Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.067
Filtrar
1.
Waste Manag ; 186: 280-292, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38954920

RESUMEN

This work outlines the first microwave (MW)-assisted protocol for the production of biofuel precursor furfural (FF) from the raw agricultural waste almond hull (AH), olive stone (OS), and the winemaking-derived grape stalk (GS), grape marc (GM) and exhausted grape marc (EGM) through a one-pot synthesis process. To enhance the overall yield, a catalytic process was firstly developed from xylose, major constituent of hemicellulose present in lignocellulosic biomass. This method afforded FF with 100 % selectivity, yielding over 85 % in isolated product when using H2SO4, as opposed to a 37 % yield with AlCl3·6H2O, at 150 °C in only 10 min. For both catalysts, the developed methodology was further validated, proving adaptable and efficient in producing the targeted FF from the aforementioned lignocellulosic raw materials. More specifically, the employment of AlCl3·6H2O resulted in the highest selectivity (up to 89 % from GM) and FF yield (42 % and 39 % molar from OS and AH, respectively), maintaining notable selectivity for the latter (61 and 48 % from AH and OS). At this regard, and considering the environmental factor of sustainability, it is important to point out the role of AlCl3·6H2O in contrast to H2SO4, thus mitigating detrimental substances. This study provides an important management of agricultural waste through sustainable practises for the development of potential bio-based chemicals, aligning with Green Chemistry and process intensification principles.


Asunto(s)
Furaldehído , Microondas , Prunus dulcis , Vino , Furaldehído/análogos & derivados , Vino/análisis , Prunus dulcis/química , Biocombustibles/análisis , Vitis , Lignina/química , Aceites de Plantas/química , Catálisis , Cloruro de Aluminio , Olea/química
2.
Funct Plant Biol ; 512024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39008621

RESUMEN

One strategy to improve olive (Olea europaea ) tree drought tolerance is through the symbiosis of arbuscular mycorrhizal fungi (AMF), which helps alleviate water deficit through a combination of morphophysiological effects. Cuttings of olive varieties Arbequina (A) and Barnea (B) were grown with (+AMF) or without (-AMF) inoculum in the olive grove rhizosphere soil. One year after establishment, pots were exposed to four different water regimes: (1) control (100% of crop evapotranspiration); (2) short-period drought (20days); (3) long-period drought (25days); and (4) rewatering (R). To evaluate the influence of AMF on tolerance to water stress, stem water potential, stomatal conductance and the biomarkers for water deficit malondialdehyde, proline, soluble sugars, phenols, and flavonoids were evaluated at the end of the irrigation regimes. Stem water potential showed higher values in A(+) and B(+) in all water conditions, and the opposite was true for stomatal conductance. For proline and soluble sugars, the stem water potential trend is repeated with some exceptions. AMF inoculum spore communities from A(+ and -) and B(+ and -) were characterised at the morphospecies level in terms of richness and abundance. Certain morphospecies were identified as potential drought indicators. These results highlight that the benefits of symbiotic relationships between olive and native AMF can help to mitigate the effects of abiotic stress in soils affected by drought.


Asunto(s)
Micorrizas , Olea , Rizosfera , Agua , Olea/microbiología , Micorrizas/fisiología , Agua/metabolismo , Sequías , Prolina/metabolismo , Simbiosis , Estomas de Plantas/fisiología , Tallos de la Planta/microbiología , Raíces de Plantas/microbiología , Malondialdehído/metabolismo
3.
Environ Geochem Health ; 46(9): 320, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012557

RESUMEN

Izmir, Turkey's third most populous city, is in an important position in terms of both agriculture and industry. The province, which contributes 9.3% to the country's industrial production, also has an important potential in terms of olive cultivation. However, until now, no research has been undertaken to analyze the content of trace elements (TEs) in the soil of olive orchards in Izmir. This study was carried out to determine the pollution level and ecological risks of TEs in the olive orchards soils of Izmir province, to reveal their potential sources and to evaluate their health risks. Among the TEs, the average content of only Ni (37.9 mg/kg) exceeded the world soil average content (29 mg/kg), while the average content of only Cd (0.176 mg/kg) exceeded the upper continental crust content (0.09 mg/kg). Enrichment factor revealed that there was significant enrichment for Cd in 73.6%, Ni in 11.6% and Cr in 5.4% of olive orchards, respectively, due to polluted irrigation water and agrochemicals. Similarly, ecological risk factor indicated that there were moderate and considerable ecological risks for Cd in 48.8% and 23.3% of olive orchards, respectively. Absolute principal component scores-multiple linear regression (APCS-MLR) model showed that Ni and Cr in the study area are affected by agricultural sources, Al, Co, Cu, Fe, Mn, Pb and Zn originate from lithogenic sources, and Cd originates from mixed sources. Based on health risk evaluation methods, non-carcinogenic and carcinogenic effects would not be expected for residents. This study provides significant knowledge for evaluating soil TE pollution in olive orchards and serves a model for source apportionment and human health risk evaluation of TEs in other agricultural regions.


Asunto(s)
Monitoreo del Ambiente , Olea , Contaminantes del Suelo , Oligoelementos , Contaminantes del Suelo/análisis , Oligoelementos/análisis , Medición de Riesgo , Turquía , Monitoreo del Ambiente/métodos , Suelo/química , Humanos , Metales Pesados/análisis , Modelos Lineales , Análisis de Componente Principal
4.
Food Microbiol ; 122: 104537, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839217

RESUMEN

Table olives are one of the most known fruit consumed as fermented food, being a fundamental component of the Mediterranean diet. Their production and consumption continue to increase globally and represent an important economic source for the producing countries. One of the most stimulating challenges for the future is the modernization of olive fermentation process. Besides the demand for more reproducible and safer production methods that could be able to reduce product losses and potential risks, producers and consumers are increasingly attracted by the final product characteristics and properties on human health. In this study, the contribution of microbial starters to table olives was fully described in terms of specific enzymatic and microbiological profiles, nutrient components, fermentation-derived compounds, and content of bioactive compounds. The use of microbial starters from different sources was tested considering their technological features and potential ability to improve the functional traits of fermented black table olives. For each fermentation assay, the effects of controlled temperature (kept at 20 °C constantly) versus not controlled environmental conditions (oscillating between 7 and 17 °C), as well as the consequences of the pasteurization treatment were tested on the final products. Starter-driven fermentation strategies seemed to increase both total phenolic content and total antioxidant activity. Herein, among all the tested microbial starters, we provide data indicating that two bacterial strains (Leuconostoc mesenteroides KT 5-1 and Lactiplantibacillus plantarum BC T3-35), and two yeast strains (Saccharomyces cerevisiae 10A and Debaryomyces hansenii A15-44) were the better ones related to enzyme activities, total phenolic content and antioxidant activity. We also demonstrated that the fermentation of black table olives under not controlled environmental temperature conditions was more promising than the controlled level of 20 °C constantly in terms of technological and functional properties considered in this study. Moreover, we confirmed that the pasteurization process had a role in enhancing the levels of antioxidant compounds.


Asunto(s)
Fermentación , Alimentos Fermentados , Olea , Pasteurización , Olea/microbiología , Olea/química , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Microbiología de Alimentos , Antioxidantes/metabolismo , Antioxidantes/análisis , Frutas/microbiología , Fenoles/análisis , Fenoles/metabolismo
5.
Sci Rep ; 14(1): 13446, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862766

RESUMEN

Present study concerns the transformation of the agro-industrial by-products olive mill stone waste (OMSW) and walnut shell (WS) to a protein-enriched animal feedstuff utilizing the solid state fermentation (SSF) technique. For this purpose, various mixtures of these by-products were exploited as substrates of the SSF process which was initiated by the P. ostreatus fungus. The respective results indicated that the substrate consisted of 80% WS and 20% OMSW afforded the product with the highest increase in protein content, which accounted the 7.57% of its mass (69.35% increase). In addition, a 26.13% reduction of lignin content was observed, while the most profound effect was observed for their 1,3-1,6 ß-glucans profile, which was increased by 3-folds reaching the 6.94% of substrate's mass. These results are indicative of the OMSW and WS mixtures potential to act as efficient substrate for the development of novel proteinaceous animal feed supplements using the SSF procedure. Study herein contributes to the reintegration of the agro-industrial by-products aiming to confront the problem of proteinaceous animal feed scarcity and reduce in parallel the environmental footprint of the agro-industrial processes within the context of circular economy.


Asunto(s)
Alimentación Animal , Fermentación , Residuos Industriales , Juglans , Olea , Pleurotus , Pleurotus/metabolismo , Juglans/metabolismo , Juglans/química , Olea/metabolismo , Olea/química , Alimentación Animal/análisis , Residuos Industriales/análisis , Lignina/metabolismo , Animales
6.
Yakugaku Zasshi ; 144(6): 675-683, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38825476

RESUMEN

Recently, feeding damage by the olive weevil Pimelocerus (Dyscerus) perforatus Roelofs, which utilizes olive trees (Olea europaea Linne) as a host plant, has become the biggest obstacle to olive cultivation in Japan. We previously identified several volatile plant-derived natural products that exhibit repellent activity against olive weevils. In this study, we conducted a pilot test of repellents in an olive orchard along with the use of insecticide. During three consecutive years from 2021 to 2023, the first year was the observation period, and the second and third years were set aside for a trial period for o-vanillin and geraniol as repellents, respectively. Using o-vanillin, the number of adult olive weevil outbreaks decreased to almost half a year in the experimental area, the use of geraniol then resulted in a drastic reduction of the number of individual olive weevils in the experimental area. In contrast, adults and larvae outbreaks increased in the control area without a repellent, despite the use of insecticide. These results indicate that the volatile repellents drove the olive weevils away and kept them at bay in the field. Based on the observations, we will be able to provide a new approach for the control of olive cultivation, including fruit and leaves used for commercial purposes, following integrated pest management (IPM) practices, such as reducing environmental poisoning from intense insecticides, and returning olive weevils to their original habitat outside of olive orchards.


Asunto(s)
Monoterpenos Acíclicos , Repelentes de Insectos , Olea , Gorgojos , Olea/química , Animales , Proyectos Piloto , Insecticidas , Terpenos , Japón
7.
Int J Biol Macromol ; 272(Pt 1): 132509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843608

RESUMEN

Functional packaging represents a new frontier for research on food packaging materials. In this context, adding antioxidant properties to packaging films is of interest. In this study, poly(butylene adipate-co-terephthalate) (PBAT) and olive leaf extract (OLE) have been melt-compounded to obtain novel biomaterials suitable for applications which would benefit from the antioxidant activity. The effect of cellulose nanocrystals (CNC) on the PBAT/OLE system was investigated, considering the interface interactions between PBAT/OLE and OLE/CNC. The biomaterials' physical and antioxidant properties were characterized. Morphological analysis corroborates the full miscibility between OLE and PBAT and that OLE favours CNC dispersion into the polymer matrix. Tensile tests show a stable plasticizer effect of OLE for a month in line with good interface PBAT/OLE interactions. Simulant food tests indicate a delay of OLE release from the 20 wt% OLE-based materials. Antioxidant activity tests prove the antioxidant effect of OLE depending on the released polyphenols, prolonged in the system at 20 wt% of OLE. Fluorescence spectroscopy demonstrates the nature of the non-covalent PBAT/OLE interphase interactions in π-π stacking bonds. The presence of CNC in the biomaterials leads to strong hydrogen bonding interactions between CNC and OLE, accelerating OLE released from the PBAT matrix.


Asunto(s)
Antioxidantes , Materiales Biocompatibles , Celulosa , Nanopartículas , Olea , Extractos Vegetales , Hojas de la Planta , Poliésteres , Celulosa/química , Antioxidantes/química , Antioxidantes/farmacología , Olea/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Poliésteres/química , Embalaje de Alimentos/métodos
8.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928246

RESUMEN

Bioactive compounds that can be recovered by the solid wastes of the olive oil sector, such as polyphenols, are known for their significant antioxidant and antimicrobial activities with potential application in nutraceutical, cosmetic, and food industries. Given that industrial demands are growing, and the polyphenol market value is ever increasing, a systematic study on the recovery of natural antioxidant compounds from olive pomace using ultrasound-assisted extraction (UAE) was conducted. Single-factor parameters, i.e., the extraction solvent, time, and solid-to-liquid ratio, were investigated evaluating the total phenolic content (TPC) recovery and the antioxidant activity of the final extract. The acetone-water system (50% v/v, 20 min, 1:20 g mL-1) exhibited the highest total phenolic content recovery (168.8 ± 5.5 mg GAE per g of dry extract). The olive pomace extract (OPE) was further assessed for its antioxidant and antibacterial activities. In DPPH, ABTS, and CUPRAC, OPE exhibited an antioxidant capacity of 413.6 ± 1.9, 162.72 ± 3.36 and 384.9 ± 7.86 mg TE per g of dry extract, respectively. The antibacterial study showed that OPE attained a minimum inhibitory activity (MIC) of 2.5 mg mL-1 against E. coli and 10 mg mL-1 against B. subtilis. Hydroxytyrosol and tyrosol were identified as the major phenolic compounds of OPE. Furthermore, active chitosan-polyvinyl alcohol (CHT/PVA) films were prepared using different OPE loadings (0.01-0.1%, w/v). OPE-enriched films showed a dose-dependent antiradical scavenging activity reaching 85.7 ± 4.6% (ABTS) and inhibition growth up to 81% against B. subtilis compared to the control film. Increased UV light barrier ability was also observed for the films containing OPE. These results indicate that OPE is a valuable source of phenolic compounds with promising biological activities that can be exploited for developing multifunctional food packaging materials.


Asunto(s)
Antibacterianos , Antioxidantes , Olea , Fenoles , Extractos Vegetales , Olea/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Fenoles/análisis , Embalaje de Alimentos , Polifenoles/química , Polifenoles/farmacología , Polifenoles/aislamiento & purificación , Ondas Ultrasónicas , Pruebas de Sensibilidad Microbiana
9.
Biomolecules ; 14(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927125

RESUMEN

Human health is now inextricably linked to lifestyle choices, which can either protect or predispose people to serious illnesses. The Mediterranean diet, characterized by the consumption of various medicinal plants and their byproducts, plays a significant role in protecting against ailments such as oxidative stress, cancer, and diabetes. To uncover the secrets of this natural treasure, this review seeks to consolidate diverse data concerning the pharmacology, toxicology, phytochemistry, and botany of Olea europaea L. (O. europaea). Its aim is to explore the potential therapeutic applications and propose avenues for future research. Through web literature searches (using Google Scholar, PubMed, Web of Science, and Scopus), all information currently available on O. europaea was acquired. Worldwide, ethnomedical usage of O. europaea has been reported, indicating its effectiveness in treating a range of illnesses. Phytochemical studies have identified a range of compounds, including flavanones, iridoids, secoiridoids, flavonoids, triterpenes, biophenols, benzoic acid derivatives, among others. These components exhibit diverse pharmacological activities both in vitro and in vivo, such as antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties. O. europaea serves as a valuable source of conventional medicine for treating various conditions. The findings from pharmacological and phytochemical investigations presented in this review enhance our understanding of its therapeutic potential and support its potential future use in modern medicine.


Asunto(s)
Olea , Fitoquímicos , Humanos , Olea/química , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Animales , Plantas Medicinales/química , Antioxidantes/farmacología , Antioxidantes/química
10.
Anal Methods ; 16(25): 4124-4135, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38860427

RESUMEN

This paper describes an extensive study in which a multiclass QuEChERS based approach was optimized for determination of 150 pesticides and 7 mycotoxins in table olives. Three versions of QuEChERS were evaluated and compared (unbuffered, citrate and acetate buffering). A combination of EMR-Lipid cartridges and liquid nitrogen or freezer freezing out were tested for clean-up of the oily olive extracts. Analysis of the extracts were performed by LC-MS/MS triple quadrupole. The best results were achieved using acetate QuEChERS with liquid nitrogen for clean-up. For validation, organic olives were ground and spiked at 4 concentrations with pesticides and mycotoxins (n = 5). The linearity of the calibration curves was assessed by analyzing calibration standards of 7 concentrations which were prepared separately in acetonitrile and in blank olive extract (n = 5). The validation study demonstrated that the calculated r2 was ≥0.99 for 144 pesticides and 6 mycotoxins, when the calibration curves were prepared in matrix extract, showing satisfactory linearity. Matrix effects were within the range of ±20% for only 46 pesticides and one mycotoxin. Then, to ensure reliable quantification, calibration standards had to be matrix-matched. In accuracy experiments 138 pesticides and 6 mycotoxins presented recoveries from 70 to 120% and RSD ≤ 20% for at least 2 of the 4 spike concentrations evaluated, being successfully validated. The integrated QuEChERS and LC-MS/MS method meet MRL for 11 of the 21 pesticides regulated for olives in Brazil and for 132 pesticides which are regulated in the EU law. Eleven commercial table olive samples were analyzed and 4 of them tested positive for pesticides. All the positive samples violate the Brazilian law and one sample violates also the European law.


Asunto(s)
Micotoxinas , Olea , Plaguicidas , Espectrometría de Masas en Tándem , Olea/química , Brasil , Micotoxinas/análisis , Espectrometría de Masas en Tándem/métodos , Plaguicidas/análisis , Cromatografía Liquida/métodos , Contaminación de Alimentos/análisis , Reproducibilidad de los Resultados
11.
Sci Rep ; 14(1): 14688, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918489

RESUMEN

In light of the multitude of olive trees cultivated and the lack of the genetic diversity of available genotypes to select varieties and lines that are characterized by high diversity and better performance under the corresponding conditions, A comparison analysis of the genotyping and morphological characteristics of eight olive cultivars growing in Saudi Arabia's Al-Jouf region was conducted and analyzed. Morpho-anatomical and chemical characteristics along with both inter-simple-sequence repeats (ISSRs) and start-codon-targeted (SCoT) markers were used to evaluate the genetic diversity among eight olive varieties in Al-Jouf, Saudi Arabia. Analyses of 27 morphological, chemical, and anatomical characteristics concluded the existence of genetic differences among the studied varieties. Moreover, six ISSR and eight SCoT primer combinations produced a total of 48 loci, of which 18 (10 ISSR and 8 SCoT) were polymorphic. The average polymorphism information content (PIC values of 0.48 and 0.44, respectively) and marker index (MI of 0.79 and 0.48, respectively) detected for ISSR and SCoT markers revealed the prevalence of high genetic diversity among the studied olive varieties. Based on chemical and anatomical characteristics and the selected molecular markers, the eight olive cultivars were grouped into two distinct clusters. Clusters in the adjacent joint dendrogram produced using ISSR, SCoT and combined data were similar, and grouped all individuals into two groups. However, the dendrogram generated on the basis of SCoT separated individuals into subgroups containing at least two varieties. The findings showed that both methods were effective in assessing diversity, and that SCoT markers can be used as a reliable and informative method for assessing genetic diversity and relationships among olive varieties and can serve as a complementary tool to provide a more complete understanding of the genetic diversity available in Olea europaea populations in Saudi Arabia.


Asunto(s)
Variación Genética , Repeticiones de Microsatélite , Olea , Olea/genética , Olea/clasificación , Olea/anatomía & histología , Arabia Saudita , Repeticiones de Microsatélite/genética , Genotipo , Polimorfismo Genético , Filogenia , Marcadores Genéticos
12.
Mol Biol Rep ; 51(1): 774, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904794

RESUMEN

BACKGROUND: Olive is an evergreen tree of Oleaceae Olea with numerous bioactive components. While the anti-inflammatory properties of olive oil and the derivatives are well-documented, there remains a dearth of in-depth researches on the immunosuppressive effects of olive fruit water extract. This study aimed to elucidate the dose-effect relationship and underlying molecular mechanisms of olive fruit extract in mediating anti-inflammatory responses. METHODS AND RESULTS: The impacts of olive fruit extract on the release of nitric oxide (NO), tumor necrosis factor (TNF-α), interleukins-6 (IL-6) and reactive oxygen species (ROS) were assessed in RAW264.7 cells induced by lipopolysaccharide (LPS). For deeper understanding, the expression of genes encoding inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α and IL-6 was quantitatively tested. Additionally, the expression patterns of MAPK and NF-κB pathways were further observed to analyze the action mechanisms. Results suggested that olive fruit extract (200, 500, 1000 µg/mL) markedly exhibited a dose-dependent reduction in the generation of NO, TNF-α, IL-6 and ROS, as well as the expression of correlative genes studied. The activation of ERK, JNK, p38, IκB-α and p65 were all suppressed when p65 nuclear translocation was further restricted by olive fruit extract in NF-κB and MAPK signal pathways. CONCLUSIONS: Olive fruit extract targeted imposing restrictions on the signal transduction of key proteins in NF-κB and MAPK pathways, and thereby lowered the level of inflammatory mediators, which put an enormous hindrance to inflammatory development. Accordingly, it is reasonable to consider olive fruit as a potent ingredient in immunomodulatory products.


Asunto(s)
Antiinflamatorios , Frutas , Lipopolisacáridos , FN-kappa B , Óxido Nítrico , Olea , Extractos Vegetales , Especies Reactivas de Oxígeno , Transducción de Señal , Animales , Olea/química , Ratones , Células RAW 264.7 , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Frutas/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Óxido Nítrico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Interleucina-6/metabolismo , Interleucina-6/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Supervivencia Celular/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
13.
Nutrients ; 16(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931313

RESUMEN

Obesity is increasingly prevalent worldwide and is linked to metabolic diseases, such as insulin resistance (IR) and type 2 diabetes mellitus (T2DM), due to excessive free fatty acids (FFAs). Although lifestyle changes are effective, they often prove to be insufficient as initial treatments for obesity. Additionally, while surgical and pharmacological interventions are available, they are not entirely safe or effective. Recently, interest has grown in utilizing food waste and plant-derived phenolic compounds for their health benefits, presenting a promising avenue for managing obesity and its related disorders. Indeed, many studies have examined the potential inhibitory effects of the natural extract on adipocyte differentiation and lipid accumulation. This study focused on the evaluation of the effects of standardized extracts obtained from red oranges and olive leaf waste on 3T3-L1 murine pre-adipocyte and adipocyte functionality. Red orange extract (ROE) and olive leaf extract (OLE), alone and in combination, were tested to assess their anti-obesity and anti-inflammatory effects, as well as their potential therapeutic benefits. Three in vitro models were established to investigate the effects of the extracts on (I) adipocyte differentiation; (II) mature and hypertrophic adipocytes challenged with palmitic acid (PA) and erastin (ER), respectively; and (III) erastin-induced cytotoxicity on pre-adipocytes.


Asunto(s)
Células 3T3-L1 , Adipocitos , Olea , Extractos Vegetales , Hojas de la Planta , Animales , Olea/química , Adipocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Ratones , Hojas de la Planta/química , Diferenciación Celular/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Adipogénesis/efectos de los fármacos , Obesidad/tratamiento farmacológico
14.
PLoS One ; 19(6): e0303578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38900727

RESUMEN

Evaluating archaeobotanical data from over 3.9 million seeds and 124,300 charcoal fragments across 330 archaeological site phases in Southwest Asia, we reconstruct the history of olive and grape cultivation spanning a period of 6,000 years. Combining charcoal and seed data enables investigation into both the production and consumption of olive and grape. The earliest indication for olive and grape cultivation appears in the southern Levant around ca. 5000 BC and 4th millennium BC respectively, although cultivation may have been practiced prior to these dates. Olive and grape cultivation in Southwest Asia was regionally concentrated within the Levant until 600 BC, although there were periodic pushes to the East. Several indications for climate influencing the history of olive and grape cultivation were found, as well as a correlation between periods of high population density and high proportions of olive and grape remains in archaeological sites. While temporal uncertainty prevents a detailed understanding of the causal mechanisms behind these correlations, we suggest that long distance trade in olives, grapes and their associated products was integral to the economic, social, and demographic trajectories of the region.


Asunto(s)
Arqueología , Carbón Orgánico , Olea , Semillas , Vitis , Vitis/crecimiento & desarrollo , Olea/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Humanos , Historia Antigua , Asia , Agricultura/historia
15.
Appl Microbiol Biotechnol ; 108(1): 379, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888798

RESUMEN

The transition towards a sustainable model, particularly the circular economy, emphasizes the importance of redefining waste as a valuable resource, paving the way for innovative upcycling strategies. The olive oil industry, with its significant output of agricultural waste, offers a promising avenue for high-value biomass conversion into useful products through microbial processes. This study focuses on exploring new, high-value applications for olive leaves waste, utilizing a biotechnological approach with Lactobacillus casei for the production of second-generation lactic acid. Contrary to initial expectations, the inherent high polyphenol content and low fermentable glucose levels in olive leaves posed challenges for fermentation. Addressing this, an enzymatic hydrolysis step, following a preliminary extraction process, was implemented to increase glucose availability. Subsequent small-scale fermentation tests were conducted with and without nutrient supplements, identifying the medium that yielded the highest lactic acid production for scale-up. The scaled-up batch fermentation process achieved an enhanced conversion rate (83.58%) and specific productivity (0.26 g/L·h). This research confirms the feasibility of repurposing olive waste leaves for the production of lactic acid, contributing to the advancement of a greener economy through the valorization of agricultural waste. KEY POINTS: • Olive leaves slurry as it did not allow L. casei to ferment. • High concentrations of polyphenols inhibit fermentation of L. casei. • Enzymatic hydrolysis combined to organosolv extraction is the best pretreatment for lactic acid production starting from leaves and olive pruning waste.


Asunto(s)
Fermentación , Ácido Láctico , Lacticaseibacillus casei , Olea , Aceite de Oliva , Hojas de la Planta , Ácido Láctico/metabolismo , Lacticaseibacillus casei/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Aceite de Oliva/metabolismo , Glucosa/metabolismo , Hidrólisis , Residuos Industriales , Polifenoles/metabolismo , Biomasa
16.
J Agric Food Chem ; 72(23): 12871-12895, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38829927

RESUMEN

Polyphenols are natural secondary metabolites found in plants endowed with multiple biological activities (antioxidant, anti-inflammatory, antimicrobial, cardioprotective, and anticancer). In view of these properties, they find many applications and are used as active ingredients in nutraceutical, food, pharmaceutical, and cosmetic formulations. In accordance with green chemistry and circular economy strategies, they can also be recovered from agroindustrial waste and reused in various sectors, promoting sustainable processes. This review described structural characteristics, methods for extraction, biological properties, and applications of polyphenolic extracts obtained from two selected plant materials of the Mediterranean area as olive (Olea europaea L.) and pomegranate (Punica granatum L.) based on recent literature, highlighting future research perspectives.


Asunto(s)
Tecnología Química Verde , Residuos Industriales , Olea , Extractos Vegetales , Polifenoles , Polifenoles/química , Extractos Vegetales/química , Residuos Industriales/análisis , Residuos Industriales/economía , Olea/química , Granada (Fruta)/química , Humanos , Antioxidantes/química , Animales
17.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893322

RESUMEN

The Mediterranean diet well known for its beneficial health effects, including mood enhancement, is characterised by the relatively high consumption of extra virgin olive oil (EVOO), which is rich in bioactive phenolic compounds. Over 200 phenolic compounds have been associated with Olea europaea, and of these, only a relatively small fraction have been characterised. Utilising the OliveNetTM library, phenolic compounds were investigated as potential inhibitors of the epigenetic modifier lysine-specific demethylase 1 (LSD1). Furthermore, the compounds were screened for inhibition of the structurally similar monoamine oxidases (MAOs) which are directly implicated in the pathophysiology of depression. Molecular docking highlighted that olive phenolics interact with the active site of LSD1 and MAOs. Protein-peptide docking was also performed to evaluate the interaction of the histone H3 peptide with LSD1, in the presence of ligands bound to the substrate-binding cavity. To validate the in silico studies, the inhibitory activity of phenolic compounds was compared to the clinically approved inhibitor tranylcypromine. Our findings indicate that olive phenolics inhibit LSD1 and the MAOs in vitro. Using a cell culture model system with corticosteroid-stimulated human BJ fibroblast cells, the results demonstrate the attenuation of dexamethasone- and hydrocortisone-induced MAO activity by phenolic compounds. The findings were further corroborated using human embryonic stem cell (hESC)-derived neurons stimulated with all-trans retinoic acid. Overall, the results indicate the inhibition of flavin adenine dinucleotide (FAD)-dependent amine oxidases by olive phenolics. More generally, our findings further support at least a partial mechanism accounting for the antidepressant effects associated with EVOO and the Mediterranean diet.


Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Olea , Fenoles , Humanos , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Monoaminooxidasa/química , Olea/química , Fenoles/farmacología , Fenoles/química , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Depresión/tratamiento farmacológico , Aceite de Oliva/química , Simulación por Computador
18.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38906841

RESUMEN

AIMS: Climate change is endangering olive groves. Farmers are adapting by exploring new varieties of olive trees and examining the role of microbiomes in plant health.The main objectives of this work were to determine the primary factors that influence the microbiome of olive trees and to analyze the connection between the rhizosphere and endosphere compartments. METHODS AND RESULTS: The rhizosphere and xylem sap microbiomes of two olive tree varieties were characterized by next-generation 16S rRNA amplicon sequencing, and soil descriptors were analyzed. Bacterial communities in the rhizosphere of olive trees were more diverse than those found in the xylem sap. Pseudomonadota, Actinobacteriota, Acidobacteriota, and Bacillota were the dominant phyla in both compartments. At the genus level, only very few taxa were shared between soil and sap bacterial communities. CONCLUSIONS: The composition of the bacteriome was more affected by the plant compartment than by the olive cultivar or soil properties, and a direct route from the rhizosphere to the endosphere could not be confirmed. The large number of plant growth-promoting bacteria found in both compartments provides promising prospects for improving agricultural outcomes through microbiome engineering.


Asunto(s)
Bacterias , Microbiota , Olea , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , Xilema , Olea/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Xilema/microbiología , Raíces de Plantas/microbiología , Suelo/química
19.
J Agric Food Chem ; 72(23): 13023-13038, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38809962

RESUMEN

Extra virgin olive oil (EVOO), a staple of the Mediterranean diet, is rich in phenolic compounds recognized for their potent bioactive effects, including anticancer and anti-inflammatory properties. However, its effects on vascular health remain relatively unexplored. In this study, we examined the impact of a "picual" EVOO extract from Jaén, Spain, on endothelial cells. Proteomic analysis revealed the modulation of angiogenesis-related processes. In subsequent in vitro experiments, the EVOO extract inhibited endothelial cell migration, adhesion, invasion, ECM degradation, and tube formation while inducing apoptosis. These results provide robust evidence of the extract's antiangiogenic potential. Our findings highlight the potential of EVOO extracts in mitigating angiogenesis-related pathologies, such as cancer, macular degeneration, and diabetic retinopathy.


Asunto(s)
Inhibidores de la Angiogénesis , Movimiento Celular , Aceite de Oliva , Extractos Vegetales , Proteómica , Aceite de Oliva/química , Humanos , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Movimiento Celular/efectos de los fármacos , Olea/química , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Apoptosis/efectos de los fármacos , España , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Adhesión Celular/efectos de los fármacos
20.
J Photochem Photobiol B ; 256: 112945, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795655

RESUMEN

In this study, for the first time, red LED light radiation was applied to the fermentation process of table olives using the Negrinha de Freixo variety. Photostimulation using LED light emission (630 ± 10 nm) is proposed to shorten and speed up this stage and reduce time to market. Several physical-chemical characteristics and microorganisms (total microbial count of mesophilic aerobic, molds, yeasts, and lactic acid bacteria) and their sequence during fermentation were monitored. The fermentation occurred for 122 days, with two irradiation periods for red LED light. The nutritional composition and sensory analysis were performed at the end of the process. Fermentation under red LED light increased the viable yeast and lactic acid bacteria (LAB) cell counts and decreased the total phenolics in olives. Even though significant differences were observed in some color parameters, the hue values were of the same order of magnitude and similar for both samples. Furthermore, the red LED light did not play a relevant change in the texture profile, preventing the softening of the fruit pulp. Similarly, LED light did not modify the existing type of microflora but increased species abundance, resulting in desirable properties and activities. The species identified were yeasts - Candida boidinii, Pichia membranifaciens, and Saccharomyces cerevisiae, and bacteria - Lactobacillus plantarum and Leuconostoc mesenteroides, being the fermentative process dominated by S. cerevisiae and L. plantarum. At the end of fermentation (122 days), the irradiated olives showed less bitterness and acidity, higher hardness, and lower negative sensory attributes than non-irradiated. Thus, the results of this study indicate that red LED light application can be an innovative technology for table olives production.


Asunto(s)
Fermentación , Luz , Olea , Olea/microbiología , Olea/efectos de la radiación , Levaduras/efectos de la radiación , Levaduras/metabolismo , Fenoles/metabolismo , Fenoles/química , Fenoles/análisis , Frutas/efectos de la radiación , Frutas/microbiología , Microbiología de Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA