Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
FASEB J ; 38(8): e23623, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38656660

RESUMEN

The nuclear transport of proteins plays an important role in mediating the transition from egg to embryo and distinct karyopherins have been implicated in this process. Here, we studied the impact of KPNA2 deficiency on preimplantation embryo development in mice. Loss of KPNA2 results in complete arrest at the 2cell stage and embryos exhibit the inability to activate their embryonic genome as well as a severely disturbed nuclear translocation of Nucleoplasmin 2. Our findings define KPNA2 as a new maternal effect gene.


Asunto(s)
Desarrollo Embrionario , alfa Carioferinas , Animales , Femenino , Ratones , alfa Carioferinas/metabolismo , alfa Carioferinas/genética , Desarrollo Embrionario/genética , Fertilidad/genética , Ratones Noqueados , Herencia Materna , Regulación del Desarrollo de la Expresión Génica , Masculino , Embarazo , Nucleoplasminas/metabolismo , Nucleoplasminas/genética , Blastocisto/metabolismo
2.
FEBS Lett ; 598(2): 187-198, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38058218

RESUMEN

Nucleoplasmin (NPM) histone chaperones regulate distinct processes in the nucleus and nucleolus. While intrinsically disordered regions (IDRs) are hallmarks of NPMs, it is not clear whether all NPM functions require these unstructured features. We assessed the importance of IDRs in a yeast NPM-like protein and found that regulation of rDNA copy number and genetic interactions with the nucleolar RNA surveillance machinery require the highly conserved FKBP prolyl isomerase domain, but not the NPM domain or IDRs. By contrast, transcriptional repression in the nucleus requires IDRs. Furthermore, multiple lysines in polyacidic serine/lysine motifs of IDRs are required for both lysine polyphosphorylation and NPM-mediated transcriptional repression. These results demonstrate that this NPM-like protein relies on IDRs only for some of its chromatin-related functions.


Asunto(s)
Chaperonas de Histonas , Lisina , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Nucleoplasminas/metabolismo , Lisina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Cancer Lett ; 581: 216498, 2024 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-38029539

RESUMEN

Abnormal regulation of RNA binding proteins (RBPs) plays an essential role in tumorigenesis and progression, but their functions and mechanisms remain largely elusive. Previously, we reported that Pumilio 1 (PUM1), a RBP, could regulate glycolysis metabolism and promote the progression of gastric cancer (GC). However, the role of PUM1 in tumor immune regulation remains largely elusive. In this study, we report that PUM1 induces immune escape through posttranscriptional regulation of PD-L1 in GC. We used multiplexed immunohistochemistry to analyze the correlation between PUM1 expression and immune microenvironment in GC. The effect of PUM1 deficiency on tumor killing of T cells was examined in vitro and in vivo. The molecular mechanism of PUM1 was evaluated via RNA immunoprecipitation, chromatin immunoprecipitation, Western blot, co-immunoprecipitation, and RNA stability assays. Clinically, elevated PUM1 expression is associated with high-expression of PD-L1, lack of CD8+ T cell infiltration and poor prognosis in GC patients. PUM1 positively regulates PD-L1 expression and PUM1 reduction enhances T cell killing of tumors. Mechanistically, PUM1 directly binds to nucleophosmin/nucleoplasmin 3 (NPM3) mRNA and stabilizes NPM3. NPM3 interacts with NPM1 to promote NPM1 translocation into the nucleus and increase the transcription of PD-L1. PUM1 inhibits the anti-tumor activity of T cells through the PUM1/NPM3/PD-L1 axis. In summary, this study reveals the critical post-transcriptional effect of PUM1 in the modulation of PD-L1-dependent GC immune escape, thus provides a novel indicator and potential therapeutic target for cancer immunotherapy.


Asunto(s)
Neoplasias Gástricas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Línea Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleoplasminas/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias Gástricas/patología , Microambiente Tumoral
4.
Methods Mol Biol ; 2577: 161-173, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36173572

RESUMEN

Sperm chromatin compaction is physiologically essential for sperm to acquire the fertility. However, this unique structure composed of protamines makes us unable to solubilize the chromatin due to its resistance to sonication and enzymes usually used for chromatin fragmentation in somatic cells. Even when intense enzymatic treatment is applied, it appears to solubilize only certain portions of sperm chromatin presumably because of the heterogeneous properties. To overcome this issue, we previously developed a method to treat the sperm with recombinant nucleoplasmin, a protamine remover in fertilized embryos, followed by sonication. The nucleoplasmin treatment dramatically increased the efficiency of sperm chromatin solubilization, while a relatively large amount of recombinant nucleoplasmin was required. Here, we describe an improvement of nucleoplasmin method with a less amount of recombinant protein and a shorter reaction time.


Asunto(s)
Cromatina , Proteínas Nucleares , Animales , Cromatina/genética , Cromatina/metabolismo , Masculino , Ratones , Proteínas Nucleares/metabolismo , Nucleoplasminas/metabolismo , Fosfoproteínas/metabolismo , Protaminas , Proteínas Recombinantes/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo
5.
World J Surg Oncol ; 20(1): 350, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280841

RESUMEN

BACKGROUND: Malignant peritoneal mesothelioma (MPM) is a rare malignant tumor with a high mortality rate and extremely poor prognosis. In-depth pathological analysis is essential to assess tumor biological behaviors and explore potential therapeutic targets of MPM. Nucleoplasmin 2 (NPM2) is a molecular chaperone that binds histones and may play a key role in the development and progression of tumors. This study aimed to analyze the correlation between the expression level of NPM2 and the main clinicopathological characteristics and prognosis of MPM. METHODS: Ninety-two postoperative specimens from MPM patients following cytoreductive surgery were collected. Postoperative specimens were stained with immunohistochemistry. The expression level of NPM2 was quantitatively analyzed by QuPath-0.3.2 software. Univariate and multivariate analyses were conducted to investigate the correlation between NPM2 expression and other conventional clinicopathological characteristics. RESULTS: Among the 92 MPM patients, there were 47 males (48.9%) and 45 females (51.1%), with a median age of 56 (range: 24-73). There were 70 (76.0%) cases with loss of NPM2 protein expression, 11 (12.0%) cases with low expression, and 11 (12.0%) cases with high expression. Univariate analysis showed that NPM2 protein expression level (negative vs. low expression vs. high expression) was negatively correlated with the following three clinicopathological factors: completeness of cytoreduction (CC) score, vascular tumor emboli, and serious adverse events (SAEs) (all P < 0.05). Multivariate analysis showed that NPM2 protein expression level (negative vs. low expression vs. high expression) was independently negatively correlated with the following two clinicopathological factors: CC score [odds ratio (OR) = 0.317, 95% CI: 0.317-0.959, P = 0.042] and vascular tumor emboli (OR = 0.092, 95% CI = 0.011-0.770, P = 0.028). Survival analysis showed that loss of NPM2 protein expression (negative vs. positive) was associated with poor prognosis of MPM. CONCLUSIONS: Loss of NPM2 expression is a potential immunohistochemical marker for MPM.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Nucleoplasminas , Neoplasias Peritoneales , Neoplasias Pleurales , Neoplasias Vasculares , Femenino , Humanos , Masculino , Biomarcadores , Histonas , Neoplasias Pulmonares/diagnóstico , Mesotelioma Maligno/diagnóstico , Células Neoplásicas Circulantes , Nucleoplasminas/metabolismo , Neoplasias Peritoneales/diagnóstico , Neoplasias Pleurales/diagnóstico , Pronóstico , Neoplasias Vasculares/diagnóstico , Adulto , Persona de Mediana Edad , Anciano
6.
Biochim Biophys Acta Gene Regul Mech ; 1865(7): 194872, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36058470

RESUMEN

The nucleoplasmin family of histone chaperones is a key player in governing the dynamic architecture of chromatin, thereby regulating various DNA-templated processes. The crystal structure of the N-terminal domain of Arabidopsis thaliana FKBP43 (AtFKBP43), an FK506-binding immunophilin protein, revealed a characteristic nucleoplasmin fold, thus confirming it to be a member of the FKBP nucleoplasmin class. Small-Angle X-ray Scattering (SAXS) analyses confirmed its pentameric nature in solution, and additional studies confirmed the nucleoplasmin fold to be highly stable. Unlike its homolog AtFKBP53, the AtFKBP43 nucleoplasmin core domain could not interact with histones and required the acidic arms, C-terminal to the core, for histone association. However, SAXS generated low-resolution envelope structure, ITC, and AUC results revealed that an AtFKBP43 pentamer with C-terminal extensions interacts with H2A/H2B dimer and H3/H4 tetramer in an equimolar ratio, like AtFKBP53. Put together, AtFKBP43 belongs to a hitherto unreported subclass of FKBP nucleoplasmins that requires the C-terminal acidic stretches emanating from the core domain for histone interaction.


Asunto(s)
Arabidopsis , Histonas , Arabidopsis/genética , Cromatina/metabolismo , ADN/metabolismo , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Nucleoplasminas/metabolismo , Dispersión del Ángulo Pequeño , Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Difracción de Rayos X
7.
Plant Cell ; 34(12): 4760-4777, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36069647

RESUMEN

Histone acetyltransferase (HAT)- and histone deacetylase (HDAC)-mediated histone acetylation and deacetylation regulate nucleosome dynamics and gene expression. HDACs are classified into different families, with HD-tuins or HDTs being specific to plants. HDTs show some sequence similarity to nucleoplasmins, the histone chaperones that aid in binding, storing, and loading H2A/H2B dimers to assemble nucleosomes. Here, we solved the crystal structure of the N-terminal domain (NTD) of all four HDTs (HDT1, HDT2, HDT3, and HDT4) from Arabidopsis (Arabidopsis thaliana). The NTDs form a nucleoplasmin fold, exist as pentamers in solution, and are resistant to protease treatment, high temperature, salt, and urea conditions. Structurally, HDTs do not form a decamer, unlike certain classical nucleoplasmins. The HDT-NTD requires an additional A2 acidic tract C-terminal to the nucleoplasmin domain for interaction with histone H3/H4 and H2A/H2B oligomers. We also report the in-solution structures of HDT2 pentamers in complex with histone oligomers. Our study provides a detailed structural and in vitro functional characterization of HDTs, revealing them to be nucleoplasmin family histone chaperones. The experimental confirmation that HDTs are nucleoplasmins may spark new interest in this enigmatic family of proteins.


Asunto(s)
Arabidopsis , Histonas , Nucleoplasminas/química , Nucleoplasminas/genética , Nucleoplasminas/metabolismo , Histonas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Nucleosomas/metabolismo , Chaperonas de Histonas/genética , Arabidopsis/genética , Arabidopsis/metabolismo
8.
World J Surg Oncol ; 20(1): 141, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35490253

RESUMEN

BACKGROUND: This review systematically summarizes gene biology features and protein structure of nucleoplasmin2 (NPM2) and the relationship between NPM2 and malignant peritoneal mesothelioma (MPM), in order to explore the molecular pathological mechanism of MPM and explore new therapeutic targets. METHODS: NCBI PubMed database was used for the literature search. NCBI Gene and Protein databases, Ensembl Genome Browser, UniProt, and RCSB PDB database were used for gene and protein review. Three online tools (Consurf, DoGSiteScorer, and ZdockServer), the GEPIA database, and the Cancer Genome Atlas were used to analyze bioinformatics characteristics for NPM2 protein. RESULTS: The main structural domains of NPM2 protein include the N-terminal core region, acidic region, and motif and disordered region. The N-terminal core region, involved in histone binding, is the most conserved domain in the nucleoplasmin (NPM) family. NPM2 with a large acidic tract in its C-terminal tail (NPM2-A2) is able to bind histones and form large complexes. Bioinformatics results indicated that NPM2 expression was correlated with the pathology of multiple tumors. Among mesothelioma patients, 5-year survival of patients with low-NPM2-expression was significantly higher than that of the high-NPM2-expression patients. NPM2 can facilitate the formation of histone deacetylation. NPM2 may promote histone deacetylation and inhibit the related-gene transcription, thus leading to abnormal proliferation, invasion, and metastasis of MPM. CONCLUSION: NPM2 may play a key role in the development and progression of MPM.


Asunto(s)
Medicina Clínica , Mesotelioma , Biología , Histonas/genética , Histonas/metabolismo , Humanos , Mesotelioma/genética , Nucleoplasminas/genética , Nucleoplasminas/metabolismo
9.
J Cell Biol ; 218(12): 4063-4078, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31636119

RESUMEN

How nuclear size is regulated relative to cell size is a fundamental cell biological question. Reductions in both cell and nuclear sizes during Xenopus laevis embryogenesis provide a robust scaling system to study mechanisms of nuclear size regulation. To test if the volume of embryonic cytoplasm is limiting for nuclear growth, we encapsulated gastrula-stage embryonic cytoplasm and nuclei in droplets of defined volume using microfluidics. Nuclei grew and reached new steady-state sizes as a function of cytoplasmic volume, supporting a limiting component mechanism of nuclear size control. Through biochemical fractionation, we identified the histone chaperone nucleoplasmin (Npm2) as a putative nuclear size effector. Cellular amounts of Npm2 decrease over development, and nuclear size was sensitive to Npm2 levels both in vitro and in vivo, affecting nuclear histone levels and chromatin organization. We propose that reductions in cell volume and the amounts of limiting components, such as Npm2, contribute to developmental nuclear size scaling.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Nucleoplasminas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Tamaño de la Célula , Cromatina/metabolismo , Citosol , Desarrollo Embrionario , Histonas/metabolismo , Microfluídica , Neoplasias/metabolismo , Oocitos/fisiología
10.
Sci Rep ; 9(1): 9487, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263230

RESUMEN

Nucleoplasmin (NP) is a pentameric histone chaperone that regulates the condensation state of chromatin in different cellular processes. We focus here on the interaction of NP with the histone octamer, showing that NP could bind sequentially the histone components to assemble an octamer-like particle, and crosslinked octamers with high affinity. The three-dimensional reconstruction of the NP/octamer complex generated by single-particle cryoelectron microscopy, revealed that several intrinsically disordered tail domains of two NP pentamers, facing each other through their distal face, encage the histone octamer in a nucleosome-like conformation and prevent its dissociation. Formation of this complex depended on post-translational modification and exposure of the acidic tract at the tail domain of NP. Finally, NP was capable of transferring the histone octamers to DNA in vitro, assembling nucleosomes. This activity may have biological relevance for processes in which the histone octamer must be rapidly removed from or deposited onto the DNA.


Asunto(s)
Proteínas Aviares/química , ADN/química , Histonas/química , Nucleoplasminas/química , Nucleosomas/química , Proteínas de Xenopus/química , Animales , Proteínas Aviares/metabolismo , Pollos , ADN/metabolismo , Histonas/metabolismo , Nucleoplasminas/metabolismo , Nucleosomas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis
11.
Mol Biol Cell ; 30(5): 591-606, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625028

RESUMEN

The nucleolus is a membraneless organelle of the nucleus and the site of rRNA synthesis, maturation, and assembly into preribosomal particles. The nucleolus, organized around arrays of rRNA genes (rDNA), dissolves during prophase of mitosis in metazoans, when rDNA transcription ceases, and reforms in telophase, when rDNA transcription resumes. No such dissolution and reformation cycle exists in budding yeast, and the precise course of nucleolar segregation remains unclear. By quantitative live-cell imaging, we observed that the yeast nucleolus is reorganized in its protein composition during mitosis. Daughter cells received equal shares of preinitiation factors, which bind the RNA polymerase I promoter and the rDNA binding barrier protein Fob1, but only about one-third of RNA polymerase I and the processing factors Nop56 and Nsr1. The distribution bias was diminished in nonpolar chromosome segregation events observable in dyn1 mutants. Unequal distribution, however, was enhanced by defects in RNA polymerase I, suggesting that rDNA transcription supports nucleolar segregation. Indeed, quantification of pre-rRNA levels indicated ongoing rDNA transcription in yeast mitosis. These data, together with photobleaching experiments to measure nucleolar protein dynamics in anaphase, consolidate a model that explains the differential partitioning of nucleolar components in budding yeast mitosis.


Asunto(s)
Nucléolo Celular/metabolismo , Mitosis , Saccharomycetales/citología , Saccharomycetales/metabolismo , Anafase , Cromatina/metabolismo , Segregación Cromosómica , ADN Ribosómico/genética , Modelos Biológicos , Mutación/genética , Proteínas Nucleares/metabolismo , Nucleoplasminas/metabolismo , ARN Polimerasa I/metabolismo , Precursores del ARN/metabolismo , Transcripción Genética
12.
BMC Evol Biol ; 18(1): 167, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30419815

RESUMEN

BACKGROUND: Nucleoplasmin 2 (npm2) is an essential maternal-effect gene that mediates early embryonic events through its function as a histone chaperone that remodels chromatin. Recently, two npm2 (npm2a and npm2b) genes have been annotated in zebrafish. Thus, we examined the evolution of npm2a and npm2b in a variety of vertebrates, their potential phylogenetic relationships, and their biological functions using knockout models via the CRISPR/cas9 system. RESULTS: We demonstrated that the two npm2 duplicates exist in a wide range of vertebrates, including sharks, ray-finned fish, amphibians, and sauropsids, while npm2a was lost in coelacanth and mammals, as well as some specific teleost lineages. Using phylogeny and synteny analyses, we traced their origins to the early stages of vertebrate evolution. Our findings suggested that npm2a and npm2b resulted from an ancient local gene duplication, and their functions diverged although key protein domains were conserved. We then investigated their functions by examining their tissue distribution in a wide variety of species and found that they shared ovarian-specific expression, a key feature of maternal-effect genes. We also demonstrated that both npm2a and npm2b are maternally-inherited transcripts in vertebrates, and that they play essential, but distinct, roles in early embryogenesis using zebrafish knockout models. Both npm2a and npm2b function early during oogenesis and may play a role in cortical granule function that impact egg activation and fertilization, while npm2b is also involved in early embryogenesis. CONCLUSION: These novel findings will broaden our knowledge on the evolutionary history of maternal-effect genes and underlying mechanisms that contribute to vertebrate reproductive success. In addition, our results demonstrate the existence of a newly described maternal-effect gene, npm2a, that contributes to egg competence, an area that still requires further comprehension.


Asunto(s)
Peces/genética , Genes Duplicados , Nucleoplasminas/genética , Animales , Secuencia Conservada/genética , Evolución Molecular , Femenino , Duplicación de Gen , Perfilación de la Expresión Génica , Genoma , Humanos , Nucleoplasminas/metabolismo , Péptidos/química , Filogenia , Dominios Proteicos , Sintenía/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
Nucleic Acids Res ; 46(21): 11274-11286, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30357352

RESUMEN

The evolutionarily conserved nucleoplasmin family of histone chaperones has two paralogues in Drosophila, named Nucleoplasmin-Like Protein (NLP) and Nucleophosmin (NPH). NLP localizes to the centromere, yet molecular underpinnings of this localization are unknown. Moreover, similar to homologues in other organisms, NLP forms a pentamer in vitro, but the biological significance of its oligomerization has not been explored. Here, we characterize the oligomers formed by NLP and NPH in vivo and find that oligomerization of NLP is required for its localization at the centromere. We can further show that oligomerization-deficient NLP is unable to bind the centromeric protein Hybrid Male Rescue (HMR), which in turn is required for targeting the NLP oligomer to the centromere. Finally, using super-resolution microscopy we find that NLP and HMR largely co-localize in domains that are immediately adjacent to, yet distinct from centromere domains defined by the centromeric histone dCENP-A.


Asunto(s)
Proteína A Centromérica/química , Centrómero/química , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Proteínas Nucleares/química , Nucleoplasminas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Células Cultivadas , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Cromatina/química , Cromatina/metabolismo , Clonación Molecular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Expresión Génica , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Nucleoplasminas/genética , Nucleoplasminas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
14.
Biochim Biophys Acta Gene Regul Mech ; 1861(8): 743-751, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30012467

RESUMEN

Fertilization requires decondensation of promatine-condensed sperm chromatin, a dynamic process serving as an attractive system for the study of chromatin reprogramming. Nucleoplasmin is a key factor in regulating nucleosome assembly as a chaperone during fertilization process. However, knowledge on nucleoplasmin in chromatin formation remains elusive. Herein, magnetic tweezers (MT) and a chromatin assembly system were used to study the nucleoplasmin-mediated DNA decondensation/condensation at the single-molecular level in vitro. We found that protamine induces DNA condensation in a stepwise manner. Once DNA was condensed, nucleoplasmin, polyglutamic acid, and RNA could remove protamine from the DNA at different rates. The affinity binding of the different polyanions with protamine suggests chaperone-mediated chromatin decondensation activity occurs through protein-protein interactions. After decondensation, both RNA and polyglutamic acid prevented the transfer of histones onto the naked DNA. In contrast, nucleoplasmin is able to assist the histone transfer process, even though it carries the same negative charge as RNA and polyglutamic acid. These observations imply that the chaperone effects of nucleoplasmin during the decondensation/condensation process may be driven by specific spatial configuration of its acidic pentamer structure, rather than by electrostatic interaction. Our findings offer a novel molecular understanding of nucleoplasmin in sperm chromatin decondensation and subsequent developmental chromatin reprogramming at individual molecular level.


Asunto(s)
ADN/química , Nucleoplasminas/metabolismo , Animales , ADN/metabolismo , Histonas/metabolismo , Cinética , Ácido Poliglutámico/metabolismo , Protaminas/metabolismo , ARN/metabolismo , Resonancia por Plasmón de Superficie , Xenopus laevis
15.
Cell Rep ; 23(13): 3920-3932, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29949774

RESUMEN

The question of whether retained histones in the sperm genome localize to gene-coding regions or gene deserts has been debated for years. Previous contradictory observations are likely caused by the non-uniform sensitivity of sperm chromatin to micrococcal nuclease (MNase) digestion. Sperm chromatin has a highly condensed but heterogeneous structure and is composed of 90%∼99% protamines and 1%∼10% histones. In this study, we utilized nucleoplasmin (NPM) to improve the solubility of sperm chromatin by removing protamines in vitro. NPM treatment efficiently solubilized histones while maintaining quality and quantity. Chromatin immunoprecipitation sequencing (ChIP-seq) analyses using NPM-treated sperm demonstrated the predominant localization of H4 to distal intergenic regions, whereas modified histones exhibited a modification-dependent preferential enrichment in specific genomic elements, such as H3K4me3 at CpG-rich promoters and H3K9me3 in satellite repeats, respectively, implying the existence of machinery protecting modified histones from eviction.


Asunto(s)
Histonas/metabolismo , Espermatozoides/metabolismo , Animales , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Islas de CpG , Histonas/genética , Masculino , Ratones , Ratones Endogámicos ICR , Repeticiones de Microsatélite/genética , Nucleoplasminas/metabolismo , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Protaminas/metabolismo
16.
Nat Commun ; 8(1): 2215, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29263320

RESUMEN

Nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowed us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.


Asunto(s)
Histonas/metabolismo , Nucleoplasminas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Cromatina , Cristalografía por Rayos X , Chaperonas de Histonas/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Nucleosomas/metabolismo , Unión Proteica , Dispersión del Ángulo Pequeño , Xenopus laevis
17.
J Biol Chem ; 292(47): 19478-19490, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-28982979

RESUMEN

Chromatin is the natural form of DNA in the eukaryotic nucleus and is the substrate for diverse biological phenomena. The functional analysis of these processes ideally would be carried out with nucleosomal templates that are assembled with customized core histones, DNA sequences, and chromosomal proteins. Here we report a simple, reliable, and versatile method for the ATP-dependent assembly of evenly spaced nucleosome arrays. This minimal chromatin assembly system comprises the Drosophila nucleoplasmin-like protein (dNLP) histone chaperone, the imitation switch (ISWI) ATP-driven motor protein, core histones, template DNA, and ATP. The dNLP and ISWI components were synthesized in bacteria, and each protein could be purified in a single step by affinity chromatography. We show that the dNLP-ISWI system can be used with different DNA sequences, linear or circular DNA, bulk genomic DNA, recombinant or native Drosophila core histones, native human histones, the linker histone H1, the non-histone chromosomal protein HMGN2, and the core histone variants H3.3 and H2A.V. The dNLP-ISWI system should be accessible to a wide range of researchers and enable the assembly of customized chromatin with specifically desired DNA sequences, core histones, and other chromosomal proteins.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Nucleoplasminas/metabolismo , Factores de Transcripción/metabolismo , Animales , ADN/metabolismo , Humanos , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Nucleosomas/metabolismo
18.
J Cell Sci ; 130(14): 2416-2429, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28600324

RESUMEN

The mammalian oocyte nucleolus, the most prominent subcellular organelle in the oocyte, is vital in early development, yet its key functions and constituents remain unclear. We show here that the parthenotes/zygotes derived from enucleolated oocytes exhibited abnormal heterochromatin formation around parental pericentromeric DNAs, which led to a significant mitotic delay and frequent chromosome mis-segregation upon the first mitotic division. A proteomic analysis identified nucleoplasmin 2 (NPM2) as a dominant component of the oocyte nucleolus. Consistently, Npm2-deficient oocytes, which lack a normal nucleolar structure, showed chromosome segregation defects similar to those in enucleolated oocytes, suggesting that nucleolar loss, rather than micromanipulation-related damage to the genome, leads to a disorganization of higher-order chromatin structure in pronuclei and frequent chromosome mis-segregation during the first mitosis. Strikingly, expression of NPM2 alone sufficed to reconstitute the nucleolar structure in enucleolated embryos, and rescued their first mitotic division and full-term development. The nucleolus rescue through NPM2 required the pentamer formation and both the N- and C-terminal domains. Our findings demonstrate that the NPM2-based oocyte nucleolus is an essential platform for parental chromatin organization in early embryonic development.


Asunto(s)
Nucleoplasminas/metabolismo , Oocitos/metabolismo , Secuencia de Aminoácidos , Animales , Nucléolo Celular/metabolismo , Cromatina/metabolismo , Femenino , Ratones , Oocitos/citología
19.
Mol Biol Cell ; 28(11): 1444-1456, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28404751

RESUMEN

The chromosomal passenger complex (CPC) is a conserved, essential regulator of cell division. As such, significant anti-cancer drug development efforts have been focused on targeting it, most notably by inhibiting its AURKB kinase subunit. The CPC is activated by AURKB-catalyzed autophosphorylation on multiple subunits, but how this regulates CPC interactions with other mitotic proteins remains unclear. We investigated the hydrodynamic behavior of the CPC in Xenopus laevis egg cytosol using sucrose gradient sedimentation and in HeLa cells using fluorescence correlation spectroscopy. We found that autophosphorylation of the CPC decreases its sedimentation coefficient in egg cytosol and increases its diffusion coefficient in live cells, indicating a decrease in mass. Using immunoprecipitation coupled with mass spectrometry and immunoblots, we discovered that inactive, unphosphorylated CPC interacts with nucleophosmin/nucleoplasmin proteins, which are known to oligomerize into pentamers and decamers. Autophosphorylation of the CPC causes it to dissociate from nucleophosmin/nucleoplasmin. We propose that nucleophosmin/nucleoplasmin complexes serve as chaperones that negatively regulate the CPC and/or stabilize its inactive form, preventing CPC autophosphorylation and recruitment to chromatin and microtubules in mitosis.


Asunto(s)
Proteínas Nucleares/metabolismo , Nucleoplasminas/metabolismo , Animales , División Celular , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas , Células HeLa/metabolismo , Humanos , Hidrodinámica , Microtúbulos/metabolismo , Mitosis , Chaperonas Moleculares/metabolismo , Nucleofosmina , Huso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
20.
Sci Rep ; 7: 40405, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28074868

RESUMEN

Nucleoplasmins are a nuclear chaperone family defined by the presence of a highly conserved N-terminal core domain. X-ray crystallographic studies of isolated nucleoplasmin core domains revealed a ß-propeller structure consisting of a set of five monomers that together form a stable pentamer. Recent studies on isolated N-terminal domains from Drosophila 39-kDa FK506-binding protein (FKBP39) and from other chromatin-associated proteins showed analogous, nucleoplasmin-like (NPL) pentameric structures. Here, we report that the NPL domain of the full-length FKBP39 does not form pentameric complexes. Multi-angle light scattering (MALS) and sedimentation equilibrium ultracentrifugation (SE AUC) analyses of the molecular mass of the full-length protein indicated that FKBP39 forms homotetrameric complexes. Molecular models reconstructed from small-angle X-ray scattering (SAXS) revealed that the NPL domain forms a stable, tetrameric core and that FK506-binding domains are linked to it by intrinsically disordered, flexible chains that form tentacle-like segments. Analyses of full-length FKBP39 and its isolated NPL domain suggested that the distal regions of the polypeptide chain influence and determine the quaternary conformation of the nucleoplasmin-like protein. These results provide new insights regarding the conserved structure of nucleoplasmin core domains and provide a potential explanation for the importance of the tetrameric structural organization of full-length nucleoplasmins.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Nucleoplasminas/metabolismo , Multimerización de Proteína , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Área Bajo la Curva , Dicroismo Circular , Modelos Moleculares , Peso Molecular , Dominios Proteicos , Estructura Secundaria de Proteína , Transporte de Proteínas , Dispersión del Ángulo Pequeño , Soluciones , Fracciones Subcelulares/metabolismo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA