have shown that double-strand breaks (DSBs) induced by mitoTALENs are repaired by ectopic homologous recombination. As a result of DNA repair by homologous recombination, a portion of the genome containing the mitoTALEN target site is deleted. The deletion and repair process cause the mitochondrial genome to become more complex. Here, we describe a method for identifying the ectopic homologous recombination events that occur following the repair of double-strand breaks induced by mitoTALENs.


Asunto(s)
Genoma Mitocondrial , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Mitocondrias/genética , Plantas/genética , ADN , Genoma de Planta
18.
Vet Res Commun ; 47(1): 1-16, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35781172

RESUMEN

Livestock is an essential life commodity in modern agriculture involving breeding and maintenance. The farming practices have evolved mainly over the last century for commercial outputs, animal welfare, environment friendliness, and public health. Modifying genetic makeup of livestock has been proposed as an effective tool to create farmed animals with characteristics meeting modern farming system goals. The first technique used to produce transgenic farmed animals resulted in random transgene insertion and a low gene transfection rate. Therefore, genome manipulation technologies have been developed to enable efficient gene targeting with a higher accuracy and gene stability. Genome editing (GE) with engineered nucleases-Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) regulates the targeted genetic alterations to facilitate multiple genomic modifications through protein-DNA binding. The application of genome editors indicates usefulness in reproduction, animal models, transgenic animals, and cell lines. Recently, CRISPR/Cas system, an RNA-dependent genome editing tool (GET), is considered one of the most advanced and precise GE techniques for on-target modifications in the mammalian genome by mediating knock-in (KI) and knock-out (KO) of several genes. Lately, CRISPR/Cas9 tool has become the method of choice for genome alterations in livestock species due to its efficiency and specificity. The aim of this review is to discuss the evolution of engineered nucleases and GETs as a powerful tool for genome manipulation with special emphasis on its applications in improving economic traits and conferring resistance to infectious diseases of animals used for food production, by highlighting the recent trends for maintaining sustainable livestock production.


Asunto(s)
Sistemas CRISPR-Cas , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Animales , Sistemas CRISPR-Cas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas con Dedos de Zinc/genética , Edición Génica/veterinaria , Edición Génica/métodos , Mamíferos/genética , Ganado/genética
19.
Adv Exp Med Biol ; 1396: 87-101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36454461

RESUMEN

Three major genome editing tools, transcription activator-like effector nucleases (TALENs), zinc finger nucleases (ZFNs), and clustered regularly interspaced short palindromic repeat (CRISPR) systems, are increasingly important technologies used in the study and treatment of hereditary myocardial diseases. Germ cell genome editing and modification can permanently eliminate monogenic cardiovascular disease from the offspring of affected families and the next generation, although ethically controversial. Somatic genome editing may be a promising method for the treatment of hereditary cardiomyopathy various diseases for which gene knockout is favorable and can also treat people who are already ill, although there are currently some technical challenges. This chapter describes the application of genome editing in the experimental studies and treatment of hypertrophic cardiomyopathy as well as other cardiomyopathies.


Asunto(s)
Cardiomiopatía Hipertrófica , Edición Génica , Humanos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Cardiomegalia/genética , Cardiomegalia/terapia
20.
Mol Ther ; 31(3): 676-685, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36518079

RESUMEN

A chromosome 14 inversion was found in a patient who developed bone marrow aplasia following treatment with allogeneic chimeric antigen receptor (CAR) Tcells containing gene edits made with transcription activator-like effector nucleases (TALEN). TALEN editing sites were not involved at either breakpoint. Recombination signal sequences (RSSs) were found suggesting recombination-activating gene (RAG)-mediated activity. The inversion represented a dominant clone detected in the context of decreasing absolute CAR Tcell and overall lymphocyte counts. The inversion was not associated with clinical consequences and wasnot detected in the drug product administered to this patient or in any drug product used in this or other trials using the same manufacturing processes. Neither was the inversion detected in this patient at earlier time points or in any other patient enrolled in this or other trials treated with this or other product lots. This case illustrates that spontaneous, possibly RAG-mediated, recombination events unrelated to gene editing can occur in adoptive cell therapy studies, emphasizes the need for ruling out off-target gene editing sites, and illustrates that other processes, such as spontaneous V(D)J recombination, can lead to chromosomal alterations in infused cells independent of gene editing.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Receptores Quiméricos de Antígenos , Humanos , Edición Génica , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Linfocitos T , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA