Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
ACS Chem Biol ; 16(7): 1201-1207, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34129316

RESUMEN

Red blood cells (RBCs) can serve as vascular carriers for drugs, proteins, peptides, and nanoparticles. Human RBCs remain in the circulation for ∼120 days, are biocompatible, and are immunologically largely inert. RBCs are cleared by the reticuloendothelial system and can induce immune tolerance to foreign components attached to the RBC surface. RBC conjugates have been pursued in clinical trials to treat cancers and autoimmune diseases and to correct genetic disorders. Still, most methods used to modify RBCs require multiple steps, are resource-intensive and time-consuming, and increase the risk of inflicting damage to the RBCs. Here, we describe direct conjugation of peptides and proteins onto the surface of RBCs in a single step, catalyzed by a highly efficient, recombinant asparaginyl ligase under mild, physiological conditions. In mice, the modified RBCs remain intact in the circulation, display a normal circulatory half-life, and retain their immune tolerance-inducing properties, as shown for protection against an accelerated model for type 1 diabetes. We conjugated different nanobodies to RBCs with retention of their binding properties, and these modified RBCs can target cancer cells in vitro. This approach provides an appealing alternative to current methods of RBC engineering. It provides ready access to more complex RBC constructs and highlights the general utility of asparaginyl ligases for the modification of native cell surfaces.


Asunto(s)
Ligasas de Carbono-Nitrógeno/química , Membrana Eritrocítica/metabolismo , Péptidos/química , Anticuerpos de Dominio Único/química , Animales , Ligasas de Carbono-Nitrógeno/genética , Ingeniería Celular , Línea Celular Tumoral , Cisteína Endopeptidasas/genética , Diabetes Mellitus Experimental/prevención & control , Membrana Eritrocítica/química , Transfusión de Eritrocitos , Femenino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Mutación , Oldenlandia/enzimología , Proteínas de Plantas/genética
2.
ACS Chem Biol ; 15(4): 962-969, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32203656

RESUMEN

Cyclotides are a class of cyclic disulfide-rich peptides found in plants that have been adopted as a molecular scaffold for pharmaceutical applications due to their inherent stability and ability to penetrate cell membranes. For research purposes, they are usually produced and cyclized synthetically, but there are concerns around the cost and environmental impact of large-scale chemical synthesis. One strategy to improve this is to combine a recombinant production system with native enzyme-mediated cyclization. Asparaginyl endopeptidases (AEPs) are enzymes that can act as peptide ligases in certain plants to facilitate cyclotide maturation. One of these ligases, OaAEP1b, originates from the cyclotide-producing plant, Oldenlandia affinis, and can be produced recombinantly for use in vitro as an alternative to chemical cyclization of recombinant substrates. However, not all engineered cyclotides are compatible with AEP-mediated cyclization because new pharmaceutical epitopes often replace the most flexible region of the peptide, where the native cyclization site is located. Here we redesign a popular cyclotide grafting scaffold, MCoTI-II, to incorporate an AEP cyclization site located away from the usual grafting region. We demonstrate the incorporation of a bioactive peptide sequence in the most flexible region of MCoTI-II while maintaining AEP compatibility, where the two were previously mutually exclusive. We anticipate that our AEP-compatible scaffold, based on the most popular cyclotide for pharmaceutical applications, will be useful in designing bioactive cyclotides that are compatible with AEP-mediated cyclization and will therefore open up the possibility of larger scale enzyme-mediated production of recombinant or synthetic cyclotides alike.


Asunto(s)
Ciclotidas/química , Cisteína Endopeptidasas/química , Proteínas de Plantas/química , Secuencia de Aminoácidos , Ciclización , Ciclotidas/síntesis química , Ciclotidas/genética , Cisteína Endopeptidasas/genética , Escherichia coli/genética , Oldenlandia/enzimología , Proteínas de Plantas/síntesis química , Proteínas de Plantas/genética , Ingeniería de Proteínas
3.
J Vis Exp ; (156)2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32091003

RESUMEN

Chemical and bio-conjugation techniques have been developed rapidly in recent years and allow the building of protein polymers. However, a controlled protein polymerization process is always a challenge. Here, we have developed an enzymatic methodology for constructing polymerized protein step by step in a rationally-controlled sequence. In this method, the C-terminus of a protein monomer is NGL for protein conjugation using OaAEP1 (Oldenlandia affinis asparaginyl endopeptidases) 1) while the N-terminus was a cleavable TEV (tobacco etch virus) cleavage site plus an L (ENLYFQ/GL) for temporary N-terminal protecting. Consequently, OaAEP1 was able to add only one protein monomer at a time, and then the TEV protease cleaved the N-terminus between Q and G to expose the NH2-Gly-Leu. Then the unit is ready for next OaAEP1 ligation. The engineered polyprotein is examined by unfolding individual protein domain using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). Therefore, this study provides a useful strategy for polyprotein engineering and immobilization.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Proteínas Inmovilizadas/metabolismo , Oldenlandia/enzimología , Polimerizacion , Biosíntesis de Proteínas , Imagen Individual de Molécula/métodos , Cisteína Endopeptidasas/química , Endopeptidasas/química , Endopeptidasas/metabolismo , Microscopía de Fuerza Atómica , Potyvirus/enzimología , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Espectrofotometría Ultravioleta
4.
Chem Commun (Camb) ; 56(7): 1082-1084, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31894763

RESUMEN

G-quadruplexes (G4) are non-canonical nucleic acid structures with important implications in biology. Based on an α-helical fragment of the RHAU helicase that displays high specificity for parallel-stranded G-quadrplexes, herein we demonstrate its head-to-tail cyclization by a high-efficiency ligase. The cyclic peptide exhibits superior stability and binding affinity to a G-quadruplex, and can serve as an excellent investigational tool for chemical biology applications.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ADN/metabolismo , G-Cuádruplex , Fragmentos de Péptidos/metabolismo , Péptidos Cíclicos/metabolismo , Células A549 , Ciclización , ARN Helicasas DEAD-box/química , ADN/genética , Humanos , Oldenlandia/enzimología , Fragmentos de Péptidos/química , Péptido Sintasas/química , Péptidos Cíclicos/síntesis química , Unión Proteica , Estabilidad Proteica
5.
J Am Chem Soc ; 141(43): 17388-17393, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31573802

RESUMEN

Protein ligases of defined substrate specificity are versatile tools for protein engineering. Upon completion of the reaction, the products of currently reported protein ligases contain the amino acid sequence that is recognized by that same ligase, resulting in repeated cycles of ligation and hydrolysis as competing reactions. Thus, previous efforts to sequentially label proteins at distinct positions required ligases of orthogonal specificity. A recombinant Oldenlandia affinis asparaginyl endopeptidase, OaAEP1, is promiscuous for incoming nucleophiles. This promiscuity enabled us to define a nucleophile composed of natural amino acids that is ligated efficiently to the substrate yet yields a product that is poorly recognized by OaAEP1. Proteins modified with an efficient recognition module could be readily modified to yield a defined product bearing a cleavage-resistant motif, whereas proteins containing this inferior recognition motif remained essentially unmodified. We demonstrate the versatility of the N- or C-terminal protein modifications obtainable with this approach and modify the N- and C-termini of a single substrate protein in a sequential, site-specific manner in excellent yield.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Ingeniería de Proteínas/métodos , Proteínas/química , Secuencias de Aminoácidos , Catálisis , Cisteína Endopeptidasas/genética , Electroforesis en Gel de Poliacrilamida , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Oldenlandia/enzimología , Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticuerpos de Dominio Único/química
6.
Methods Mol Biol ; 2012: 211-235, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31161511

RESUMEN

Cyclization of the peptide backbone by connecting the N- and C-terminus can endow target peptides with favorable properties, such as increased stability or potential oral bioavailability. However, there are few tools available for carrying out this modification. Asparaginyl endopeptidases (AEPs) are a class of enzymes that typically work as proteases, but a subset is highly efficient at cyclization of the peptide backbone. In this chapter we describe how to utilize a cyclizing AEP (OaAEP1b) to produce backbone-cyclized peptides both in planta and in vitro. Using the in planta method, OaAEP1b and the target precursor peptide are coexpressed in the leaves of the model plant Nicotiana benthamiana, and cyclization of the target peptide occurs in planta. Using the in vitro method, purified recombinant OaAEP1b produced in bacteria is used to cyclize the target precursor peptide in vitro.


Asunto(s)
Cisteína Endopeptidasas/química , Oldenlandia/enzimología , Péptidos Cíclicos/química , Secuencia de Aminoácidos , Catálisis , Ciclización , Ciclotidas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Ligasas , Oldenlandia/genética , Ingeniería de Proteínas , Proteínas Recombinantes , Relación Estructura-Actividad
7.
J Biomol NMR ; 71(4): 225-235, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29536230

RESUMEN

Segmental isotopic labeling can facilitate NMR studies of large proteins, multi-domain proteins, and proteins with repetitive sequences by alleviating NMR signal overlaps. Segmental isotopic labeling also allows us to investigate an individual domain in the context of a full-length protein by NMR. Several established methods are available for segmental isotopic labeling such as intein-mediated ligation, but each has specific requirements and limitations. Here, we report an enzymatic approach using bacterially produced asparagine endopeptidase from Oldenlandia affinis for segmental isotopic labeling of a protein with repetitive sequences, a designed armadillo repeat protein, by overcoming some of the shortcomings of enzymatic ligation for segmental isotopic labeling.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Marcaje Isotópico/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas del Dominio Armadillo/metabolismo , Proteínas Bacterianas/metabolismo , Oldenlandia/enzimología
8.
FEBS Lett ; 591(9): 1285-1294, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28369872

RESUMEN

Asparaginyl endopeptidases (AEPs) catalyze head-to-tail backbone cyclization of naturally occurring cyclic peptides such as cyclotides, and have become an important peptide-engineering tool for macrocyclization and peptide ligation. Here, we report efficient protein ligation in trans by mimicking efficient backbone cyclization by an AEP without any excess of reactants. We demonstrate a practical application of segmental isotopic labeling for NMR studies of a single-domain globular protein without any refolding step using the recombinant AEP prepared from Escherichia coli. This simple protein ligation approach using an AEP could be applied for incorporation of various biophysical probes into proteins as well as post-translational production of full-length proteins.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Marcaje Isotópico/métodos , Péptidos Cíclicos/metabolismo , Proteínas de Plantas/metabolismo , Cisteína Endopeptidasas/genética , Escherichia coli/genética , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Oldenlandia/enzimología , Oldenlandia/genética , Péptidos Cíclicos/química , Péptidos Cíclicos/genética , Proteínas de Plantas/genética , Conformación Proteica , Replegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
9.
J Am Chem Soc ; 139(15): 5351-5358, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28199119

RESUMEN

Breaking and forming peptidyl bonds are fundamental biochemical reactions in protein chemistry. Unlike proteases that are abundantly available, fast-acting ligases are rare. OaAEP1 is an enzyme isolated from the cyclotide-producing plant oldenlandia affinis that displayed weak peptide cyclase activity, despite having a similar structural fold with other asparaginyl endopeptidases (AEP). Here we report the first atomic structure of OaAEP1, at a resolution of 2.56 Å, in its preactivation form. Our structure and biochemical analysis of this enzyme reveals its activation mechanism as well as structural features important for its ligation activity. Importantly, through structure-based mutagenesis of OaAEP1, we obtained an ultrafast variant having hundreds of times faster catalytic kinetics, capable of ligating well-folded protein substrates using only a submicromolar concentration of enzyme. In contrast, the protein-protein ligation activity in the original wild-type OaAEP1 enzyme described previously is extremely weak. Thus, the structure-based engineering of OaAEP1 described here provides a unique and novel recombinant tool that can now be used to conduct various protein labeling and modifications that were extremely challenging before.


Asunto(s)
Biocatálisis , Ligasas/metabolismo , Ingeniería de Proteínas , Ligasas/química , Ligasas/aislamiento & purificación , Modelos Moleculares , Oldenlandia/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
10.
Biopolymers ; 92(1): 35-43, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18985675

RESUMEN

We recently isolated a protein disulfide isomerase (PDI) from the Rubiaceae (coffee family) plant Oldenlandia affinis (OaPDI) and demonstrated that it facilitates the production of disulfide-knotted defense proteins called cyclotides. PDIs are major folding catalysts in the eukaryotic ER where they are responsible for formation, breakage, or shuffling of disulfide bonds in substrate polypeptides and are important chaperones in the secretory pathway. Here, we report the first detailed analysis of the oligomerization behavior of a plant PDI, based on characterization of OaPDI using various biochemical and biophysical techniques, including size-exclusion chromatography, NMR spectroscopy, surface plasmon resonance and atomic force microscopy. In solution at low concentration OaPDI comprises mainly monomers, but fractions of dimers and/or higher-order oligomers were observed at increased conditions, raising the possibility that dimerization and/or oligomerization could be a mechanism to adapt to the various-sized polypeptide substrates of PDI. Unlike mammalian PDIs, oligomerization of the plant PDI is not driven by the formation of intermolecular disulfide bonds, but by noncovalent interactions. The information derived in this study advances our understanding of the oligomerization behavior of OaPDI in particular but is potentially of broader interest for understanding the mechanism and role of oligomerization, and hence the catalytic and physiological mechanism, of the ubiquitous folding catalyst PDI.


Asunto(s)
Fenómenos Biofísicos , Oldenlandia/enzimología , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Secuencia de Aminoácidos , Cromatografía en Gel , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Modelos Moleculares , Peso Molecular , Proteína Disulfuro Isomerasas/aislamiento & purificación , Proteína Disulfuro Isomerasas/ultraestructura , Multimerización de Proteína , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie
11.
J Biol Chem ; 282(28): 20435-46, 2007 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-17522051

RESUMEN

We have isolated a protein-disulfide isomerase (PDI) from Oldenlandia affinis (OaPDI), a coffee family (Rubiaceae) plant that accumulates knotted circular proteins called cyclotides. The novel plant PDI appears to be involved in the biosynthesis of cyclotides, since it co-expresses and interacts with the cyclotide precursor protein Oak1. OaPDI exhibits similar isomerase activity but greater chaperone activity than human PDI. Since domain c of OaPDI is predicted to have a neutral pI, we conclude that this domain does not have to be acidic in nature for PDI to be a functional chaperone. Its redox potential of -157 +/- 4 mV supports a role as a functional oxidoreductase in the plant. The mechanism of enzyme-assisted folding of plant cyclotides was investigated by comparing the folding of kalata B1 derivatives in the presence and absence of OaPDI. OaPDI dramatically enhanced the correct oxidative folding of kalata B1 at physiological pH. A detailed investigation of folding intermediates suggested that disulfide isomerization is an important role of the new plant PDI and is an essential step in the production of insecticidal cyclotides. The nucleotide sequence(s) reported in this paper have been submitted to the GenBank/EBI Data Bank with accession number(s) 911777.


Asunto(s)
Ciclotidas/química , Chaperonas Moleculares/química , Oldenlandia/enzimología , Péptidos Cíclicos/química , Proteínas de Plantas/química , Proteína Disulfuro Isomerasas/química , Pliegue de Proteína , Sustitución de Aminoácidos , Ciclotidas/biosíntesis , Ciclotidas/genética , Motivos Nodales de Cisteina/fisiología , Disulfuros/química , Disulfuros/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Insecticidas/química , Insecticidas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Oldenlandia/genética , Oxidación-Reducción , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA